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A set E ⊂ N is q-automatic if there
exists a finite automaton that takes as
input the base-q expansion of n and
outputs 1 if n belongs to E and 0
otherwise.



Base-dependence: the powers of 2

Though it is obvious to determine whether a binary natural number is a power
of 2, it seems more difficult to identify this property from its decimal expansion.
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A first base change problem

In 1969, Cobham proved the following fundamental result.

Cobham’s theorem. Let q1 and q2 be two multiplicatively independent natural
numbers. A set E ⊂ N is both q1- and q2-automatic if and only if it is a finite
union of arithmetic progressions.
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In 1969, Cobham proved the following fundamental result.

Cobham’s theorem. Let q1 and q2 be two multiplicatively independent natural
numbers. A set E ⊂ N is both q1- and q2-automatic if and only if it is a finite
union of arithmetic progressions.

In more algebraic terms, we expect that Cobham’s theorem can be
strengthened as follows.

Problem 1. Let r ≥ 1 be an integer. Let q1, . . . , qr be pairwise multiplicatively
independent natural numbers, and, for every i , 1 ≤ i ≤ r , let Ei ⊂ N be a
qi -automatic set that is not a finite union of arithmetic progressions. Prove
that the generating functions

f1(z) =
∑

n∈E1

z
n, . . . , fr (z) =

∑

n∈Er

z
n

are algebraically independent over Q(z).
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Representations of real numbers in integer bases

Finite automata can also be used to define simple real numbers with respect to
their representation in some integer base.

A real number ξ is said to be automatic in base b if its base-b expansion can
be generated by a finite automaton. This means that there exists a finite
automaton that takes as input the expansion of n in some base and produces
as output the nth digit of ξ.

Example. The Thue–Morse number

〈τ 〉2 = 0.011 010 011 001 011 010 010 110 011 010 011 001 011 · · · ,

is automatic in base 2.
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Usually, problems concerning representations in integers bases of real numbers
are much harder to handle.

For instance, while
√

2 and π have very simple geometric descriptions, their
decimal expansions

〈
√

2〉10 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 · · ·
and

〈π〉10 = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 · · ·

remain totally mysterious.

It is expected that none of the numbers
√

2, π, e, log 2, ζ(3) is automatic.

Theorem AB. The base-b expansion of an irrational algebraic number cannot
be generated by a finite automaton.
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Again, though the Thue-Morse number τ has a simple binary expansion, its
decimal expansion

〈τ 〉10 = 0.412 454 033 640 107 597 783 361 368 258 455 283 089 · · ·
seems much more unpredictable.

Problem 2. Let b1 and b2 be two multiplicatively independent natural
numbers. Prove that a real number is automatic in both bases b1 and b2 if and
only if it is a rational number.

Problem 3. Let r ≥ 1 be an integer. Let b1, . . . , br be pairwise multiplicatively
independent natural numbers, and, for every i , 1 ≤ i ≤ r , let ξi be an irrational
real number that is automatic in base bi . Prove that the numbers ξ1, . . . , ξr are
algebraically independent over Q.
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In 1968, Cobham noticed the following fundamental connection between finite
automata and Mahler functions.

• If a sequence a = (an) with values in Q is q-automatic, then the
generating function

fa(z) :=

∞∑

n=0

anz
n

is a q-Mahler function.

Our main problems can thus be restated and extended as problems concerning
the algebraic relations over Q between the values of Mahler functions at
algebraic points.
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Mahler’s method in one variable: The lifting theorem

More recently, Philippon proved the following important refinement.

Theorem. Let (f1(z), . . . , fm(z)) ∈ Q{z}m be a solution to (M). Let α ∈ Q,
0 < |α| < 1, be a regular point. Then for all homogeneous P ∈ Q[X1, . . . ,Xm]
such that P(f1(α), . . . , fm(α)) = 0, there exists Q ∈ Q[z ,X1, . . . ,Xm],
homogeneous in X1, . . . ,Xm, such that

Q(z , f1(z), . . . , fm(z)) = 0

and
Q(α,X1, . . . ,Xm) = P(X1, . . . ,Xm) .

• Similar results were first obtained by Shidllovskii, Nesterenko and Shidlovskii,
Beukers, and André in the framework of Siegel E -functions.
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With Faverjon, we derive from the previous theorem the following results.

(1) Let K be a number field. If f (z) ∈ K{z} is a Mahler function and if α is
an algebraic number, then either f (α) belongs to K(α) or it is
transcendental.

(2) There exists an algorithm that performs the following task. Given any
Mahler function f (z) ∈ Q{z} and any algebraic number α, it decides
whether f (α) is algebraic or transcendental.

Remark. (1) provides a new proof and an extension of Theorem AB.

Unfortunately, these results are of no help to solve our three problems!
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In 1982, Loxton and van der Poorten claimed that, if the matrix A(0) is
well-defined and non-singular, and if T and α ∈ Q

n
satisfy some conditions,

then
degtrQ(f1(α), . . . , fm(α)) = degtrQ(z)(f1(z), . . . , fm(z)) .

• In fact, this has only been proved for almost constant matrices and almost

diagonal matrices by Kubota and Ku. Nishioka.
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The key point is that the transcendence of f(z) gives for free the algebraic
independence over Q(z1, z2) of the functions f(z1) and f(z2).
We thus deduce that f(1/2) and f(1/3) are algebraically independent!

• The trick works because the point α = (1/2, 1/3) has sufficiently
independent coordinates.
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Our first main result is the following.

Theorem AF1. Let (f1(z), . . . , fm(z)) ∈ Q{z}m be a solution to a regular
singular T -Mahler system. If α ∈ Q

n
is regular and that the pair (T ,α) is

admissible, then for all homogeneous P ∈ Q[X1, . . . ,Xm] such that
P(f1(α), . . . , fm(α)) = 0, there exists Q ∈ Q[z ,X1, . . . ,Xm], homogeneous in
X1, . . . ,Xn, such that

Q(z, f1(z), . . . , fm(z)) = 0

and
Q(α,X1, . . . ,Xm) = P(X1, . . . ,Xm) .

Regular singular systems. There exists a gauge transform Φ(z) ∈ GLm(K̂)

such that Φ(Tz)A(z)Φ−1(z) ∈ GLm(Q), where we let K̂ denote the field of
ramified generalized Laurent series.

Remark. If the matrix A(0) is well-defined and non-singular then the
corresponding system is regular singular.
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Given a finite set of complex numbers E := {ζ1, . . . , ζm}, we let

AlgQ(E) :=
{
P(X1, . . . ,Xm) ∈ Q[X1, . . . ,Xm] : P(ζ1, . . . , ζm) = 0

}

denote the ideal of algebraic relations over Q between the elements of E .

Now, let us consider several sets of complex numbers

E1 = {ζ1,1, . . . , ζ1,m1
}, . . . , Er = {ζr,1, . . . , ζr,mr } ,

and set E = ∪Ei . We let AlgQ(Ei | E) denote the ideal generated by AlgQ(Ei)

in Q[X1, . . . ,XM ], where M = m1 + · · ·+mr .

The elements of AlgQ(Ei | E) are called the pure algebraic relations (with
respect to Ei).
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The purity theorem

Let r ≥ 2. For every integer i , 1 ≤ i ≤ r , we consider a regular singular Mahler
system 


fi,1(Tiz i)

...
fi,mi

(Tiz i )



 = Ai (z i )




fi,1(z i )

...
fi,mi

(z i)





and a point αi ∈ (Q
⋆

)ni where the lifting theorem applies. Let us also assume
that the spectral radii of the Ti ’s are pairwise multiplicatively independent.

Theorem AF2. For every i , 1 ≤ i ≤ r , let us consider

Ei ⊆ {fi,1(αi ), . . . , fi,mi
(αi )}

and set E := ∪r
i=1Ei . Then

AlgQ(E) =
r∑

i=1

AlgQ(Ei | E) .
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Let r ≥ 2 be an integer. For every integer i , 1 ≤ i ≤ r , we let qi ≥ 2 be an
integer, fi (z) ∈ Q{z} be a qi -Mahler function, and αi ∈ Q be such that fi (z) is
well-defined at αi .

Main conjecture. The following properties hold.

(i) Let us assume that α1, . . . , αr are multiplicatively independent. Then the
numbers f1(α1), f2(α2), . . . , fr (αr ) are algebraically independent over Q if
and only if they are all transcendental.

(ii) Let us assume that q1, . . . , qr are pairwise multiplicatively independent.
Then the numbers f1(α1), f2(α2), . . . , fr (αr ) are algebraically independent
over Q if and only if they are all transcendental.

Remark. A solution to this conjecture would solve our three problems.
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Consequences on q-Mahler functions

Combining the lifting theorem and the purity theorem, we can make significant
progress towards the conjecture.

Theorem AF3. The conjecture is true if each fi (z) is regular singular.

Remark. If

p0(z)f (z) + p1(z)f (z
q) + · · ·+ pd(z)fi (z

qd ) = 0 ,

with p0(0)pd(0) 6= 0, then f (z) is a regular singular Mahler function.

Unfortunately, generating functions of automatic sequences are not always
regular singular.


