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Introduction

Biological context

Cells of the same type can regroup into regions = spatial organisation.
Cell segregation and border sharpening in two-species systems:
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Working hypothesis: inter(heterotypic) and intra(homotypic) species repulsion control
cell segregation and border sharpening. They have more influence than inter- or intra-

species adhesion.

Goal: to understand the mechanisms of morphogenesis.

EphB2/EphB2
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Introduction

How to model?

Several mathematical models and differents approaches have been proposed for
cell segregation:

1 — 1 —
Macroscopic model Microscopic model
e Continuous approach — analysis @ Agent-based models: simplicity
tools and flexibility
@ Theoretical framework to link the @ Precision of the modeling

solutions to the model parameters o Link with experimental data

BUT BUT
@ Loss of info about cell-interactions

Computationally expensive
@ No info about number of clusters

Theoretically harder
size and population size CAM
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Mathematical Model

Microscopic framework

Individual Based Model for particles interacting through repulsion interactions:

dX? = —uV  aWA(XA, XBYdt + /2DadBi, Vi€ {1,...,Na} )
dX? = —HV x WEB(X*, XB)dt + /2DgdB,, VL€ {1,...,Ng} (1)
. uoression @ u > 0 is the constant mobility
" < o coefficient,
Q. @ B;i is a 2-dimensional Brownian motion
e , 20 B; = (B!, B?) of intensity Da, Dg > 0
'\\ /X R nkcreation respectively for species A and B,
_,\l\, NP Y @ WS total energy of the S-type particle,
'% S € {A, B}, defined as:
S(yS S SS(yS s & ST(yS
T T T
WA (X5, XT) =" 0% (X — Xitk) + D T (Xitka) — Xelka))»
k=1 ks=1

sum over all pairwise link potentials acting on particles S CAM
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Mathematical Model

Case: Hookean interaction potential

We suppose that the homotypic (AA,BB) species links and heterotypic (AB,BA) act as a

springs of equilibrium length R between the particles that it is also detection radius for
the interaction.

. nksuppression Case of Hookean springs
/® ® sT 2T KT (x| = R)?, for x| <R
. \ 7 (x) = ) =
e , 0 vST 2 0, for x| >R
i} / R : Link creation
| Xi with l/fT,I/gT Poisson processes frequencies
\' Vi and x°T interaction/repulsion intensity.

- Each particle can link/unlink with its neighbors located in a ball of radius R

- Links are not permanent: created and supressed via random processes
CAM
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Mathematical Model

Logistic growth term

We add a growth process to the microscopic model as follows:
o Cell of type S divide into 2 cells with probability 85 and die with probability
s at each time step. S € {A, B}
@ Birth and death processes depend on the local density of individuals

@ Birth occurs at distance r

ﬂs(X;)—bg(bgﬂ)(j,J(j), 65(Xf)d§+(9d05)<7,§f> (2)

Parameters:

o No = Ng,(X?): number of cells (of both population) at distance Ry of the
cell located in X7

@ N* is the maximal number of cell in a radius Ry allowing cell division.

@ 0, constant coefficient that assures the randomness at the population N*.
CA M
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From Micro to Macro

From Micro to Macro

@ Proof of convergence in the case without logistic growth in
J. Barré, J.A. Carrillo, P. Degond, D.Peurichard, E. Zatorska. A two-species
macroscopic model for cell segregation and border sharpening by Eph
receptor ephrin-mediated repulsion; 2018, in preparation.

@ Proof of convergence to a logistic model in a simple case with birth and
death of Brownian bugs in D.A.Birch, W.R. Young. A master equation for a
spatial population model with pair interactions; 2006, Theoretical Pop Bio.

@ Our goal is to merge these 2 methods in order to perform the convergence.
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From Micro to Macro

From Micro — Macro

The derivation of a macroscopic model from the microscopic model requires two
limits:
@ limit of large number of individuals Ns and large number of links Kst,
S e {A, B},
@ limit of large scale or fast network remodelling limit.

Microscopic Model Macroscopic Model

Ns, Kst — o0

rescaling
{(XA, XP)} {(F4,78)}
Position of cells Cell distribution

CAM
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From Micro — Macro: sketch

What is challenging? The varying size of the cell population

@ Fock Space:
Probability space of all the possible states of the particle system (X )«

Py (Xk, t)dXyx = Pr{k cells, with one cell in dx;, another in dx; etc. }

The density or concentration of cells can then be writen as:

f(x,t) = Zk/Pk(X,Xk_l,t)ka_l,

k=1

CAM
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From Micro — Macro: sketch

@ Master equation
We define a master equation for the Probability Py (X, t) time evolution:

Pi(Xe, t+7) = / WX €+ 71X4 )L (XL, £)dX,

k

Z(B(Xi) + (X))

i=1

k—1
+7> BX)BPy — T Pr(Xx, t)
i=1

k+1

+7 / Z B(Xi )Pk + 1(Xkt1, t)dx;
k=1

with W ( Xy, t + 7'|X,:7 t) the transition probability from a state X,L to a state
X, and

1<p<q<k

2
BPy_1 = Kk=1) Z Z OpaPh—1(Xk|p: t) c ﬁM

K.Atsou, M.Marulli, R.Tesson CEMRACS 2018 August 22th 2018 11 / 24



From Micro — Macro: Master Equation

Using a Kramers-Moyal expansion and the definition :
F,t) =Y k/]P’k(x,Xk_l, t)dXj_1,
k=1

We can deduce the kinetic model by summing and integrating the master
equation.

@ To obtain the macroscopic model we perform rescaling of the equations:
X =+/ex, t=cet

Taking € — 0 allow us to derive the macroscopic model.

CAM
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From Micro to Macro

Macroscopic framework

Macroscopic model should provide an approximation of the agent-based model:

A B
Oeft =V - (FAV(OM % F) + FAV(O x £)) + DAl + 0 " <1 T )
f*

interaction potential diffusion

logistic term

8fB =V - (FEV,(OFB  FB) 4 FEV (P x FA)) + DpALfE + vEFE (1 - f‘}ﬁ)

@ f*: carrying capacity of the environment

o vp,VE growth rates

Remark: 4, f& play the same role in logistic term

CAM
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Stability analysis

Analysis of the macroscopic model

We recall macroscopic equations for f* and fB:

A = V- (FAV (M 4 FA) + FAV (078 5 £B)) + DAALFA 4 v FA (1 - CEE .
OFB =V - (FEV, (DB x FB) 4 FEV, (OB « FA)) + DoAFA + vEFE ( - fAfth)

Linearization around constant steady states A, 5 and Fourier transform:

o (fA) ~ly? (27rfA¢AA(y)+DA)—Bu i —|y[22rFABAB(y) — 1AL B (,fA)
& CWRFEERAG) B |y P(nfP8PR(y) + Dg) — vf 12 ) \FE

M(y)

The constant steady states will be unstable if:

) uBf—f(fAZWé'AA + Dp — FA27r3>AB) < VAf—:‘(fTB%T@BB + Dg — f327r<f>BA).

We want to focus on the ratio of homo- and hetero-typic species repulsion.

We introduce a parameter s € R s.t.: k3T = sig°T CAM
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Stability analysis

Analysis of the macroscopic model

We find critical value s/ related to instability:

. (24Da+ CMFAYWETE + (24Dp + B FE AP

St VBFBCIABFA | AFACIBAFB
- - ST, ST
with 74 and & constant steady states and ¢’°7 = 21/% S, T e {A, B}.
d

The constant steady states are unstable if s> s/ .

To simplify notation and since f% = f* — F4, we obtain:

s* _ B(FA)Z +OCFA+’)/
R O S

with parameters:

A B AA B BB A AA B BB A
a =24Dguf — 24Davg + MUE T + PPV, B = -y — PPy

b

B rx IAB B % 1BA A B _1AB A _IBA
v =24Davy f*, 0=c""uvf +c¢ Wf*, e=—vp ™ — vy
C M
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Stability analysis

Logistic vs. no logistic

We compare critical values related to instability (aggregates):

Logistic growth model

. (24Dp + MYWEFE 4 (24D 4 BB LFA

S =

No logistic model (by literature)

Case ll

VE fBE/AB | V? fAg/BA

— s with lagistic
s* without logistic

— Depending on the parameters, logistic

K.Atsou, M.Marulli, R.Tesson
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Case IV

- J

— s with logistic
s* without logistic
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Numerical simulations

Numerical simulations

CELL A: blue, CELL B: red
Case lIl: kM, kBB =2, kA8 =5 KBA=2s.

Test u? UE s s

1 10°° [ 107% 1.9 1.7

. . a 1074 | 1074 | 1.39 | 1.43
Repulsion A — B > Repulsion B — A b 10-4 10-4 1.39 1
llc 1074 | 1074 | 1.39 2

\% 1074 | 107% | 1.09 1.3

t= 0, NA=250, NB=250, Case 2

GCREY
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. * *
Test I: s; <5 < s¢

Repulsion A — B > Repulsion B — A

Logistic NO logistic

M

5 s o 2 i 6 s
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Test llla: s; <5 <s¢

Logistic NO logistic

75, NB=251, Case 4 t= 6000.0, NA=250, NB=250, Case 5

M
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Test lllb: s <5/ < s¢-

Logistic NO logistic

67, NB=245, Case 6
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Test lllc: 57 <sp<s

Logistic NO logistic

36, NB=270, Case 8

M
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Numerical

Test V: s/ <s < s¢

Logistic

t= 6000.0, NA=231, NB=284, Case 12

M
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Numerical simulations

Conclusions and Perspectives:

@ We present a two-species models of cell segregation,
@ we take into account microscopic and macroscopic approach,

o we focus on the influence that homotypic/heterotypic repulsion has on this
process,

@ we add logistic growth term in a model proposed in the literature,
o we study the logistic growth effects on the stability of steady states,

@ we perform numerical simulations on the individual agent-based model to
confirm the results provided by stability analysis

Work in progress...
@ Numerical simulations of the macroscopic model
@ Rigorous derivation of macroscopic model

@ To understand differences between macro- micro- simulation results and
stability analysis. C M
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Thank you for your attention! Merci! Grazie! Akpé!
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