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Biological Microswimmers

FL48CH05-Lauga ARI 24 November 2015 12:50
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Pseudomonas aeruginosa

Polar lophotrichous
Photobacterium fischeri

Polar amphitrichous
Ectothiorhodospira halochloris

Spirochetes with endoflagella
Borrelia burgdorferi

Figure 1
Atlas of flagellated bacteria. (a) Peritrichous Escherichia coli. Panel a, left, reproduced from Turner et al. (2000). Copyright 2000
American Society for Microbiology. Panel a, right, courtesy of H. Berg, Harvard University. (b) Polar monotrichous Pseudomonas
aeruginosa. Panel b reproduced with permission from Fujii et al. (2008). Copyright 2008 Elsevier. (c) Polar lophotrichous Photobacterium
fischeri. Panel c reproduced with permission from Allen & Baumann (1971). Copyright 1971 American Society for Microbiology.
(d ) Polar amphitrichous Ectothiorhodospira halochloris. Panel d reproduced with permission from Imhoff & Trüper (1977). Copyright
1977 Springer. (e) Spirochetes with endoflagella Borrelia burgdorferi. Panel e reproduced from with permission from Goldstein et al.
(1996). Copyright 1996 American Society for Microbiology.

Flagellar filament:
helical polymeric
filament whose
rotational motion,
driven by the rotary
motor, enables
bacterial locomotion

Eukaryotes: higher
organisms whose cells
have a nucleus; include
all protists, plants,
fungi, and animals

Guasto et al. 2012, Goldstein 2015), reproduction (Fauci & Dillon 2006, Gaffney et al. 2011), and
collective cell locomotion (Koch & Subramanian 2011). Readers interested in the chemotactic
aspects of bacteria locomotion are referred to the book by Berg (2004).

2. BIOLOGICAL ATLAS

Bacteria come in many different shapes (Madigan et al. 2010). Those able to swim in fluids can
be roughly divided into two categories: bacteria whose propulsion is driven by helical flagellar
filaments located outside a nondeforming cell body (the overwhelming majority; Figure 1a–d)
and those with a spiral-like body undergoing time-varying deformation (Figure 1e).

Our understanding of how flagellated bacteria swim has its roots in a series of investigations
in the 1970s showing conclusively that—unlike the flagella of eukaryotes, which are active and
muscle-like (Bray 2000)—the flagella of prokaryotes are passive organelles (Berg & Anderson
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1[Lauga, Ann. Rev. Fluid Mech., (2016)] and bibliography therein
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Experimental Settings and Observation protocols

Hydrodynamic Attraction of Swimming Microorganisms by Surfaces
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Cells swimming in confined environments are attracted by surfaces. We measure the steady-state
distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with
earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate
theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their
reorientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A
model is derived for the steady-state distribution of swimming cells, which compares favorably with our
measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli.

DOI: 10.1103/PhysRevLett.101.038102 PACS numbers: 47.63.Gd, 87.17.Jj, 87.18.Ed

The majority of swimming microorganisms involved in
human functions and diseases are found in geometrically
confined environments. Spermatozoa in the female repro-
ductive tract swim in constricted domains [1]. Bacteria
make their way through host cells and tissues [2] and
aggregate in antibiotic-resistant biofilms on surfaces [3].

Despite the ubiquitous nature of biological motility near
surfaces, not much is known about the physical consequen-
ces of locomotion in a confined environment [4,5]. Perhaps
the simplest observed effect of locomotion near walls is the
accumulation of swimming cells on surfaces. In 1963,
Rothschild measured the distribution of bull spermatozoa
swimming between two glass plates (separation 200 �m).
The cell distribution was nonuniform, with a constant
density in the center strongly increasing near the walls
[6]. Similar results were later obtained for human sperma-
tozoa in glass tubes [7]. Further studies for animal sperma-
tozoa pointed out the possible importance of three-
dimensional effects [8,9]. Numerical simulations of model
cells with two-dimensional beat patterns [10] supported an
explanation in terms of cell-surface hydrodynamic inter-
actions, a scenario confirmed by recent computations for
suspensions of simplified low-Reynolds number swimmers
[11]. More recent work focused on the change in swim-
ming kinematics near solid walls [12–15].

In this Letter, we study the attraction of swimming
bacteria by solid surfaces. We measure the distribution of
nontumbling E. coli [16] cells swimming between two
glass plates in a density-matched fluid and obtain results
qualitatively similar to that of Rothschild [6]. We demon-
strate theoretically that the origin for the cell profile is
purely hydrodynamical. Using physical arguments based
on long-range hydrodynamic interactions between swim-
ming cells and surfaces, we show that these interactions
induce a reorientation of the cells in the direction parallel
to the surfaces, independently of their initial condition
(position, orientation) and the subsequent attraction of

the cells by the closest wall. Our model allows us to predict
the resulting steady-state cell distribution and is exploited
to obtain an estimate for the flagellar propulsive force in
swimming E. coli.

Our experimental procedure is illustrated in Fig. 1.
E. coli (smooth-swimming strain HCB-437 [17]) is grown
to midexponential phase in T broth (1% tryptone, 0.5%
NaCl), washed 3 times by centrifugation (2200 g for
8 min), and then resuspended in a motility medium
(10 mM potassium phosphate, pH 7.0, 0.1 mM EDTA).
PVP-40 (polyvinylpyrrolidone) is added (0.005%) to pre-
vent adsorption of cells to glass, and the final suspension is
combined with Percoll (2:3 ratio) to match the medium and
cell buoyant densities [18]. A droplet of the cell mixture is
deposited between two glass cover slips, previously
cleaned in a mixture of ethanol saturated with potassium
hydroxide, rinsed with ultrapure filtered water, and allowed
to air dry. The cover slips are separated by a distance H,
controlled by layers of other cover slips (No. 1.5), and

2L

z

(a)

(b)

(c) (d)

FIG. 1 (color online). Representation of the experimental pro-
cedure. (a) Smooth-swimming E. coli cells are mixed with a
density-matched fluid. (b) The cell mixture is deposited between
two glass plates (separation distance H). (c) The distribution of
swimming cells is imaged as a function of the distance y from
the lower surface. (d) Example of an image obtained from data
acquisition in the first layer above the glass surface.

PRL 101, 038102 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JULY 2008

0031-9007=08=101(3)=038102(4) 038102-1 © 2008 The American Physical Society

Adapted from [Berke et al.,
Phys. Rev. Lett. (2008)].

GUANGLAI LI et al. PHYSICAL REVIEW E 84, 041932 (2011)

few micrometers from the surface using a three-dimensional
(3D) tracking technique based on dark field microscopy [16],
which offers spatial resolution to within tenths of a micrometer.
We also expand our simulation predictions to obtain results
of comparable resolution. The agreement between the new
measurements and simulation results demonstrates the effec-
tiveness of the model even within short distances on the order
of micrometers. Further predictions based on this model are
made to show the dependence of accumulation on swimming
speed and cell size.

II. OBSERVATION OF CELL DISTRIBUTION
NEAR A SURFACE

A. Materials and methods

Bacterium C. crescentus strain CB15 SB3860 [7] was used
to examine the near-surface swimming and accumulation.
Swarmer cells of this strain rarely attach to a surface due
to lack of pili [17], thereby making them ideal for the study
of near-surface swimming. The flagellar motor of this strain
rotates only in one direction, and the cell swims exclusively
forward. The simple behavior of this mutant simplifies the
analysis of our measurements. While wild-type cells display
circular trajectories when they swim backward near a surface
[7], these forward swimmers do not form circular trajectories
[10]. Cells of this mutant strain were synchronized using
the plate releasing method to obtain cultures with primarily
swimming cells [18]. A drop of the synchronized cells was
sealed between a glass slide and a coverslip with vacuum
grease for optical microscopy observation. A 40× objective
lens (Nikon Plan Apo, numerical aperture of 0.75) was used
on a Nikon E800 microscope to take videos of swimming
cells in dark field mode using a CoolSnap CCD camera
(Princeton Instruments) and METAMORPH software (Universal
Imaging).

We applied an automated 3D tracking microscopy tech-
nique following the method by Wu et al. [16]. They showed
that the image of a cell out of focus appears as a bright
ring under a microscope. The ring size can be calibrated
to obtain the distance of the cell from the surface. To
measure the distance from a surface, we first focused the
objective at the surface and then shifted the focal plane
several micrometers into the glass [Fig. 1(a)]. Although
the cell body has an ellipsoidal shape [Fig. 1(b)], its de-
focused image appears as a circular ring [Fig. 1(c)]. The
distance from the surface is calibrated from the ring radius
[Fig. 1(d)]. Videos of swimming cells near the surface
were taken at 20 frames per second. The thickness of the
slide sample was measured by focusing on the two surfaces
separately and subtracting the readings on the microscope knob
with proper calibration to correct for the effects of optical
refraction [19].

The image of a typical C. crescentus swarmer cell, shown
in Fig. 1(b), was acquired with a D3100 atomic force
microscope (Veeco, Inc.) under tapping mode. This particular
cell was derived from the CB15 wild-type strain. The wild-
type swarmer cells tend to attach to a glass surface. After
attachment, the glass surface was rinsed with pure water and
dried for convenient atomic force microscope (AFM) imaging.

(a) (c)
Objec�ve

40x
coverslipfocal plane

cell body

image  ring 

FIG. 1. (Color online) (a) Schematic drawing of the setup. The
focal plane is set at a few micrometers within the coverslip so that the
ring size varies monotonically with the distance of the cell body from
the coverslip surface. (b) Atomic force microscopy image of a C.
crescentus CB 15 wild-type swarmer cell dried on a glass coverslip.
(c) An overlay of images of swimming cells. The video was taken
at 20 frames per second. Only one of every five frames was kept in
the overlay to better illustrate the trajectories as sets of discrete rings.
(d) Three-dimensional trajectories (black) and their projection on the
X-Y surface [red (gray)] of the cell marked by a white arrow in (c).
The arrow in (d) indicates the swimming direction.

The image was constructed using the amplitude signal of the
vibrating AFM cantilever.

B. Swimming trajectories

Trajectories of forward swimming C. crescentus cells
near the top surface of a slide sample ∼22 μm thick were
acquired by the 3D tracking algorithm based on images
acquired through dark field microscopy. A collection of 10
such trajectories is shown in Fig. 2. Typically, a cell collides
with the surface at an angle. It then moves in close proximity
while gaining alignment to swim nearly parallel to the surface
in less than 1 s before it departs from the surface. These forward
swimming cells do not spend a long time near the surface
as compared to backward swimming cells, which produce
circular trajectories lasting up to several seconds [7].

FIG. 2. (Color online) A collection of 3D trajectories (black) and
their projections on the X-Y surface [red (gray)]. Arrows on the
projections indicate the swimming directions.

041932-2

[Li et al., Phys. Rev. (2011)]

alignment of the precession axis from an impact angle of
approximately 60° to a steady positive angle of about 10°
with respect to the wall surface. Three regions are again
clearly distinguishable. Before t ¼ 0.75 s, the angle θ
wobbles around a roughly constant value. Most of the
reorientation occurs between 0.75 s and 1.25 s, while for
t > 1.25 s, the angle oscillates around a stationary and
small positive value. This qualitative subdivision in three
stages emerges quite clearly in all trajectories, although
quantitative differences are present because of the high
variability of cell length, speed, and wobbling amplitude.
The condition for which the cell spherocylindrical
body and coverslip are in contact is given by z ¼
ða − bÞ sinðθÞ þ b (where 2a and 2b are, respectively,
the cell-body length and thickness). We can look at all
the tracks at once, plotting θ versus the normalized vertical
coordinate ðz − bÞ=ða − bÞ, as shown in Fig. 3(a). In this
way, the contact condition, plotted as a black dashed line,
is independent from a and b; also, the variability due to
different cell speeds is eliminated.

A. Stage 1: Approach

We begin by discussing the first stage, the approach,
defined by the condition z − b=a − b > sin θ, where the
cell can interact with the surface only through the fluid and
not by direct-contact interactions. In Fig. 3(a), we show,
with gray lines, the raw θ vs ðz − bÞ=ða − bÞ curves. As
already discussed, because of a high and variable degree of
wobbling, traces form a thick cloud, but an overall scenario
is still clearly visible. Three representative cell trajectories
are highlighted in color. The blue and red traces correspond
to bacteria with small wobbling angles, having high
(about 90°) and low (about 60°) start angles, respectively.
The green line represents a strongly wobbling cell that
approaches the wall at an intermediate impact angle. In all
three cases, the impact angle θ does not show a significant
reduction from the large distance value to the collision line
[dashed line in Fig. 3(a)], meaning that there is no visible
“roundout” (parallel alignment) solely due to hydrody-
namic couplings to the wall. On the contrary, deterministic
simulations of an E. coli-like dipole swimmer in the

incident field

scattered field

focal plane

cover glass

numeric backpropagation

(b)(a) (c)

FIG. 1. Working principle of three-axis holographic microscopy. (a) The sample is illuminated by three partially coherent beams
having different colors and directions. (b) The resulting hologram arising from the interference between scattered and unscattered light is
acquired by a RGB camera. (c) A volumetric image of the sample is obtained as the overlap of three independent reconstructions
obtained by numerically backpropagating the holograms (see also Ref. [48]).

FIG. 2. (a) Sequence of volumetric reconstructions of swimming cells during a wall-entrapment event. (b) A close and lateral view of
another cell colliding with the wall. Time intervals between reconstructions are 0.2 s in both figures. (c) For the same cell as in (b), the
wall distance is plotted as a black line, while the red line plots the angle of the cell-body axis. In both curves, three stages can be
identified: approach to the wall, reorientation, and surface swimming. The grey shaded areas help to visualize these three stages.

HOLOGRAPHIC IMAGING REVEALS THE MECHANISM OF … PHYS. REV. X 7, 011010 (2017)

011010-3

[Bianchi et al., Phys. Rev. X (2017)]
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Observed Trajectories

cell body appeared as a sharp bright spot when it was in the
focal plane and as a ring when it was away. Wu et al. [11]
found that the ring size was proportional to the distance of
the cell from the focal plane and therefore could be cali-
brated to determine the distance. Two examples of 3D
trajectories of the cells 1 and 2 in Fig. 1(a) are plotted in
Figs. 1(b) and 1(c). Most cells approached the surface at an
angle and then swam parallel to the surface for some time
before departure. The manner of C. crescentus hitting a
surface is similar to that of E. coli observed with three
dimensional tracking microscopy [12].

We analyzed the force and torque on C. crescentus
swimming near a surface and found that it would invariably
swim parallel to the surface shortly after hitting the sur-
face. As a simple model, we approximated the cell as a
sphere attached with a helical filament of length L pro-
pelled by a longitudinal force Fp. After the cell hits the

surface at an angle �, its velocity component along the
direction normal to the surface [y axis, Fig. 2(a)] becomes
zero. It maintains a swimming speed Vx along the x axis
and a rotation rate � along the z axis (not shown in the
figure). We ignored the increase in hydrodynamic drag on
the cell due to the nearby surface [10,13] and assumed that
the surface only provides a normal force Fs to stop the
swimming along the y axis. The hydrodynamic drag force
on the whole cell (sphere plus helical filament) is split into
components parallel and perpendicular to the long axis, Fk
and F?. The hydrodynamic torque � on the whole cell is

depicted with respect to the sphere center. The forces and
torque are related to the velocity components as

Fk
F?
�

0
@

1
A ¼

�A11 0 0
0 �A22 A23

0 A32 �A33

0
@

1
A

Vk
V?
�

0
@

1
A; (1)

where Vk ¼ Vx cos� and V? ¼ Vx sin� are the velocity

components along and perpendicular to the helical axis
and A is the friction matrix, for which Aij > 0 and A23 ¼
A32.
At a low Reynolds number, the force balance along x

axis requires Fp cos�þ Fk cos�þ F? sin� ¼ 0 and

torque balance along z direction requires � ¼ 0. Substi-
tuting the hydrodynamic forces and torque with Eq. (1), the
balance equations determine the swimming speed and
rotation rate as

Vx ¼ A33 cos�

A33ðA11cos
2�þ A22sin

2�Þ � A2
23sin

2�
Fp; (2)

� ¼ A23 sin� cos�

A33ðA11cos
2�þ A22sin

2�Þ � A2
23sin

2�
Fp: (3)

Since A22A33 > A2
23, the common denominator in the ex-

pressions above is always positive. In the case as shown in
Fig. 2(a), Vx > 0 and �> 0. Therefore the cell swims
toward the right and the filament rotates toward the surface.
We can estimate how fast the cell turns parallel to the

surface as its head glides on the surface. Mathematically,
the cell would take an infinitely long time to become
parallel to the surface, as calculated from Eq. (3). In
practice, however, since the rotational Brownian motion
of C. crescentus varies its orientation by 0.1 rad within less
than 0.1 sec, we estimate instead the time needed for the
cell alignment with the surface to fall below 0.1 rad. The
parameters for a typical C. crescentus [10,14] are A11 ¼
2:2� 10�8 N sm�1, A22 ¼ 2:5� 10�8 N sm�1, A33 ¼
1:9� 10�19 Nm s, and A23 ¼ 5:3� 10�14 N s. The pro-
pulsive force is Fp ¼ A11V � 1� 10�12 N, where V is the

bulk swimming speed. The rotation rate after hitting a
surface is shown in Fig. 2(b), which reaches 9 rad=s at
55�. If a cell hits the surface at an angle �0, the time for it to

become parallel is
R�0
0:1 d�=� [Fig. 2(b)]. This is less than

0.2 s for a typical angle of �0 ¼ 30�, and less than 0.3 s for
an angle as large as 85�. Therefore in the following dis-
cussion we state in a practical sense that a cell becomes
parallel to the surface after a collision.
Now we examine how a swimming microorganism takes

off after hitting a surface. To further simplify the model, we
approximate the elongated swimmer propelled by a longi-
tudinal force as a nonuniform rod [Fig. 3(a)]. This rod
swims forward at speed V in the bulk fluid. The rod has
a rotation center at position O, which is of a distance L1

away from the head and L2 away from the tail. Since the
head has a larger drag per unit length than the tail does,
L1 < L2. Because of its small size, the rod undergoes
constant Brownian motion with a rotational diffusion con-

(a) (b)
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FIG. 2. (a) Force and torque analysis of a forward swimming
cell hitting a surface. (b) Required time (solid) for the cell to
become parallel to the surface and the rotation rate (dashed) as
functions of angle �.
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FIG. 1 (color online). Trajectories of Caulobacter swarmer
cells swimming near a glass surface. (a) Overlay of 40 consecu-
tive darkfield images taken at 10 frames per second. (b) and
(c) are 3D plots (red circles) and projections (blue lines) on the
glass surface of the trajectories of cells 1 and 2 in (a). Arrows
indicate the swimming directions.

PRL 103, 078101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

14 AUGUST 2009

078101-2

[Li & Tang, Phys. Rev. Lett. (2009)]

alignment of the precession axis from an impact angle of
approximately 60° to a steady positive angle of about 10°
with respect to the wall surface. Three regions are again
clearly distinguishable. Before t ¼ 0.75 s, the angle θ
wobbles around a roughly constant value. Most of the
reorientation occurs between 0.75 s and 1.25 s, while for
t > 1.25 s, the angle oscillates around a stationary and
small positive value. This qualitative subdivision in three
stages emerges quite clearly in all trajectories, although
quantitative differences are present because of the high
variability of cell length, speed, and wobbling amplitude.
The condition for which the cell spherocylindrical
body and coverslip are in contact is given by z ¼
ða − bÞ sinðθÞ þ b (where 2a and 2b are, respectively,
the cell-body length and thickness). We can look at all
the tracks at once, plotting θ versus the normalized vertical
coordinate ðz − bÞ=ða − bÞ, as shown in Fig. 3(a). In this
way, the contact condition, plotted as a black dashed line,
is independent from a and b; also, the variability due to
different cell speeds is eliminated.

A. Stage 1: Approach

We begin by discussing the first stage, the approach,
defined by the condition z − b=a − b > sin θ, where the
cell can interact with the surface only through the fluid and
not by direct-contact interactions. In Fig. 3(a), we show,
with gray lines, the raw θ vs ðz − bÞ=ða − bÞ curves. As
already discussed, because of a high and variable degree of
wobbling, traces form a thick cloud, but an overall scenario
is still clearly visible. Three representative cell trajectories
are highlighted in color. The blue and red traces correspond
to bacteria with small wobbling angles, having high
(about 90°) and low (about 60°) start angles, respectively.
The green line represents a strongly wobbling cell that
approaches the wall at an intermediate impact angle. In all
three cases, the impact angle θ does not show a significant
reduction from the large distance value to the collision line
[dashed line in Fig. 3(a)], meaning that there is no visible
“roundout” (parallel alignment) solely due to hydrody-
namic couplings to the wall. On the contrary, deterministic
simulations of an E. coli-like dipole swimmer in the

incident field

scattered field

focal plane

cover glass

numeric backpropagation

(b)(a) (c)

FIG. 1. Working principle of three-axis holographic microscopy. (a) The sample is illuminated by three partially coherent beams
having different colors and directions. (b) The resulting hologram arising from the interference between scattered and unscattered light is
acquired by a RGB camera. (c) A volumetric image of the sample is obtained as the overlap of three independent reconstructions
obtained by numerically backpropagating the holograms (see also Ref. [48]).

FIG. 2. (a) Sequence of volumetric reconstructions of swimming cells during a wall-entrapment event. (b) A close and lateral view of
another cell colliding with the wall. Time intervals between reconstructions are 0.2 s in both figures. (c) For the same cell as in (b), the
wall distance is plotted as a black line, while the red line plots the angle of the cell-body axis. In both curves, three stages can be
identified: approach to the wall, reorientation, and surface swimming. The grey shaded areas help to visualize these three stages.

HOLOGRAPHIC IMAGING REVEALS THE MECHANISM OF … PHYS. REV. X 7, 011010 (2017)

011010-3

[Bianchi et al., Phys. Rev. X (2017)]

(a): Image rings:
r ∝ dist. to focal plane

(b,c) Trajectory.
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Experimental Data – Stationary Density Distributions

stant Dr and translational diffusion constant Dt. Since
A11 � A22, we ignore the angle dependence of Dt.

The change in distance of the rotation center to the
surface, y, is determined by the translational Brownian
motion and the swimming direction, which is constantly
altered by the rotational Brownian motion. Over a time

interval �t, �y ¼ V sin��tþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt�t

p
, and �� ¼

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr�t

p
, where � and & are random numbers with zero

mean and unit variance. The translational Brownian mo-
tion contributes much less than swimming to the displace-
ment for microorganisms swimming at tens of �m=s.
When near the surface, the changes in distance and angle
are also restricted by the solid surface to satisfy y �
L1 sinð��Þ when the head is closer to the surface and y �
L2 sin� when the tail is closer. Similar restrictions hold
when a cell is near the top surface. KnowingDt andDr, we
can track the distance y and angle � over time. The
distance of the head from the surface h, which is what
was measured in the experiment, is determined by h ¼
yþ L1 sin�. The probability distribution of a cell at dis-
tance h is obtained by tracking a cell swimming between
the two surfaces over 106–107 sec .

We simulated the distance and angle of swimming
C. crescentus between two glass surfaces separated by
200 �m. The cell was treated as a L ¼ L1 þ L2 ¼ 6 �m
rod, with a typical Dt of 0:1 �m2=s and the measured Dr

of 0:12 rad2=s. The rotation center was approximated
at a position where L1 ¼ 0:3L. Figure 3(b) shows ex-
amples of distance [red (gray)] and angle [blue (black)]
varying over time. The cell hits the top and bottom sur-
faces repeatedly as it swims between them. The simulated
distance from the bottom surface was recorded every 0.1 s
and a histogram of distances was made using a bin size of
10 �m. The simulated distribution is plotted in Fig. 4 [blue
(black)] and compared with the measured one for C. cres-
centus (up triangle). The simulation clearly shows higher
densities near the surfaces, with the entire profile in ex-
cellent agreement with the measurements.

This model is also applicable to the distribution of
E. coli and bull spermatozoa between two surfaces. We
took the cell number distribution of E. coli from Ref. [3]

and that of bull spermatozoa from Ref. [4], converted
them to probability density, and plotted them in com-
parison with that of C. crescentus in Fig. 4. E. coli is
similar to C. crescentus in size and it is reasonable that
they have similar distributions. Bull spermatozoa are 10
times larger, yet surprisingly the distribution is similar to
that of bacteria. Nevertheless, this similarity is actually
predicted by our model. To simulate for bull spermatozoa
for comparison, we treated it as a 60 �m long rod swim-
ming at 45 �m=s, the same speed as C. crescentus, with a
Dt of 0:01 �m2=s and a Dr of 10�4 rad2=s, which is
�1000 times smaller than that of C. crescentus. The simu-
lation results show only a small difference in density
distribution between the bull spermatozoa [red (gray)]
and the C. crescentus [blue (black)], despite the large
difference in Dr.
We estimate the density distribution analytically by

treating swimming trajectories as semiflexible polymers.
A swimming trajectory in bulk fluid can be described
equivalently as the contour of a semiflexible polymer
with a persistence length Lp ¼ V=Dr [15]. Our simulation

shows that microswimmers with different V and Dr values
but the same persistence length of swimming trajectories
have the same near-surface distribution (data not shown).
In the simulation we obtained the histogram of distance
using a bin size of 10 �m, which is equivalent to dividing
the fluid between the two glass surfaces into layers of
thickness �h ¼ 10 �m and acquiring the probability of
finding a microswimmer in each layer. The probability of

FIG. 4 (color online). Comparison between simulated density
distributions at rotational diffusion constants 0.12 [blue (black)]
and 0.0001 [red (gray)] rad2=s and the measured distributions of
C. crescentus (up triangles), E. coli (down triangles, Ref. [3]),
and bull spermatozoa (squares, Ref. [4]). Inset compares simu-
lated distribution at rotational diffusion constants of 10 (dia-
monds), 1 (circle), 0.1 (triangles), and 0.0001 (squares) rad2=s at
a swimming speed of 50 �m=s, corresponding to rod lengths of
�1:3, �2:8, �6, and �60 �m, respectively. The dotted lines
indicate the probability density if there is no surface accumu-
lation.
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FIG. 3 (color online). (a) Rod model of a microswimmer near
surface. The black end represents that of the cell body and the
gray end the flagellar filament. (b) An example of simulated
distance h [red (gray)] and angle � [blue (black)] as functions of
time for the microswimmer, using the parameters of C. cres-
centus. The two surfaces are separated by 200 �m.

PRL 103, 078101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

14 AUGUST 2009

078101-3

(*)
Bull spermatozoa (squares) [Rotschild, Nature (1963)]
E. coli (down triangles) [Berke et al., Phys. Rev. Lett. (2008)]
C.crescentus (up triangles) [Li & Tang, Phys. Rev. Lett. (2009)](*)
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Experimental Data – Impact Angle Distribution

presence of an infinite no-slip surface indicate that the cell
should reorient by approximately 10° just because of
hydrodynamic interactions [11]. To better quantify the
amount of reorientation arising from purely hydrodynamic
couplings, we compared the initial and final orientations of
the average cell-body axis (over a wobbling period) during
the approach stage, starting from trap release and ending at
first wall contact. We group cells by start angle, using
5° bin intervals, and compute the mean and standard
deviation of the collision angle. Results are shown in
Fig. 3(b). Collision angles show no systematic reduction
from the corresponding start value up to about 75°. The
reduction observed for close to orthogonal orientations
is compatible with a purely diffusive motion of the cell
axis with a diffusion coefficient estimated to be Dr ¼
0.06 rad2=s (solid black line), which is also close to the
value reported in Ref. [11]. If any hydrodynamic contri-
bution to cell reorientation is present, it has to be smaller
than expected and hidden by a strong diffusive dynamics.
Conversely, hydrodynamic effects become clearly visible
when we look at the vertical speed of approach as a
function of cell height z, as reported in Fig. 3(c). The blue
line refers to the same weakly wobbling cell in Fig. 3(a),

while open circles represent the average speed, for all
trajectories having a start angle larger than 70°. A marked
reduction in vertical speed is observed that is qualitatively
consistent with the far-field picture of bacteria as dipolar
“pushers” that slow down in approaching the wall because
of the backflow generated by image singularities at a no-
slip boundary [8]. However, a dipolar representation is not
enough to quantitatively account for the observed speed
reduction unless we move the dipole origin on a point that
is unphysically closer to the cell-body pole facing the wall.
One possibility could be that of considering higher-order
singularities, but a breakdown of far-field predictions is
expected for the distance range examined here [8].
Therefore, we choose to follow Ref. [50], and since during
approach the flagellar bundle will always point away from
the surface and cells will impact the wall with the cell body,
we only consider body-wall hydrodynamic coupling and
neglect bundle-wall interactions. We numerically computed
the axial translational resistance AbðzÞ of a spherocylinder
aligned along the wall normal and for different heights z.
The vertical speed is then obtained by assuming that both
flagellar thrust and resistance A0

f are constant and that the
resistance of the full cell can be obtained by simply adding
the bundle and body resistances:

FIG. 3. (a) Gray lines plot the body pitch θ as a function of the normalized distance ðz − bÞ=ða − bÞ. Blue, green, and red lines refer to
bacteria approaching the wall with, respectively, high, intermediate, and low impact angles. The black dashed line represents the contact
condition [ðz − bÞ=ða − bÞ ¼ j sin θj]. (b) Collision angle at first impact plotted versus the corresponding starting value (red dots). Error
bars represent þ=−, the standard deviation over cells with a start angle falling in the same 5° bin interval. The solid black line is the
theoretical prediction for cells reorienting with a purely diffusive motion (Dr ¼ 0.06 rad2=s), while the shaded area represents the
corresponding standard deviation. (c) The blue line plots the vertical component of the velocity as a function of the cell-wall distance for
a bacterium approaching the glass wall almost perpendicularly (θ ≈ 90°). The velocity has been normalized to its bulk value, while the
cell-wall distance z is divided by the cell-body half-length a. The same quantity, averaged over all bacteria having an angle θ > 70°, is
shown as a blue line. The black line plots a theoretical prediction that only accounts for an increase of the cell-body drag due to the
presence of the wall [see Eq. (1)]. (d) Time evolution of tan θ during reorientation. Color coding is the same as in (b). For each curve, the
time origin has been shifted so that the cell first hits the wall at time t ¼ 0.

BIANCHI, SAGLIMBENI, and DI LEONARDO PHYS. REV. X 7, 011010 (2017)

011010-4

First impact angle as function of launch angle.
[Bianchi et al., Phys. Rev. X (2017)]
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Experimental Data – Post-Collision Angle Evolution

presence of an infinite no-slip surface indicate that the cell
should reorient by approximately 10° just because of
hydrodynamic interactions [11]. To better quantify the
amount of reorientation arising from purely hydrodynamic
couplings, we compared the initial and final orientations of
the average cell-body axis (over a wobbling period) during
the approach stage, starting from trap release and ending at
first wall contact. We group cells by start angle, using
5° bin intervals, and compute the mean and standard
deviation of the collision angle. Results are shown in
Fig. 3(b). Collision angles show no systematic reduction
from the corresponding start value up to about 75°. The
reduction observed for close to orthogonal orientations
is compatible with a purely diffusive motion of the cell
axis with a diffusion coefficient estimated to be Dr ¼
0.06 rad2=s (solid black line), which is also close to the
value reported in Ref. [11]. If any hydrodynamic contri-
bution to cell reorientation is present, it has to be smaller
than expected and hidden by a strong diffusive dynamics.
Conversely, hydrodynamic effects become clearly visible
when we look at the vertical speed of approach as a
function of cell height z, as reported in Fig. 3(c). The blue
line refers to the same weakly wobbling cell in Fig. 3(a),

while open circles represent the average speed, for all
trajectories having a start angle larger than 70°. A marked
reduction in vertical speed is observed that is qualitatively
consistent with the far-field picture of bacteria as dipolar
“pushers” that slow down in approaching the wall because
of the backflow generated by image singularities at a no-
slip boundary [8]. However, a dipolar representation is not
enough to quantitatively account for the observed speed
reduction unless we move the dipole origin on a point that
is unphysically closer to the cell-body pole facing the wall.
One possibility could be that of considering higher-order
singularities, but a breakdown of far-field predictions is
expected for the distance range examined here [8].
Therefore, we choose to follow Ref. [50], and since during
approach the flagellar bundle will always point away from
the surface and cells will impact the wall with the cell body,
we only consider body-wall hydrodynamic coupling and
neglect bundle-wall interactions. We numerically computed
the axial translational resistance AbðzÞ of a spherocylinder
aligned along the wall normal and for different heights z.
The vertical speed is then obtained by assuming that both
flagellar thrust and resistance A0

f are constant and that the
resistance of the full cell can be obtained by simply adding
the bundle and body resistances:

FIG. 3. (a) Gray lines plot the body pitch θ as a function of the normalized distance ðz − bÞ=ða − bÞ. Blue, green, and red lines refer to
bacteria approaching the wall with, respectively, high, intermediate, and low impact angles. The black dashed line represents the contact
condition [ðz − bÞ=ða − bÞ ¼ j sin θj]. (b) Collision angle at first impact plotted versus the corresponding starting value (red dots). Error
bars represent þ=−, the standard deviation over cells with a start angle falling in the same 5° bin interval. The solid black line is the
theoretical prediction for cells reorienting with a purely diffusive motion (Dr ¼ 0.06 rad2=s), while the shaded area represents the
corresponding standard deviation. (c) The blue line plots the vertical component of the velocity as a function of the cell-wall distance for
a bacterium approaching the glass wall almost perpendicularly (θ ≈ 90°). The velocity has been normalized to its bulk value, while the
cell-wall distance z is divided by the cell-body half-length a. The same quantity, averaged over all bacteria having an angle θ > 70°, is
shown as a blue line. The black line plots a theoretical prediction that only accounts for an increase of the cell-body drag due to the
presence of the wall [see Eq. (1)]. (d) Time evolution of tan θ during reorientation. Color coding is the same as in (b). For each curve, the
time origin has been shifted so that the cell first hits the wall at time t ¼ 0.

BIANCHI, SAGLIMBENI, and DI LEONARDO PHYS. REV. X 7, 011010 (2017)

011010-4

[Bianchi et al., Phys. Rev. X (2017)]
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Experimental Data – Normalized Vertical Speed

presence of an infinite no-slip surface indicate that the cell
should reorient by approximately 10° just because of
hydrodynamic interactions [11]. To better quantify the
amount of reorientation arising from purely hydrodynamic
couplings, we compared the initial and final orientations of
the average cell-body axis (over a wobbling period) during
the approach stage, starting from trap release and ending at
first wall contact. We group cells by start angle, using
5° bin intervals, and compute the mean and standard
deviation of the collision angle. Results are shown in
Fig. 3(b). Collision angles show no systematic reduction
from the corresponding start value up to about 75°. The
reduction observed for close to orthogonal orientations
is compatible with a purely diffusive motion of the cell
axis with a diffusion coefficient estimated to be Dr ¼
0.06 rad2=s (solid black line), which is also close to the
value reported in Ref. [11]. If any hydrodynamic contri-
bution to cell reorientation is present, it has to be smaller
than expected and hidden by a strong diffusive dynamics.
Conversely, hydrodynamic effects become clearly visible
when we look at the vertical speed of approach as a
function of cell height z, as reported in Fig. 3(c). The blue
line refers to the same weakly wobbling cell in Fig. 3(a),

while open circles represent the average speed, for all
trajectories having a start angle larger than 70°. A marked
reduction in vertical speed is observed that is qualitatively
consistent with the far-field picture of bacteria as dipolar
“pushers” that slow down in approaching the wall because
of the backflow generated by image singularities at a no-
slip boundary [8]. However, a dipolar representation is not
enough to quantitatively account for the observed speed
reduction unless we move the dipole origin on a point that
is unphysically closer to the cell-body pole facing the wall.
One possibility could be that of considering higher-order
singularities, but a breakdown of far-field predictions is
expected for the distance range examined here [8].
Therefore, we choose to follow Ref. [50], and since during
approach the flagellar bundle will always point away from
the surface and cells will impact the wall with the cell body,
we only consider body-wall hydrodynamic coupling and
neglect bundle-wall interactions. We numerically computed
the axial translational resistance AbðzÞ of a spherocylinder
aligned along the wall normal and for different heights z.
The vertical speed is then obtained by assuming that both
flagellar thrust and resistance A0

f are constant and that the
resistance of the full cell can be obtained by simply adding
the bundle and body resistances:

FIG. 3. (a) Gray lines plot the body pitch θ as a function of the normalized distance ðz − bÞ=ða − bÞ. Blue, green, and red lines refer to
bacteria approaching the wall with, respectively, high, intermediate, and low impact angles. The black dashed line represents the contact
condition [ðz − bÞ=ða − bÞ ¼ j sin θj]. (b) Collision angle at first impact plotted versus the corresponding starting value (red dots). Error
bars represent þ=−, the standard deviation over cells with a start angle falling in the same 5° bin interval. The solid black line is the
theoretical prediction for cells reorienting with a purely diffusive motion (Dr ¼ 0.06 rad2=s), while the shaded area represents the
corresponding standard deviation. (c) The blue line plots the vertical component of the velocity as a function of the cell-wall distance for
a bacterium approaching the glass wall almost perpendicularly (θ ≈ 90°). The velocity has been normalized to its bulk value, while the
cell-wall distance z is divided by the cell-body half-length a. The same quantity, averaged over all bacteria having an angle θ > 70°, is
shown as a blue line. The black line plots a theoretical prediction that only accounts for an increase of the cell-body drag due to the
presence of the wall [see Eq. (1)]. (d) Time evolution of tan θ during reorientation. Color coding is the same as in (b). For each curve, the
time origin has been shifted so that the cell first hits the wall at time t ¼ 0.

BIANCHI, SAGLIMBENI, and DI LEONARDO PHYS. REV. X 7, 011010 (2017)

011010-4

a: half-length of microswimmer
z: dist. from boundary.

[Bianchi et al., Phys. Rev. X (2017)]
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Description and explanation?

Hydrodynamic models:

Swimmer generates fluid velocity field u,
Swimmer is affected by u.

Free swim + contact models:

Free swim + white noise (angular and/or positional)
Reorientation at boundary contact.
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Hydrodynamic models – velocity field

were tracked as they swam through a suspension of fluorescent
tracer particles (see Materials and Methods). Measurements far
from walls were obtained by focusing on a plane 50 μm from
the top and bottom surfaces of the sample chamber, and record-
ing approximately 2 terabytes of movie data. Within this data we
identified approximately 104 rare events when cells swam within
the depth of field (2 μm thick) for >1.5 s. By tracking the fluid
tracers during each of the rare events, relating their position and
velocity to the position and orientation of the bacterium, and per-
forming an ensemble average over all bacteria, the time-averaged
flow field in the swimming plane was determined down to 0.1% of
the mean swimming speed V 0 ¼ 22� 5 μm∕s. As E. coli rotate
about their swimming direction, their time-averaged flow field
in three dimensions is cylindrically symmetric. The present mea-
surements capture all components of this cylindrically symmetric
flow except the azimuthal flow due to the rotation of the cell
about its body axis. In contrast with the flow around higher
organisms such as Chlamydomonas (37, 38) and Volvox (37), the
topology of the measured bacterial flow field (Fig. 1A) is that of a
force dipole (shown in Fig. 1B). Yet, there are some differences
between the force dipole flow and the measurements close to the
cell body, as shown by the residual of the fit (Fig. 1C).

The decay of the flow speed with distance r from the center of
the cell body (Fig. 1D) illustrates that the measured flow field
displays the characteristic 1∕r2 form of a force dipole. However,
the force dipole model significantly overestimates the flow to the
side and behind the cell body, where the measured flow magni-
tude is nearly constant over the length of the flagellar bundle. The
force dipole fit to the far field (r > 8 μm) was achieved with two

opposite force monopoles (Stokeslets) at variable locations along
the swimming direction. As r ¼ 0 corresponds to the center of
the cell body in Fig. 1D, and not the halfway point between the
two opposite Stokeslets, the fit captures some of the anterior–
posterior asymmetry in the flow magnitude u. From the best fit,
which is insensitive to the specific algorithms used, we obtained
the dipole length ℓ ¼ 1.9 μm and dipole force F ¼ 0.42 pN. This
value of F is consistent with optical trap measurements (39) and
resistive force theory calculations (40). It is interesting to note
that in the best fit, the cell drag Stokeslet is located 0.1 μm behind
the center of the cell body, possibly reflecting the fluid drag on
the flagellar bundle.

Flow Field Near a Surface. Having found that a force dipole flow
describes the measured flow around E. coli with good accuracy
in the bulk (far from boundaries), we investigated whether this
approximation is also valid when E. coli swim close to a wall.
Focusing 2 μm below the top of the sample chamber, and applying
the same measurement technique as before, we obtained the
flow field shown in Fig. 1E. This flow decays much faster than
that in the bulk due to the proximity of a no-slip surface (Fig. 1H),
and the inward and outward streamlines are now joined to pro-
duce loops (Fig. 1E). However, both of these differences are
consistent with a simple force dipole model and are therefore
not due to a change in bacterial behavior. In particular, closed
streamlines are known to be a rather general feature of point
singularities near no-slip surfaces (41). Using the solution of a
Stokeslet near a wall (31) to obtain that of a force dipole near
a wall yields streamlines (Fig. 1F) and a decay (Fig. 1H) of the

Fig. 1. Average flow field created by a single freely swimming bacterium far from surfaces (A–D) and close to a wall (E–H). Streamlines indicate the local
direction of flow, and the logarithmic color scheme indicates flow speed magnitudes. (A) Experimentally measured flow field in the bacterial swimming plane,
with the inset showing the anterior-posterior asymmetry close to the cell body. (B) Best-fit force dipole flow. (C) Residual flow field, obtained by subtracting the
best-fit dipole model from the measured field. (D) Radial decay of the flow speed u in different directions, with r ¼ 0 corresponding to the center of the cell
body. For distances r ≲ 6 μm the dipole model overestimates the flow field behind and to the side of the cell body. (E) Experimentally measured flow field in the
bacterial swimming plane, for bacteria swimming parallel to a wall at a distance of 2 μm. (F) Best-fit force dipole flow, where the presence of the wall causes
inward and outward streamlines to join. (G) Residual flow field. (H) The flow speed decays much faster for bacteria swimming close to a wall, as the fluid
velocity must vanish on the surface.

Drescher et al. PNAS ∣ July 5, 2011 ∣ vol. 108 ∣ no. 27 ∣ 10941
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[Drescher, Dunkel, Cisneros, Ganguly, Goldstein, PNAS (2011)]
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Hydrodynamic model – predictions

verified by caliper measurement. A phase-contrast micro-
scope (Nikon Optiphot-2) using 600� magnification
(depth of field 4:3 �m) and equipped with a shuttered
CCD video camera (Marshall Electronics V1070) set for
an exposure of 1 ms=frame is used to image the population
of swimming cells. The video signal is sent to a MacG4
equipped with an LG-3 frame grabber (Scion Image) and
IMAGEJ software [National Institutes of Health (NIH),
Bethesda, MD]. We capture 2-second movies at 20 frames
per second and measure the number of swimming cells by
counting cells swimming at speed faster than 1 body length
per second. We start 5 �m above the lower glass surface;
we then bring the plane of focus up 10 �m and repeat the
measurement until we reach within 5 �m of the upper
glass surface. Experiments are then repeated with other
cell samples and sets of cover slips.

In our protocol, two parameters can be varied: the dis-
tanceH between the two cover slips (we choseH � 100 or
200 �m) and the cell density of the final mixture, i.e., the
size of the overall cell population (whenH � 100 �m, we
performed additional experiments doubling the number of
cells). The experimental results are shown in Fig. 2; verti-
cal errors bars represent statistics on ten different experi-
ments and horizontal error bars the depth of field. As in
Ref. [6], we find that the cell profile peaks strongly near the
walls, with a nearly constant cell density about 20 �m
away from the walls; this is the main experimental result of
this Letter.

We now turn to the physical understanding of the attrac-
tion phenomenon. In order to provide a complete physical
picture, we need to identify the mechanism responsible for
the nonuniform cell distribution and predict the steady-
state profile observed experimentally.

The physical mechanism for the attraction is the hydro-
dynamic interactions between swimming cells and sur-
faces [10,11]. The flow around most flagellated swim-
ming organisms, including spermatozoa cells or bacteria
such as E. coli, is well approximated by a force dipole
(stresslet) [19]: The flagellar motion provides the propul-
sive force which is opposed by the drag on both the cell
body and flagella, corresponding to a force dipole in which
both the flagella and the body act on the fluid in the
direction away from the cell [represented in Fig. 3(a) by
two arrows pointing in opposite directions]. The fluid
velocity is given by u � p

8��r3 ��1� 3 �r�e�
2

r2 �r, where p >

0 is the dipole strength, e the swimming direction, � the
viscosity, and r the distance to the dipole; this far-field
model is valid for distances larger than the length L of the
swimming cells (body plus flagella), an approximation that
we will make in this Letter.

Near a wall, the flow field induced by the cell is a
superposition of that due to the force dipole, plus any
image flow field, located on the other side of the surface,
and necessary to enforce the correct surface boundary
condition (similar to the method of images in electrostatics,
only here the image is a vector field). The image system for

a force dipole parallel to a no-slip surface is known [20]
(force dipole, force quadrupole, and source quadrupole)
and is found to induce, at the location of the dipole, a
velocity component towards the solid surface of order
�p=�y2, where y is the distance to the surface
[Fig. 3(b)]; this wall-induced flow is the reason for the
attraction [11]. To gain physical intuition, it is easier to
picture a dipole near a free surface; in that case, the image
system is an equal dipole on the other side of the surface,
and two parallel dipoles attract each other. Physically, this
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FIG. 2 (color online). Experimental data: number of swim-
ming cells n as a function of the distance to the bottom cover
slip y when the distance between the surfaces is H � 100 �m
(top) and H � 200 �m (bottom). The lines are fits to the data
with the model of Eq. (6) with n0 � 1:5 and L? � 34:8 �m
(top, solid line), n0 � 0:3 and L? � 59:1 �m (top, dashed
line), and n0 � 3:9 and L? � 26:4 �m (bottom, solid line).
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FIG. 3 (color online). Attraction of microorganisms to solid
surfaces. (a) The flow field around a swimming cell is well
approximated by a force dipole of strength p > 0, represented
by two arrows pointing in opposite directions. (b) Hydrodynamic
attraction of a force dipole by a no-slip surface due to the image
system on the other side of the surface (force dipole, force
quadrupole, source quadrupole). (c) Notations for the model.

PRL 101, 038102 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JULY 2008

038102-2

[Berke et al., Phys. Rev. Lett. (2008)]
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Contact models

Dance with me!

[Li & Tang, Phys. Rev. Lett. (2009)]
[Li et al., Phys. Rev. (2011)]
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Contact model – predictions

stant Dr and translational diffusion constant Dt. Since
A11 � A22, we ignore the angle dependence of Dt.

The change in distance of the rotation center to the
surface, y, is determined by the translational Brownian
motion and the swimming direction, which is constantly
altered by the rotational Brownian motion. Over a time

interval �t, �y ¼ V sin��tþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt�t

p
, and �� ¼

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr�t

p
, where � and & are random numbers with zero

mean and unit variance. The translational Brownian mo-
tion contributes much less than swimming to the displace-
ment for microorganisms swimming at tens of �m=s.
When near the surface, the changes in distance and angle
are also restricted by the solid surface to satisfy y �
L1 sinð��Þ when the head is closer to the surface and y �
L2 sin� when the tail is closer. Similar restrictions hold
when a cell is near the top surface. KnowingDt andDr, we
can track the distance y and angle � over time. The
distance of the head from the surface h, which is what
was measured in the experiment, is determined by h ¼
yþ L1 sin�. The probability distribution of a cell at dis-
tance h is obtained by tracking a cell swimming between
the two surfaces over 106–107 sec .

We simulated the distance and angle of swimming
C. crescentus between two glass surfaces separated by
200 �m. The cell was treated as a L ¼ L1 þ L2 ¼ 6 �m
rod, with a typical Dt of 0:1 �m2=s and the measured Dr

of 0:12 rad2=s. The rotation center was approximated
at a position where L1 ¼ 0:3L. Figure 3(b) shows ex-
amples of distance [red (gray)] and angle [blue (black)]
varying over time. The cell hits the top and bottom sur-
faces repeatedly as it swims between them. The simulated
distance from the bottom surface was recorded every 0.1 s
and a histogram of distances was made using a bin size of
10 �m. The simulated distribution is plotted in Fig. 4 [blue
(black)] and compared with the measured one for C. cres-
centus (up triangle). The simulation clearly shows higher
densities near the surfaces, with the entire profile in ex-
cellent agreement with the measurements.

This model is also applicable to the distribution of
E. coli and bull spermatozoa between two surfaces. We
took the cell number distribution of E. coli from Ref. [3]

and that of bull spermatozoa from Ref. [4], converted
them to probability density, and plotted them in com-
parison with that of C. crescentus in Fig. 4. E. coli is
similar to C. crescentus in size and it is reasonable that
they have similar distributions. Bull spermatozoa are 10
times larger, yet surprisingly the distribution is similar to
that of bacteria. Nevertheless, this similarity is actually
predicted by our model. To simulate for bull spermatozoa
for comparison, we treated it as a 60 �m long rod swim-
ming at 45 �m=s, the same speed as C. crescentus, with a
Dt of 0:01 �m2=s and a Dr of 10�4 rad2=s, which is
�1000 times smaller than that of C. crescentus. The simu-
lation results show only a small difference in density
distribution between the bull spermatozoa [red (gray)]
and the C. crescentus [blue (black)], despite the large
difference in Dr.
We estimate the density distribution analytically by

treating swimming trajectories as semiflexible polymers.
A swimming trajectory in bulk fluid can be described
equivalently as the contour of a semiflexible polymer
with a persistence length Lp ¼ V=Dr [15]. Our simulation

shows that microswimmers with different V and Dr values
but the same persistence length of swimming trajectories
have the same near-surface distribution (data not shown).
In the simulation we obtained the histogram of distance
using a bin size of 10 �m, which is equivalent to dividing
the fluid between the two glass surfaces into layers of
thickness �h ¼ 10 �m and acquiring the probability of
finding a microswimmer in each layer. The probability of

FIG. 4 (color online). Comparison between simulated density
distributions at rotational diffusion constants 0.12 [blue (black)]
and 0.0001 [red (gray)] rad2=s and the measured distributions of
C. crescentus (up triangles), E. coli (down triangles, Ref. [3]),
and bull spermatozoa (squares, Ref. [4]). Inset compares simu-
lated distribution at rotational diffusion constants of 10 (dia-
monds), 1 (circle), 0.1 (triangles), and 0.0001 (squares) rad2=s at
a swimming speed of 50 �m=s, corresponding to rod lengths of
�1:3, �2:8, �6, and �60 �m, respectively. The dotted lines
indicate the probability density if there is no surface accumu-
lation.

L2

L1

φ

O 

y 
h 

(a) (b) 2

-2

0
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1

400 10 20 30
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100

0

50

150

FIG. 3 (color online). (a) Rod model of a microswimmer near
surface. The black end represents that of the cell body and the
gray end the flagellar filament. (b) An example of simulated
distance h [red (gray)] and angle � [blue (black)] as functions of
time for the microswimmer, using the parameters of C. cres-
centus. The two surfaces are separated by 200 �m.

PRL 103, 078101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

14 AUGUST 2009

078101-3

[Li & Tang, Phys. Rev. Lett. (2009)]
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Broad Objectives

Provide framework able to integrate both types of interactions:
hydrodynamic and contact

"Inverse problem": from terminal distributions, deduce "force
terms"
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3D model and projection

θ

2L

ez
ey

ex

O
z

L

−L

z ∈ [−L,L] vertical position.
θ ∈

[
−π

2
,
π

2

]
angle w.r.t. horiz.

v = sin θ normed vert. speed.
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Free Motion phase (FM)

Swimmer does not touch boundaries.
ż = Cv , z ∈ (−L,L)

v = sin θ, θ ∈
[
−π

2
,
π

2

]
θ̇ = ẇ ,

(1)

C: constant swimming speed in (FM)

w: reflected Brownian motion (RBM) in [−π
2 ,

π
2 ] starting at ω0 = θ0.

(FM) lasts while |z| < L.

Jingyi Fu, Álvaro Mateos González Stochastic Dynamics of Confined Microswimmers
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Boundary Contact phase (BC)

Swimmer remains in contact with a boundary.
ż = 0, z ∈ {−L,L}

v = sin θ, θ ∈
[
−π

2
,
π

2

]
θ̇ = ẇ ,

(2)

w: reflected Brownian motion (RMB) in [−π
2 ,

π
2 ] starting at ω0 = θ0.

(BC) lasts until v > 0 for x = −L (resp. x < 0 for x = L).

Then, a new (FM) begins.

Jingyi Fu, Álvaro Mateos González Stochastic Dynamics of Confined Microswimmers
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Model in (x , v)

During (FM) and (BC): {
v = sin(θ)

θ̇ = ẇ
(3)

The solution v of the SDE above is trajectorially equal to that of

v̇ = −1
2

v +
√

1− v2ẇ , (4)

with w RBM, and equal in law to that of:

v̇ = −1
2

v +
√

1− v2Ẇ , (5)

where W is a Brownian motion.

Jingyi Fu, Álvaro Mateos González Stochastic Dynamics of Confined Microswimmers
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Model in (x , v)

Let D̄ = D ∪D±, with:
D = (−L,L)× [−1,1],

D+ = {L} × [−1,1],

D− = {−L} × [−1,1].

SDE for the full motion:
ż =

{
Cv , in D

0, on D±

v̇ = −1
2

v +
√

1− v2Ẇ , in D̄
z(0) = z0; v(0) = v0.

(6)

Jingyi Fu, Álvaro Mateos González Stochastic Dynamics of Confined Microswimmers
CEMRACS 2018 – 23/08/2018 21

/ 49



Agent-Based Simulations

C++ code

(FM) and (BC) phases.

Projection on D̄ to avoid |z| > L and |v | > 1.

White noise implemented by Gaussian random variable
increments during time step dt .

Parameters chosen to match literature on E. coli.
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Simulation Results – Position and Angle Tracking
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Simulation Results – Angle of First Impact
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Model in (x , v) — Reorientation "force" term

Let D̄ = D ∪D±, with:
D = (−L,L)× [−1,1],

D+ = {L} × [−1,1],

D− = {−L} × [−1,1].

SDE for the full motion:
ż =

{
Cv , in D

0, on D±

v̇ = −1
2

v +
√

1− v2 Ẇ +F (z, v) , in D̄
z(0) = z0; v(0) = z0.

(7)
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SVI – motivation

See blackboard
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SVI

(z(t), v(t)) ∈ [−L,L]× [−1,1] unique solution of SVI:V̇t = −1
2

Vt +
√

1− V 2
t Ẇt ,

(Żt − Vt ) · (ξ − Zt ) ≥ 0, ∀|ξ| ≤ L, |Zt | ≤ L,
(8)

(X ,V ) time-homogeneous Markov process
on compact state space D̄ = [−L,L]× [−1,1].
Hence, admits invariant measure ν.

[A. Bensoussan, J-L. Lions. Contrôle impulsionnel et inéquations quasi
variationnelles. Dunod, Paris 1982.]
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Semi-group and infinitesimal generator

Definition (semi-group w.r.t stochastic process)
∀(z, v) ∈ D̄, φ ∈ C(D̄;R), t ≥ 0,

Ptφ(z, v) , E
(
φ(Zt ,Vt )|(Z0,V0) = (z, v)

)
. (9)

The infinitesimal generator can be computed by Itô’s Lemma:

lim
t→0

1
t

(Ptφ(z, v)− φ(z, v)) = Aφ(z, v)1{|z|<L} + B±φ(z, v)1{z=±L},

where


A ,

1− v2

2
∂2

∂v2 − v
∂

∂v
+ v

∂

∂z

B± ,
1− v2

2
∂2

∂v2 − v
∂

∂v
±min(0,±v)

∂

∂z
.
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Transition Probability

µ(z, v , t ; ξ, η, s) : proba measure of state (ξ, η) at time s
provided initial state at time t is (z, v).

µ(z, v , t ; ξ, η, s) does not have a density w.r.t. Lebesgue measure!

µ(z, v , t ; ξ, η, s)

↗ p(z, v , t ; L, η, s)

→ p(z, v , t ; ξ, η, s) (−L < ξ < L)

↘ p(z, v , t ;−L, η, s)
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Kolmogorov Backward Equation

∀u(z, v , t) ∈ C1
z C2

y C1
t , if u satisfies:

∂u
∂t

+ Au = 0 in D,
∂u
∂t

+ B±u = 0 in D±,
(10)

with terminal condition lim
t→s

u(z, v , t) = f (z, v),

Then u(z, v , t) has the following probabilistic interpretation

u(z, v , t) =

∫
D

p(z, v , t ; ξ, η, s)f (ξ, η)dξdη

+

∫ 1

−1
p(z, v , t ;−L, η, s)f (−L, η)dη

+

∫ 1

−1
p(z, v , t ; L, η, s)f (L, η)dη.

(11)
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Stochastic Control – Motivation

Two models with different zones of validity.
Interactions between microswimmers are unaccounted for.

=⇒ Modelling issues for an a priori F .
Terminal data available – density distribution, impact angle, etc.
Ability to target terminal distributions by choosing F (x , v).
Optimal choice of F?
Fleming log transform: J(x , v , t) = − ln u(x , v , t) can be seen as
the arg min of a control problem – see:

[Delarue and Menozzi (2010)], [Fleming and Soner (2006), Ch.6].
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Doob h-Transform – (1)

We begin in (Ω,F ,P).
Condition for v = v∗ ∈ [0,1] at first boundary hit time.
Minimize L2 norm functional.

Let h(z, v) = p(z, v ,0;±L,±v∗, τL): transition proba. to be at (±L,±v∗)
at first hit time of |x | = L, provided start at (z, v) at t = 0.

Ah = 0, in D;

h(L, v) =
1
2
δv?(v), for v > 0;

h(−L,−v) =
1
2
δ−v?(v), for v < 0.

Recall: A = 1−v2

2
∂2

∂v2 − v ∂
∂v + v ∂

∂z .
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Doob h-Transform – (2)

Xt := h(Zt ,Vt ) is a martingale.
Define change of measure: for any R.V. Y ,

EQt [Y ] = EP[YXt ],

where Xt = dQt
dP .

Itô’s lemma yields:

Xt = exp

(∫ t

0

∂zh(Zs,Vs)

h(Zs,Vs)
dWs −

1
2

∫ t

0

(
∂zh(Zs,Vs)

h(Zs,Vs)

)2

ds

)

W̃t = Wt −
∫ t

0

∂zh(Zs,Vs)

h(Zs,Vs)
ds

is a Q-Brownian Motion thanks to Girsanov’s theorem – see
[Karatzas - Shreve (1991), Ch.3.5]
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Doob h-Transform – (2)

Under the new proba Q (conditioned for first impact at v = v∗),
ż =

{
Cv , in D

0, on D±

v̇ = −1
2

v +
√

1− v2 ˙̃W +Fh(z, v) , in D̄
z(0) = z0; v(0) = v0.

(12)

with:
Fh(z, v) = ∂z ln h(z, v). (13)
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Mesh for discretization

Finite difference method is chosen to solve for h(x , v).

x

v

−L L

1

−1

−I I

−J

J

∂vv h: central difference

v<0:

∂v h ≈ hi,j+1 − hi,j

dv

∂xh ≈ hi,j − hi−1,j

dx
v>0:

∂v h ≈ hi,j − hi,j−1

dv

∂xh ≈ hi+1,j − hi,j

dx
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Advantage of scheme

1 “Implicit” scheme: unconditionally stable;

2 Maximum Principle for discretized equation;

Jingyi Fu, Álvaro Mateos González Stochastic Dynamics of Confined Microswimmers
CEMRACS 2018 – 23/08/2018 39

/ 49



Numerical image of h(x , v)
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Numerical image of Fh(x , v) (1)
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Numerical image of Fh(x , v) (2)
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Numerical image of Fh(x , v) (3)
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Impact angles for F = 0
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Impact angles for Fh(x , v)
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Fit error order of magnitude: 10−2.
We can target an impact angle distribution.
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Take-home message

Existing modeling framework:

Model Experimental data
Microswimmers in confinement vertical position Zt

hydrodynamic forces and torques normalized vertical speed Vt
reorientation force due to contact angle θ – impact angle θ0

density distributions.

Our framework:
Description of both swimming and contact with SVI.
Recovery of "optimal" reorientation forces thanks to Doob
h-Transform.
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Work in progress

Define i .i .d . repeating pattern ("long cycles") to describe data
spanning many (FM) and (BC) phases [done for a toy model].
[Bensoussan, Mertz, Yam, C. R. Math. (2012)]

Couple with Doob h-Transform or other stochastic control tools to
deduce "optimal" force from steady state data.

Replace Rotational Brownian motion by Run and Tumble.
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Thank you for your attention!
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