Size-varying respiratory aerosols modeling

Amina Mecherbet and Frédérique Noel

CEMRACS 2018

Advisors:
Laurent Boudin, Céline Grandmont, Bérénice Grec and Sébastien Martin.

Table of contents

(1) Introduction
(2) ODE describing radius growth and temperature variation
(3) An Aerosol-fluid model with radius growth
(4) Addition of temperature variation
(5) Conclusion and prospects

Introduction

Purpose

- Modeling of particles (aerosol) motion in the lung.
- Understanding aerosol deposition maps on bronchi walls.
- Influence of the radius growth (water vapor exchange) on the aerosol deposition.

Previous model

Fluid particle model : L. Boudin, C. Grandmont, A. Lorz and A. Moussa, Modelling and Numerics for Respiratory Aerosols (2015). Model assumptions :

- The aerosol volume fraction in the mixture remains negligible.
- No interaction between particles.
- Aerosol can have an effect on the fluid (Retroaction effect).

Model description

We denote by Ω the fluid domain, which is a cylinder or a branch and is assumed to be fix in time.

Figure - Domain

Fluid equations

(u, p) represents the fluid velocity and its pressure satisfying a Navier-Stokes equation:

$$
\left\{\begin{array}{r}
\rho_{\mathrm{air}}\left[\partial_{t} u+(u \cdot \nabla) u\right]-\eta \Delta u+\nabla p=F, \quad \text { on } \mathbb{R}^{+} \times \Omega, \\
\operatorname{div}(u)=0,
\end{array}\right.
$$

completed with the following boundary and initial conditions :

$$
\left\{\begin{aligned}
u & =u^{\text {in }}, \text { on } \Gamma^{\text {in }}, \\
u & =0, \text { on } \Gamma^{\text {woll }}, \\
\sigma(u, p) \cdot n & =0, \text { on } \Gamma^{\text {out }}, \\
u(0, \cdot) & =u_{0}, \text { on } \Omega,
\end{aligned}\right.
$$

where $\sigma(u, p)$ is the stress tensor and F is the particles retroaction term defined as follows :

$$
\begin{aligned}
\alpha & =\frac{6 \pi \eta r}{m} \\
F & =-\int m \alpha(u-v) f d v .
\end{aligned}
$$

Density equation

For all $t \in \mathbb{R}^{+}, x \in \Omega$ and $v \in \mathbb{R}^{3}, f(t, x, v)$ represents the number of droplets located in the elementary volume of the domain, at time t, position x and velocity v. The density f satisfies the following equation :

$$
\partial_{t} f+v \cdot \nabla_{x} f+\operatorname{div}_{v}(\alpha(u-v) f)=0, \text { on } \mathbb{R}^{+} \times \Omega \times \mathbb{R}^{3},
$$

completed with the following initial and boundary conditions :

$$
\left\{\begin{aligned}
f & =0, \text { on } \Gamma \text { wall } \times \mathbb{R}^{3} \text {, if } v \cdot n \leq 0, \\
f_{\mid t=0} & =f_{\text {init }}, \text { on } \Omega \times \mathbb{R}^{3} .
\end{aligned}\right.
$$

Radius growth and temperature variation

ODE System : We denote by T_{d} the droplet temperature, r_{d} the droplet radius, $T_{\text {air }}$ the air temperature and $Y_{\mathrm{v} \text {,air }}$ the water vapor mass fraction in the air.

$$
\begin{aligned}
\dot{r}_{d} & =a\left(r_{d}, T_{d}, Y_{\mathrm{v}, \mathrm{air}}\right) \\
\dot{T}_{d} & =b\left(r_{d}, T_{d}, T_{\mathrm{air}}, Y_{\mathrm{v}, \mathrm{air}}\right), \\
\dot{T}_{\mathrm{air}} & =c\left(r_{d}, T_{d}, T_{\mathrm{air}}\right) \\
\dot{Y}_{\mathrm{v}, \mathrm{air}} & =d\left(r_{d}, T_{d}, Y_{\mathrm{v}, \mathrm{air}}\right) .
\end{aligned}
$$

P. W Longest and M. Hindle, Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols (2011).

An Aerosol-fluid model with radius growth

We keep the same Navier-Stokes equation for the velocity field and add to the density function f the radius variable $r \in \mathbb{R}^{+}$. The new Vlasov-type equation writes :

$$
\partial_{t} f+v \cdot \nabla_{X} f+\operatorname{div}_{v}(\alpha(u-v) f)+\nabla_{r}\left(a\left(r, Y_{v, \text { air }}\right) f\right)=0 .
$$

We complete by considering an advection diffusion equation for the evolution of water vapor mass fraction $Y_{\mathrm{v}, \mathrm{air}}$:

$$
\partial_{t} Y_{\mathrm{v}, \mathrm{air}}+(u \cdot \nabla) Y_{\mathrm{v}, \mathrm{air}}-D \Delta Y_{\mathrm{v}, \text { air }}=S_{y},
$$

completed with the following boundary and initial conditions :

$$
\left\{\begin{aligned}
Y_{\mathrm{v}, \text { air }} & =Y_{\mathrm{v}, \text { air,in }, \text { on } \Gamma_{\text {in }}^{\text {in }}}, \\
Y_{\mathrm{v}, \text { air }} & =Y_{\mathrm{v}, \text { wall, oon }} \Gamma_{\text {wall }}, \\
\frac{\partial}{\partial n} Y_{\mathrm{v}, \text { air }} & =0, \text { on } \Gamma^{\text {out },} \\
Y_{\mathrm{v}, \text { air }}(0, \cdot) & =Y_{\mathrm{v}, \text { air }, 0}, \text { on } \Omega .
\end{aligned}\right.
$$

Definition of the source term S_{y}

Proposition
Under the assumption that $u=0, \nabla Y_{v, \text { air }}=0$ on $\partial \Omega$ and

$$
S_{y}(t, x)=-\frac{\rho_{w}}{\rho_{\text {air }}} \int_{\mathbb{R}^{3} \times \mathbb{R}^{+}} 4 \pi r^{2} a\left(r, Y_{v, \text { air }}\right) f(t, x, v, r) d v d r
$$

the mass conservation is satisfied :

$$
\frac{d}{d t}\left(\int \frac{4}{3} \pi \rho_{w} r^{3} f d x d v d r+\int \rho_{\text {air }} Y_{v, a i r} d x\right)=0, \forall t \geq 0
$$

Remark

The mass conservation is in accordance with the one satisfied by the ODE system.

Numerical scheme

For the fluid and water vapor mass fraction computation, we apply a finite element method on freefem. For the Vlasov equation we discretise the density f as a weighted sum of dirac masses :

$$
f(t, x, v, r) \sim f^{N}(t, x, v, r):=\sum_{i=1}^{N_{\text {num }}} \omega_{i} \delta_{x_{i}(t), v_{i}(t), r_{i}(t)}(x, v, r),
$$

where $t \rightarrow\left(x_{i}(t), v_{i}(t)\right)$ is the trajectory of the $i^{\text {th }}$ particle in the phase space and $r_{i}(t)$ its radius. The number of initial particles $N_{\text {Num }}$ is related to the physical aerosol particles $N_{\text {Aero }}$ as follows:

$$
N_{\text {Aero }}=\sum_{i=1}^{N_{\text {num }}} \omega_{i}
$$

Scheme algorithm

Iteration loop on $n \geq 0$
(1) Computation of u^{n} with retroaction source term coming from the previous time step.
(2) Computation of $Y_{v, a i r}^{n}$ using u^{n} and the source term coming from the previous time step.

Local time loop for particles on $\tilde{n} \geq 0$

- Incrementation of the radius r_{i}^{n} for the $i^{\text {th }}$ particle (RK4).
- Computation of the velocity $v_{i}^{\tilde{n}}$ (implicit scheme).
- Computation of the position $x_{i}^{\tilde{n}}$ (explicit scheme).

$2 D$ Numerical tests

Implementing the ODE model on Scilab and the aerosol-fluid model on Freefem we get :

(a) Radii comparison

(b) $Y_{\mathrm{v}, \text { air }}$ comparison
here Ω is a tube, the diffusion and the fluid velocity u are equal to 0 .

Addition of temperature variation

Keeping the same Navier-Stokes equation we add to the density function f the droplet temperature $T \in \mathbb{R}$. The new Vlasov-type equation writes :
$\partial_{t} f+v \cdot \nabla_{X} f+\operatorname{div}_{v}(\alpha(u-v) f)+\nabla_{r}\left(a\left(r, T, Y_{v, \text { air }}\right) f\right)+\nabla_{T}\left(b\left(r, T, T_{\text {air }}, Y_{v, \text { air }}\right) f\right)=0$,
We complete by considering an advection diffusion equation for the air temperature $T_{\text {air }}$:

$$
\rho_{\text {air }} C p_{\text {air }}\left[\partial_{t} T_{\text {air }}+(u \cdot \nabla) T_{\text {air }}\right]-K_{\text {air }} \Delta T_{\text {air }}=S_{T} \text {, on } \mathbb{R}^{+} \times \Omega,
$$

completed with the following boundary and initial conditions :

$$
\left\{\begin{aligned}
T_{\text {air }} & =T_{\text {air,in }}, \text { on } \Gamma^{\text {in }}, \\
T_{\text {air }} & =T_{\text {wall, }, \text { on } \Gamma^{\text {wall }},} \\
\frac{\partial}{\partial n} T_{\text {air }} & =0, \text { on } \Gamma^{\text {out }}, \\
T_{\text {air }}(0, \cdot) & =T_{\text {air }, 0}, \text { on } \Omega .
\end{aligned}\right.
$$

Definition of the source term S_{T}

Proposition

Under the assumption that $\nabla T_{\text {air }}=0, u=0$ on $\partial \Omega$ and

$$
S_{T}(t, x)=\int\left[4 \pi \rho_{w} r^{2} L_{v} a\left(r, T, Y_{v, \text { air }}\right)-m C p_{d} b\left(r, T, T_{\text {air }}, Y_{v, a i r}\right)\right] f d v d r d T
$$

the thermal energy balance writes :

$$
\begin{aligned}
& \rho_{\text {air }} C p_{\text {air }} \int \partial_{t} T_{\text {air }} d x+C p_{d} \int m b\left(r, T, T_{\text {air }}, Y_{v, a i r}\right) f d x d v d r d T= \\
& \qquad 4 \pi L_{v} r^{2} \rho_{w} a\left(r, T, Y_{V, a i r}\right) f d x d v d r d T .
\end{aligned}
$$

Remark

The thermal energy balance is in accordance with the one satisfied by the ODE system.

$2 D$ Numerical tests

Particle position comparison with/without temperature variation

(a) With temperature

(b) Without temperature

(c) Without radius growth

2D Numerical tests

Radii comparison with/without temperature variation

2D Numerical tests

$Y_{\mathrm{v}, \text { air }}$ comparison with/without temperature variation

Conclusion and prospects

Conclusion

- The radius growth rate is between 2 and 10 .
- Including temperature variation in the model decreases the radius growth rate.

Prospects

- 3D implementation.
- Considering a multiple bifurcation tree.
- Existence and uniqueness of the coupled problem.
- Numerical tests on the aerosol deposition maps.

Thank you for your attention

