Size-varying respiratory aerosols modeling

Amina Mecherbet and Frédérique Noel

CEMRACS 2018

Advisors:

Laurent Boudin, Céline Grandmont, Bérénice Grec and Sébastien Martin.

Introduction

DDE describing radius growth and temperature variation

- An Aerosol-fluid model with radius growth
 - Addition of temperature variation
 - 5 Conclusion and prospects

・ロト ・同ト ・ヨト ・ヨ

Introduction

Purpose

- Modeling of particles (aerosol) motion in the lung.
- Understanding aerosol deposition maps on bronchi walls.
- Influence of the radius growth (water vapor exchange) on the aerosol deposition.

Previous model

Fluid particle model : L. Boudin, C. Grandmont, A. Lorz and A. Moussa, Modelling and Numerics for Respiratory Aerosols (2015). Model assumptions :

- The aerosol volume fraction in the mixture remains negligible.
- No interaction between particles.
- Aerosol can have an effect on the fluid (Retroaction effect).

Model description

We denote by Ω the fluid domain, which is a cylinder or a branch and is assumed to be fix in time.

FIGURE – Domain

A. Med	herbet:	and F.	Noel
--------	---------	--------	------

Image: A matrix

Fluid equations

(u, p) represents the fluid velocity and its pressure satisfying a Navier-Stokes equation :

$$\left(\begin{array}{ccc} \rho_{\mathsf{air}}[\partial_t u + (u \cdot \nabla) u] - \eta \Delta u + \nabla p &=& \mathsf{F}, \\ \operatorname{div}(u) = \mathbf{0}, & & \operatorname{on} \, \mathbb{R}^+ \times \Omega, \end{array}\right.$$

completed with the following boundary and initial conditions :

$$\left(\begin{array}{cccc}
u &=& u^{\text{in}}, \text{ on } \Gamma^{\text{in}}, \\
u &=& 0, \text{ on } \Gamma^{\text{wall}}, \\
\sigma(u,p) \cdot n &=& 0, \text{ on } \Gamma^{\text{out}}, \\
u(0,\cdot) &=& u_0, \text{ on } \Omega,
\end{array}\right)$$

where $\sigma(u, p)$ is the stress tensor and *F* is the particles retroaction term defined as follows :

$$\alpha = \frac{6\pi\eta r}{m},$$

$$F = -\int m\alpha(u-v)fdv.$$

Density equation

For all $t \in \mathbb{R}^+$, $x \in \Omega$ and $v \in \mathbb{R}^3$, f(t, x, v) represents the number of droplets located in the elementary volume of the domain, at time *t*, position *x* and velocity *v*. The density *f* satisfies the following equation :

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \operatorname{div}_{\mathbf{v}}(\alpha(\mathbf{u} - \mathbf{v})f) = 0, \text{ on } \mathbb{R}^+ \times \Omega \times \mathbb{R}^3,$$

completed with the following initial and boundary conditions :

$$\left\{ \begin{array}{rll} f &=& 0, \text{ on } \Gamma^{\mathsf{wall}} \times \mathbb{R}^3, \text{ if } \boldsymbol{v} \cdot \boldsymbol{n} \leq 0, \\ f_{|t=0} &=& f_{\mathsf{init}}, \text{ on } \Omega \times \mathbb{R}^3. \end{array} \right.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Radius growth and temperature variation

ODE System : We denote by T_d the droplet temperature, r_d the droplet radius, T_{air} the air temperature and $Y_{v,air}$ the water vapor mass fraction in the air.

P. W Longest and M. Hindle, Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols (2011).

An Aerosol-fluid model with radius growth

We keep the same Navier-Stokes equation for the velocity field and add to the density function *f* the radius variable $r \in \mathbb{R}^+$. The new Vlasov-type equation writes :

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \operatorname{div}_{\mathbf{v}}(\alpha(\mathbf{u} - \mathbf{v})f) + \nabla_r(\mathbf{a}(\mathbf{r}, \mathbf{Y}_{\mathbf{v}, \operatorname{air}})f) = \mathbf{0}.$$

We complete by considering an advection diffusion equation for the evolution of water vapor mass fraction $Y_{v,air}$:

$$\partial_t Y_{v,air} + (u \cdot \nabla) Y_{v,air} - D\Delta Y_{v,air} = S_y,$$

completed with the following boundary and initial conditions :

$$\left(\begin{array}{ccc} Y_{\text{v,air}} &=& Y_{\text{v,air,in}}, \text{ on } \Gamma^{\text{in}}, \\ Y_{\text{v,air}} &=& Y_{\text{v,wall}}, \text{ on } \Gamma^{\text{wall}}, \\ \frac{\partial}{\partial n} Y_{\text{v,air}} &=& 0, \text{ on } \Gamma^{\text{out}}, \\ Y_{\text{v,air}}(0,\cdot) &=& Y_{\text{v,air,0}}, \text{ on } \Omega. \end{array} \right.$$

Definition of the source term S_{y}

Proposition

Under the assumption that u = 0, $\nabla Y_{v,air} = 0$ on $\partial \Omega$ and

$$S_{y}(t,x) = -\frac{\rho_{w}}{\rho_{air}} \int_{\mathbb{R}^{3} \times \mathbb{R}^{+}} 4\pi r^{2} a(r, Y_{v,air}) f(t, x, v, r) dv dr,$$

the mass conservation is satisfied :

$$\frac{d}{dt}\left(\int \frac{4}{3}\pi\rho_{w}r^{3}\textit{fdxdvdr} + \int \rho_{\textit{air}}Y_{\textit{v,air}}dx\right) = 0, \ \forall t \geq 0.$$

Remark

The mass conservation is in accordance with the one satisfied by the ODE system.

・ロト ・同ト ・ヨト ・ヨ

Numerical scheme

For the fluid and water vapor mass fraction computation, we apply a finite element method on freefem. For the Vlasov equation we discretise the density *f* as a weighted sum of dirac masses :

$$f(t, x, v, r) \sim f^N(t, x, v, r) := \sum_{i=1}^{N_{\text{num}}} \omega_i \, \delta_{x_i(t), v_i(t), r_i(t)}(x, v, r),$$

where $t \to (x_i(t), v_i(t))$ is the trajectory of the *i*th particle in the phase space and $r_i(t)$ its radius. The number of initial particles N_{Num} is related to the physical aerosol particles N_{Aero} as follows :

$$N_{\text{Aero}} = \sum_{i=1}^{N_{\text{num}}} \omega_i.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Scheme algorithm

Iteration loop on $n \ge 0$

- Computation of uⁿ with retroaction source term coming from the previous time step.
- **2** Computation of $Y_{v,air}^n$ using u^n and the source term coming from the previous time step.

Local time loop for particles on $\tilde{n} \ge 0$

- Incrementation of the radius $r_i^{\tilde{n}}$ for the *i*th particle (RK4).
- Computation of the velocity $v_i^{\tilde{n}}$ (implicit scheme).
- Computation of the position $x_i^{\tilde{n}}$ (explicit scheme).

Implementing the ODE model on Scilab and the aerosol-fluid model on Freefem we get :

here Ω is a tube, the diffusion and the fluid velocity *u* are equal to 0.

A. Mecherbet and F.	Noel
---------------------	------

Image: Image:

- E - S-

Addition of temperature variation

Keeping the same Navier-Stokes equation we add to the density function f the droplet temperature $T \in \mathbb{R}$. The new Vlasov-type equation writes :

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \operatorname{div}_{\mathbf{v}}(\alpha(u - \mathbf{v})f) + \nabla_r(\mathbf{a}(r, T, Y_{v, air})f) + \nabla_T(\mathbf{b}(r, T, T_{air}, Y_{v, air})f) = 0,$$

We complete by considering an advection diffusion equation for the air temperature $T_{\rm air}$:

$$ho_{\mathsf{air}} \mathcal{C} \mathcal{P}_{\mathsf{air}} [\partial_t \mathcal{T}_{\mathsf{air}} + (u \cdot \nabla) \mathcal{T}_{\mathsf{air}}] - \mathcal{K}_{\mathsf{air}} \Delta \mathcal{T}_{\mathsf{air}} = \mathcal{S}_{\mathcal{T}}, \ \ \mathsf{on} \ \mathbb{R}^+ imes \Omega,$$

completed with the following boundary and initial conditions :

$$\begin{array}{rcl} T_{\rm air} &=& T_{\rm air,in}, \mbox{ on } \Gamma^{\rm in}, \\ T_{\rm air} &=& T_{\rm wall}, \mbox{ on } \Gamma^{\rm wall}, \\ \frac{\partial}{\partial n} T_{\rm air} &=& 0, \mbox{ on } \Gamma^{\rm out}, \\ T_{\rm air}(0, \cdot) &=& T_{\rm air,0}, \mbox{ on } \Omega. \end{array}$$

Definition of the source term S_T

Proposition

Under the assumption that $\nabla T_{air} = 0$, u = 0 on $\partial \Omega$ and

$$S_{T}(t,x) = \int [4\pi \rho_{w} r^{2} L_{v} a(r,T,Y_{v,air}) - mC \rho_{d} b(r,T,T_{air},Y_{v,air})] f dv dr dT,$$

the thermal energy balance writes :

$$\begin{split} \rho_{air} C p_{air} \int \partial_t T_{air} dx + C p_d \int m b(r, T, T_{air}, Y_{v,air}) f dx dv dr dT = \\ \int 4 \pi L_v r^2 \rho_w a(r, T, Y_{v,air}) f dx dv dr dT. \end{split}$$

Remark

The thermal energy balance is in accordance with the one satisfied by the ODE system.

A. Mecherber and L. Noel	A. N	lecher	bet and	F. Noel
--------------------------	------	---------------	---------	---------

23/08/2018 14 / 19

Particle position comparison with/without temperature variation

CEMRACS 2018

Radii comparison with/without temperature variation

CEMRACS 2018

Y_{v,air} comparison with/without temperature variation

18 17/19

Conclusion and prospects

Conclusion

- The radius growth rate is between 2 and 10.
- Including temperature variation in the model decreases the radius growth rate.

Prospects

- 3D implementation.
- Considering a multiple bifurcation tree.
- Existence and uniqueness of the coupled problem.
- Numerical tests on the aerosol deposition maps.

Thank you for your attention

・ロト ・ 同ト ・ ヨト ・ ヨト