

# Multilevel mathematical models for cell migration in dense fibrous environments

#### Luigi Preziosi Dept. Mathematical Sciences Politecnico di Torino







- Stay away from the carpenter syndrome
- "To a man with a hammer, everything looks like a nail"
- Look at the biomedical problem with no mathematical bias

#### **Plan of the talk**

- Take a phenomenon (migration in fibrous environments)
- Present several modelling frameworks to study the problem

## **Tumour compartimentalization and invasion**





### **Extra-cellular matrix**





jcb.rupress.org/cgi/content/full/jcb.200209006/DC1



### **Extra-cellular matrix**

#### Heart







Figure 11. Electron micrograph of the arrangement of collagenous fibrils of the lamina radialis of an aortic valve leaflet at different magnifications. Arrows indicate non-directional fibrils surrounding helical arranged collagenous fibrils. (a,b) Scale bars, 8  $\mu$ m and (c) 3  $\mu$ m (adapted from Fastenrath 1995, p. 43).









POLITECNICO DI TORINO



HT1080 migration in rat tail collagen (1.7 mg/ml) in presence of MMP inhibitor



Neutrophil migration in rat tail collagen (1.7 mg/ml) in presence of IL-8

(P. Friedl, K. Wolf)

### **Cell motion in dense ECM**

POLITECNICO DI TORINO









#### Work done by traction > Energy required to squeeze the nucleus

C. Giverso & L.P., *Biomech. Model. Mechanobiol.* **13**, 481-502 (2014) C. Giverso, A. Arduino & L.P., *Bull. Math. Biol.* (2018)

### Taking into account of the nucleus



POLITECNICO DI TORINO

> The force field is conservative  $\widehat{\mathbf{I}}$ The work is independent on the path  $\widehat{\mathbf{I}}$ There exists a potential energy  $U(\mathbf{x})$ related to the elastic force **f** by

> > $\mathbf{f} = -\nabla U$

# **Continuum mechanics in a nutshell**



#### POLITECNICO DI TORINO **Continuum mechanics in a nutshell**



Deformation gradient

 $F_{iK}$ 

### **Continuum mechanics in a nutshell**



 $d\mathbf{x} = \mathbf{F} d\mathbf{p}$ 

POLITECNICO DI TORINO

Cauchy-Green deformation tensor

 $\mathbf{B} = \mathbf{F}\mathbf{F}^{T}$ 

 $|d\mathbf{X}|^2 = d\mathbf{x} \cdot \mathbf{B}^{-1} d\mathbf{x}$ 

### Taking into account of the nucleus



POLITECNICO DI TORINO



### **Continuum mechanics in a nutshell**



POLITECNICO DI TORINO

> The force field is conservative The work is independent on the path There exists a potential energy

$$W(\mathbf{F}) = \rho_* \sigma(\mathbf{F})$$

related to the Piola stress tensor S by

$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}}$$

and related to the Cauchy stress tensor T by  $\mathbf{T}(\mathbf{F}) = \rho \frac{\partial \sigma}{\partial \mathbf{F}} \mathbf{F}^T$ 

### **Continuum mechanics in a nutshell**



POLITECNICO DI TORINO

> The force field is conservative The work is independent on the path There exists a potential energy

$$W(\mathbf{F}) = \rho_* \sigma(\mathbf{F})$$

Frame indifference + isotropy  $\implies \sigma = \bar{\sigma}(I_B, II_B, II_B)$ 

e.g., neo-Hookean material

$$W(\mathbf{I}_{\mathbf{B}}) = \frac{\mu}{2}(\mathbf{I}_{B} - 3)$$

Gent material 
$$W(I_{\mathbf{B}}) = -\frac{\mu}{2}K \ln\left(1 - \frac{I_B - 3}{K}\right)$$



**Work done by traction > Energy required to squeeze the nucleus** 

- Given the deformation  ${\bf F}$ 



- Given the constitutive equation W
- Compute **B** and then, for instance,  $W(I_{\mathbf{B}}) = \frac{\mu}{2}(I_{B} 3)$

# Computing the work done by traction

#### **Work done by traction > Energy required to squeeze the nucleus**





The classical (direct) problem in elasticity:

Given the stress f, find the deformation u of the substratum such that







The classical (direct) problem in elasticity:

Given the stress  $\mathbf{f}$ , find the deformation  $\mathbf{u}$  of the substratum such that







 $\Omega$  is the whole domain,  $\Omega_0$  is the subdomain where  $\mathbf{u}$  is measured,  $\Omega_c$  is the area covered by the cell.





(A. Cavalcanti)

Where are the forces exerted in  $\Omega_c$ ? What is their magnitude? D. Ambrosi J. Math.Biol. 58, 163 (2009) POLITECNICO DI TORINO The inverse problem

Set of forces acting on  $\Omega_c$  with null resultant and momentum

The penalty functional  $\mathcal{J}: \mathsf{F} \to \mathbb{R}^+$  is defined as:

for

Evaluate the computed deformation in the measurement points



The penalty functional  $\mathcal{J}: \mathsf{F} \to \mathbb{R}^+$  is defined as:

$$\mathcal{J}(\mathbf{g}) = \frac{1}{2} \|\mathcal{O}\mathcal{S}\mathbf{g} - u_0\|_{\mathsf{X}}^2 + \frac{\varepsilon}{2} \|\mathbf{g}\|_{\mathsf{F}}^2.$$

Two coupled sets of elliptic partial differential equations to be solved in  $\Omega$ ,

$$-\hat{\mu}\Delta\mathbf{u} - (\hat{\mu} + \hat{\lambda})\nabla\left(\nabla\cdot\mathbf{u}\right) = -\frac{\chi c}{\varepsilon}\mathbf{p}, \qquad \mathbf{u}|_{\partial\Omega} = 0,$$
$$-\hat{\mu}\Delta\mathbf{p} - (\hat{\mu} + \hat{\lambda})\nabla\left(\nabla\cdot\mathbf{p}\right) = \chi_o\mathbf{u} - \mathbf{u}_0, \qquad \mathbf{p}|_{\partial\Omega} = 0.$$

where  $\chi_c$  and  $\chi_0$  are the characteristic functions related to  $\Omega_c$  and  $\Omega_0$ , respectively.

### **Traction force microscopy**

POLITECNICO DI TORINO













100

u m

150

V. Peschetola et al. Comp. Methods Biomech. Biomed. Engng. 14, 159-160 (2011).





### Traction on a stiff gel

Ambrosi, Peschetola, Verdier SIAM J. Appl. Math, (2006)

#### T24 cancer cells



### **Traction on softer gel**



T24 cancer cells

#### Conclusions

- minor traction ability than fibroblasts
  - larger forces on stiffer gels

## **Traction in 3D**



POLITECNICO DI TORINO



#### **2D Differences**

#### **3D**

- Measurements everywhere (even below the cell or "inside" the cell domain  $\Omega_c$ )
  - Forces below the cell or "inside" the cell domain  $\Omega_c$ )

- Measurements outside the cell
  - Forces exerted on the cell boundary

$$-\nabla \cdot \mathbb{C}[\nabla \mathbf{u}] = 0, \quad \text{in } \Omega,$$

$$\mathcal{S}: \mathbf{f} \longrightarrow \mathbf{u} \longleftrightarrow \begin{cases} \mathbb{C}[\nabla \mathbf{u}]\mathbf{n} = \mathbf{f}, & \text{on } \Gamma_N, \\ \mathbf{u} = 0, & \text{on } \Gamma_D. \end{cases}$$

**Traction in 3D** 

Penalty function for the minimization problem  $\mathcal{J}(\mathbf{f}) = \frac{1}{2} \|\mathcal{O}\mathcal{S}\mathbf{f} - u_0\|^2 + \frac{\varepsilon}{2} \|\mathbf{f}\|^2$ 



G. Vitale, D. Ambrosi, L.P., J. Math. Anal. Appl. **395**, 788-801 (2012) Inverse Problems **28**, 095013 (2012)

Self-adjoint problem

POLITECNICO DI TORINO

$$\begin{cases} \int_{\Omega} \left( \mu \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \lambda (\nabla \cdot \mathbf{u}) (\nabla \cdot \mathbf{v}) \right) + \frac{1}{\varepsilon} \left( \int_{\Gamma_N} \mathbf{p} \cdot \mathbf{v} - \frac{1}{|\Gamma_N|} \int_{\Gamma_N} \mathbf{p} \cdot \int_{\Gamma_N} \mathbf{v} \right) = 0, \\ \int_{\Omega} \left( \mu \nabla \mathbf{p} \cdot \nabla \mathbf{q} + \lambda (\nabla \cdot \mathbf{p}) (\nabla \cdot \mathbf{q}) \right) + \sum_{j=1}^N \delta_{\mathbf{x}_j} \mathbf{u} \cdot \delta_{\mathbf{x}_j} \mathbf{q} = \sum_{j=1}^N u_{0_j} \cdot \delta_{\mathbf{x}_j} \mathbf{q}, \end{cases}$$





POLITECNICO DI TORINO





#### Work done by traction > Energy required to squeeze the nucleus





#### Work done by traction > Energy required to squeeze the nucleus



### Effect of nucleus envelope stretchability



POLITECNICO DI TORINO

|                              |                                                       | Models based on a regular grid      |                          | Grid-free models                                      |       |                                  |
|------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------|-------------------------------------------------------|-------|----------------------------------|
|                              |                                                       | Rule based                          | Energy based             | Force based                                           | E     | nergy based                      |
|                              | Cell<br>center                                        | Lattice-gas<br>cellular<br>automata |                          | Cell center Voronoi models                            |       | Self-propelled<br>Voronoi models |
| Number of degrees of freedom | Cell center<br>and radius                             |                                     |                          | Individual<br>cell-based models                       | und . |                                  |
|                              | Cell center<br>and dimensions<br>of ellipsoidal shape |                                     |                          | Ellipsoidal<br>cell-based models                      |       |                                  |
|                              | Vertices of polygonal cells                           |                                     |                          | Force based vertex models                             |       | Energy based<br>vertex models    |
|                              | Many points per<br>cell body                          |                                     | Cellular Potts<br>models | Tensegrity models                                     |       |                                  |
|                              |                                                       |                                     |                          | Sub-cellular<br>element models                        |       |                                  |
|                              | Continuous<br>membrane<br>and cytoplasm               |                                     |                          | Finite element methods<br>Boundary element<br>methods |       |                                  |
|                              | Kinetic model<br>for cytoplasm                        |                                     |                          | Filament based model of the lamellipodium             | )     |                                  |



A cell is represented by several nodes



- Based on a generalized energy H
- Evolution stochastically tries to minimize the system energy



$$H(t) = H_{adhesion}(t) + H_{attribute}(t) + H_{force}(t).$$

$$H_{adhesion}(t) = \sum_{\mathbf{x}, \mathbf{x}' \in \Omega} J_{\tau(\sigma(\mathbf{x})), \tau(\sigma(\mathbf{x}'))}(t) [1 - \delta_{\sigma(\mathbf{x}), \sigma(\mathbf{x}')}(t)],$$

$$H_{adhesion}(t) = \sum_{\eta, \sigma, i-attribute} \lambda_{\eta, \sigma}^{i}(t) \left| \frac{a_{\eta, \sigma}^{i}(t) - A_{\eta, \sigma}^{i}(t)}{a_{\eta, \sigma}^{i}(t)} \right|^{p}$$

$$H_{force}^{i}(t) = -\sum_{\sigma} \sum_{\mathbf{x} \in \sigma} \mu_{\sigma}(t) c(\mathbf{x}, t),$$


#### Taking into account of sub-cellular elements (e.g., nucleus)



M. Scianna & L.P., *J. Theor. Biol.* **317**, 394-406 (2013).

### **The cellular Potts model**







M. Scianna, L.P., J. Theor. Biol. 317, 394-406 (2013)





### Cells with deformable nuclei in microchannel







## **Influence of nucleus rigidity**

cells with rigid cytosol and rigid nucleus

cells with deformable cytoplasm and rigid nucleus

cells with deformable cytoplasm and deformable nucleus

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2



C. Rolli, *PlosOne* 5, e8726 (2010)

Penetrative = Stay out with the nucleus (not with the cytoplasm)
 Invasive = Enter but do not reach the other side

the other side

Permeative = Enter and reach





## **Effect of pore size in ECM**



M. Scianna, L.P., & K. Wolf, Biosci. Engng. 10, 235-261 (2013)







### Effect of adhesion in 2D



Palecek et al., Nature 385, 537-540 (1997)



### **Optimising motion in artificial ECM**



## **Upscaling the information**



POLITECNICO DI TORINO





#### extracellular liquid









Volume of the sample



 $\frac{\partial}{\partial t}(\phi_c) + \nabla \cdot (\phi_c \mathbf{v}_c) = \Gamma_c \square \longrightarrow \frac{\partial \phi_{c_i}}{\partial t} + \nabla \cdot (\phi_{c_i} \mathbf{v}_{c_i}) = \Gamma_{c_i}$ 

**Only tumour cells in 3D** 

1. Constant density  $\vec{\varphi} + \nabla \cdot (\vec{\varphi} \mathbf{v}) = \Gamma \implies \nabla \cdot \mathbf{v} = \frac{\Gamma}{\bar{\varphi}}$ 

POLITECNICO DI TORINO

2. Potential flow assumption  $\mathbf{v} = \nabla \Psi$ 

 $\begin{cases} \nabla^2 \Psi = \frac{\Gamma}{\bar{\varphi}} \\ \mathbf{n} \cdot \frac{d\mathbf{x}_T}{dt} = \mathbf{n} \cdot \nabla \Psi \\ \Psi = 0, \quad \text{on free part of the boundary} \\ 0 \qquad \text{on obstacles} \end{cases}$ 

n



Extracellular liquid

 $\frac{\partial \phi_{\ell}}{\partial t} + \nabla \cdot (\phi_{\ell} \mathbf{v}_{\ell}) = \Gamma_{\ell}$ 

ECM components

$$\frac{\partial \phi_{\alpha}}{\partial t} + \nabla \cdot (\phi_{\alpha} \mathbf{v}_{\alpha}) = \Gamma_{\alpha}$$
saturation
$$\sum_{\alpha} \phi_{\alpha} = 1$$
closed mixture assumption
$$\nabla \cdot \sum_{\alpha=c,m,\ell,v} (\phi_{\alpha} \mathbf{v}_{\alpha}) = \sum_{\alpha=c,m,\ell,v} \Gamma_{\alpha} = \mathbf{0}$$
Constrained
mixture
assumption
$$\nabla \cdot \mathbf{v} = \sum_{\alpha=c,m,\ell,v} \Gamma_{\alpha} = \mathbf{0}$$
Potential flow assumption
$$\nabla \cdot \mathbf{v} = \sum_{\alpha=c,m,\ell,v} \Gamma_{\alpha} = \mathbf{0}$$
Potential flow assumption
$$\mathbf{v} = \nabla \Psi$$



#### Macklin & Lowengrub JTB (2008)



**Momentum balance equations** 

$$\frac{d}{dt} \int_{\mathcal{V}} \rho \phi_c \mathbf{v}_c \, dV = -\int_{\partial \mathcal{V}} \rho \phi_c \mathbf{v}_c (\mathbf{v}_c \cdot \mathbf{n}) \, d\Sigma + \int_{\partial \mathcal{V}} \widetilde{\mathbf{T}}_c^T \mathbf{n} \, d\Sigma + \int_{\mathcal{V}} \widetilde{\mathbf{m}}_c \, dV + \int_{\mathcal{V}} \rho \Gamma_c \mathbf{v}_c \, dV + \int_{\mathcal{V}} \rho \phi_c \mathbf{b}_c \, dV \,,$$

POLITECNICO DI TORINO

$$\rho\phi_c\left(\frac{\partial\mathbf{v}_c}{\partial t} + \mathbf{v}_c\cdot\nabla\mathbf{v}_c\right) = \nabla\cdot\widetilde{\mathbf{T}}_c + \rho\phi_c\mathbf{b}_c + \widetilde{\mathbf{m}}_c$$

$$\rho\phi_{\ell}\left(\frac{\partial\mathbf{v}_{\ell}}{\partial t} + \mathbf{v}_{\ell}\cdot\nabla\mathbf{v}_{\ell}\right) = \nabla\cdot\widetilde{\mathbf{T}}_{\ell} + \rho\phi_{\ell}\mathbf{b}_{\ell} + \widetilde{\mathbf{m}}_{\ell}$$

$$\rho\phi_m\left(\frac{\partial\mathbf{v}_m}{\partial t} + \mathbf{v}_m \cdot \nabla\mathbf{v}_m\right) = \nabla \cdot \widetilde{\mathbf{T}}_m + \rho\phi_m \mathbf{b}_m + \widetilde{\mathbf{m}}_m$$

**Momentum balance equations** 

$$\begin{split} \frac{d}{dt} \int_{\mathcal{V}} \rho \phi_{c} \mathbf{v}_{c} \, dV &= -\int_{\partial \mathcal{V}} \rho \phi_{c} \mathbf{v}_{c} (\mathbf{v}_{c} \cdot \mathbf{n}) \, d\Sigma + \int_{\partial \mathcal{V}} \widetilde{\mathbf{T}}_{c}^{T} \mathbf{n} \, d\Sigma \\ &+ \int_{\mathcal{V}} \widetilde{\mathbf{m}}_{c} \, dV + \int_{\mathcal{V}} \rho \Gamma_{c} \mathbf{v}_{c} \, dV + \int_{\mathcal{V}} \rho \phi_{c} \mathbf{b}_{c} \, dV \,, \\ \rho \phi_{c} \left( \frac{\partial \mathbf{v}_{c}}{\partial t} + \mathbf{v}_{c} \cdot \nabla \mathbf{v}_{c} \right) &= \nabla \cdot \widetilde{\mathbf{T}}_{c} + \rho \phi c \mathbf{b}_{c} + \widetilde{\mathbf{m}}_{c} \\ & \left\{ \frac{\partial \phi_{\alpha}}{\partial t} + \nabla \cdot (\phi_{\alpha} \mathbf{v}_{\alpha}) = \Gamma_{\alpha} \,, \\ \nabla \cdot \widetilde{\mathbf{T}}_{\alpha} + \widetilde{\mathbf{m}}_{\alpha} = \mathbf{0} \,, \end{array} \right.$$

### **Darcy's law**



### **Brinkman equation**

$$-\phi_{\ell}\nabla P + \mu \nabla^{2}\mathbf{v} - \phi_{\ell}^{2}\mathbf{K}^{-1}\mathbf{v}_{\ell}$$

$$\rho\phi_{\ell}\left(\frac{\partial\mathbf{v}_{\ell}}{\partial t} + \mathbf{v}_{\ell} \cdot \nabla\mathbf{v}_{\ell}\right) = \nabla \cdot \widetilde{\mathbf{T}}_{\ell} + \rho\phi_{\ell}\mathbf{b}_{\ell} + \widetilde{\mathbf{m}}_{\ell}$$

Brinkman equation





$$\frac{\partial \varphi_1}{\partial t} + \nabla \cdot (\varphi_1 \mathbf{v}_{\mathbf{X}}) = \Gamma_1 \checkmark$$

$$\frac{\partial \varphi_2}{\partial t} + \nabla \cdot (\varphi_2 \mathbf{v}_{\mathbf{X}}) = \Gamma_2 \qquad \mathbf{v} = \mathbf{M}^{-1} \nabla \lambda$$

$$\nabla \cdot \mathbf{T} - \mathbf{M} \mathbf{v} = \mathbf{0}$$

$$\int \varphi_1 + \varphi_2 = \text{const}$$

$$\mathbf{T} = \lambda \mathbf{I} + \dots$$



## **Back to the continuous model**



$$\frac{\partial \phi_c}{\partial t} + \nabla \cdot (\phi_c \mathbf{v}_c) = \Gamma_c \,,$$

$$\nabla \cdot \mathbf{T}_{c} + \mathbf{m}_{cm} = \mathbf{0}$$

$$\mathbf{v}_{c} = -\mathbf{K} \nabla \cdot \mathbf{T}_{c}$$

Motility tensor











$$\frac{\partial \phi_c}{\partial t} + \nabla \cdot \left(\phi_c \mathbf{v}_c\right) = \Gamma_c \boldsymbol{\cdot} - \left[\gamma_c^i \mathcal{H}_{\varepsilon}(\psi_0^i - \psi) - \delta_c^i\right] \phi_c^i$$
$$\mathbf{v}_c = \alpha \frac{\left[A_m(\phi_m) - A_0\right]_+}{\left(1 + \frac{A_m(\phi_m) - A_0}{A_1}\right)^n} \nabla \cdot \mathbf{T}_c$$





## **Growth below a thick region of ECM**











1



## Effect of nucleus deformability





**Heterogeneus ECM** 







## **Tumour compartimentalization and invasion**



# Membrane problem

$$\begin{array}{c} \mathcal{D}_{3} \\ \mathcal{D}_{2} \\ \mathcal{D}_{1} \end{array} \begin{array}{c} \mathbf{n}_{l} \\ \mathcal{D}_{2} \\ \mathcal{D}_{1} \end{array} \begin{array}{c} \mathcal{D}_{1} \\ \mathcal{D}_{2} \\ \mathcal{D}_{1} \end{array}$$

$$= \mu_1 n_1 \nabla p \cdot \mathbf{n} = \mu_3 n_3 \nabla p \cdot \mathbf{n}, \quad \text{where } \tilde{\mu}_2 = \lim_{\epsilon \to 0} \frac{\mu_2}{\epsilon}$$
$$\Pi'(n) := n \, p'(n),$$

**Generalization to more cell populations** 

$$\left[\Pi\left(n_{2}\right)\right] = \sum_{\alpha=1}^{N} \frac{\mu_{1}^{\alpha}}{\tilde{\mu}_{2}^{\alpha}} n_{1}^{\alpha} \nabla p\left(n_{2}\right) \cdot \mathbf{n} = \sum_{\alpha=1}^{N} \frac{\mu_{3}^{\alpha}}{\tilde{\mu}_{2}^{\alpha}} n_{3}^{\alpha} \nabla p\left(n_{3}\right) \cdot \mathbf{n}, \quad \text{on } \Sigma,$$



$$\begin{cases} \frac{\partial n}{\partial t} = \nabla \cdot (\mu n \nabla p(n)) + \Gamma, \\ \llbracket \mu n \mathbf{n} \cdot \nabla p(n) \rrbracket = 0, & \text{on } \Sigma, \\ \tilde{\mu} \llbracket \Pi \rrbracket = \mu n \mathbf{n} \cdot \nabla p(n), & \text{on } \Sigma, \end{cases}$$

where

 $\Pi'(n) := n \, p'(n),$ 

if 
$$p(n) = P \ln \frac{n}{n_0} \longrightarrow \tilde{\mu}[n] = \mu \mathbf{n} \cdot \nabla n \longrightarrow \frac{\text{Kadem-Katchalsky}}{\text{interface condition}}$$

 $\mathcal{D}_{in}$ 

# **Stationary 1D problem**







 $\varepsilon = 0.1$ 

membrane

**Unsteady 1D problem** 


























## Invasion of ovary cancer cells



#### 5) Proliferation

to establish metastatic lesions within the pelvic/abdominal cavity and organs

# **Invasion of ovary cancer cells**

























### **Invasion of ovary cancer cells**





## Invasion of multicellular spheroids

### **Top view**



#### **Bottom view**

## Invasion of multicellular spheroids



## Invasion of multicellular spheroids









### **Mechanosensing & mechanotransduction**

Mechanosensing = How cells sense mechanical forces Mechano-transduction = How cells respond to mechanical signals, either directly or via the activation of signalling pathways



Sun, Chen, Fu, Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment *Ann. Rev. Biophys.* **41**, 519-542 (2012)

POLITECNICO DI TORINO

> Guilak, ... & Chen, Control of stem cells by physical interaction with the ECM, *Cell Stem Cell* **5**, 17-26 (2009)





### **Tumour-stroma interaction**

Relations between ECM stiffness and cell tensile stress influencesProliferation

- Apoptosis
- Migration

Kass, Erler, Dembo & Weaver, Mammary epithelial cell Influence of ECM composition and organization during development and tumorigenesis *Int J Biochem Cell Biol* **39**, 1987-94 (2007)





#### **Tumour-stroma interaction**



Elastic modulus (Pa)

Butcher, Alliston & Weaver,

A tense situation: forcing tumour progression

Nat Rev Cancer 9, 108-122 (2009)

### **Diseases of mechanotransduction**

#### Cardiology

POLITECNICO DI TORINO

#### Dermatology Gastroenterology

Nephrology

Neurology

Angina (vasospasm) Atheroscierosis Atrial fibrillation Heart failure Hypertension. Intimal hyperplasia < Valve disease Scleroderma 🔫 Achalasia. irritable bowel syndrome Volvulusi Diabetic nephropath Giomeruloscierosis -Cerebral edema. Facial tics Hydrocephalus Migraine Stroke

Abnormal conversion of mechanical stress into intracellular gradients of electrical activity

Stretch activated signalling cascades due to stents and grafts

Abnormal ECM accumulation

Stretching of mesangial cells through ECM and integrins due to glomerular hypertension

Vasculature feels and adapt to shear and pressure

Ingber, Mechanobiology and diseases of mechanotransduction Annals Medicine **35**, 1-14 (2009)

Stutiening Dementhia



| Openiogy              | Cancer                       | Loss of contact inhibition                                                                                      |
|-----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|
| onconsgy              | Metastasia                   | Matrix Metallo Proteinases                                                                                      |
| Opthalmology          | Glaucoma                     | Excessive production of ECM                                                                                     |
| Orthopedics           | Ankylosing spondylitis       | 1                                                                                                               |
|                       | Carpal tunnel syndrome       |                                                                                                                 |
|                       | Chronic back pain            |                                                                                                                 |
|                       | Dupytren's contracture       |                                                                                                                 |
|                       | Osteoporosis                 | — Insufficient mechanosensing                                                                                   |
|                       | Osteoarthritis               |                                                                                                                 |
|                       | Rheumstoid arthritis         |                                                                                                                 |
| Pediatrics            | Collagenopathles             |                                                                                                                 |
|                       | Congenital deatness          |                                                                                                                 |
|                       | Mucopolysaccharidoses        |                                                                                                                 |
|                       | Musculodystrophies           |                                                                                                                 |
|                       | Osteochondropilasias         |                                                                                                                 |
|                       | Polycystic kidney disease    |                                                                                                                 |
|                       | Pulmonary hypertension of n  | ewbarn                                                                                                          |
| Pulmonary medicine    | ARDS                         |                                                                                                                 |
|                       | Asthma                       | Enhanced ECM breakdown                                                                                          |
|                       | Emphysema                    |                                                                                                                 |
|                       | Pulmonary fibrosis           | Excessive ECM                                                                                                   |
|                       | Pulmonary hypertension       |                                                                                                                 |
|                       | Ventilator Injury            | Cell hypercontractility                                                                                         |
| Reproductive medicine | Pre-ectampsia                |                                                                                                                 |
|                       | Sexual dysfunction (male & f | emale) 🧧                                                                                                        |
| Urology               | Urinary frequency/incontinen | Ce internet in the second s |
|                       |                              |                                                                                                                 |

#### **Mechano-reciprocity**









#### **Mechano-reciprocity**

- It mantains tensional homeostasis in the tissue
- It is necessary for development and tissue-specific differentiation
- Its loss promotes disease progression, including liver fibrosis, atherosclerosis and cancer Increasing stiffness in breast tumours



#### Figure 1. Cells are tuned to the materials properties of their matrix All cells, including those in traditionally mechanically static tissues, such as the breast or the brain, are exposed to isometric force or tension that is generated locally at the nanoscale level by cell–cell or cell–extracellular matrix interactions and that influences cell function through actomyosin contractility and actin dynamics. Moreover, each cell type is specifically tuned to the specific tissue in which it resides. The brain, for instance, is infinitely softer than bone tissue. Consequently, neural cell growth, survival and differentiation are favoured by a highly compliant matrix. By contrast, osteoblast differentiation and survival occurs optimally on stiffer extracellular matrices with material properties more similar to newly formed bone. Normal mammary epithelial cell growth, survival, differentiation and morphogenesis are optimally supported by interaction with a soft matrix. Following transformation, however, breast tissue becomes progressively stiffer and tumour cells become significantly more contractile and hyper-responsive to matrix compliance cues. Normalizing the tensional homeostasis of tumour cells, however, can revert them towards a non-malignant phenotype<sup>6</sup>,



Stem cell-based therapies for PD. PD leads to the progressive death of DA neurons in the substantia nigra and decreased DA innervation of the striatum, primarily the putamen. Stem cell-based approaches could be used to provide therapeutic benefits in two ways: first, by implanting stem cells modified to release growth factors, which would protect existing neurons and/or neurons derived from other stem cell treatments; and second, by transplanting stem cell-derived DA neuron precursors/neuroblasts into the putamen, where they would generate new neurons to ameliorate disease-induced motor impairments.

Lindvall, Kokaia, Stem cells in human neurodegenerative disorders: Time for clinical translation? *J. Clinical Inv* **120**, 29-40 (2010)

Progress stem cells for the treatment of neurological disorders, Nature 441 1094-1096 (2006)



Stem cell-based therapies for ALS. ALS leads to degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. Stem cell-based therapy could be used to induce neuroprotection or dampen detrimental inflammation by implanting stem cells releasing growth factors. Alternatively, stem cell-derived spinal motor neuron precursors/neuroblasts could be transplanted into damaged areas to replace damaged or dead neurons.

Lindvall, Kokaia, Stem cells in human neurodegenerative disorders: Time for clinical translation? *J. Clinical Inv* **120**, 29-40 (2010) Progress stem cells for the treatment of neurological disorders, *Nature* **441** 1094-1096 (2006)



Stem cell-based therapies for AD. AD leads to neuronal loss in the basal forebrain cholinergic system, amygdala, hippocampus, and cortical areas of the brain; formation of neurofibrillary tangles; and β-amyloid protein accumulation in senile plaques. Stem cell-based therapy could be used to prevent progression of the disease by transplanting stem cells modified to release growth factors. Alternatively, compounds and/or antibodies could be infused to restore impaired hippocampal neurogenesis.

Lindvall, Kokaia, Stem cells in human neurodegenerative disorders: Time for clinical translation? *J. Clinical Inv* **120**, 29-40 (2010)

Progress stem cells for the treatment of neurological disorders, Nature 441 1094-1096 (2006)



Stem cell-based therapies for stroke. Ischemic stroke leads to the death of multiple neuronal types and astrocytes, oligodendrocytes, and endothelial cells in the cortex and subcortical regions. Stem cell-based therapy could be used to restore damaged neural circuitry by transplanting stem cell-derived neuron precursors/neuroblasts. Also, compounds could be infused that would promote neurogenesis from endogenous SVZ stem/progenitor cells, or stem cells could be injected systemically for neuroprotection and modulation of inflammation.

#### Lindvall, Kokaia, Stem cells in human neurodegenerative disorders: Time for clinical translation? *J. Clinical Inv* **120**, 29-40 (2010)

Progress stem cells for the treatment of neurological disorders, Nature 441 1094-1096 (2006)





l interference (modification) l knock-out (deletion) V. te Baekhorst, L. Preziosi, P. Friedl Plasticity of cell migration *in vivo* and *in silico Ann. Rev. Cell Dev. Biol.* **32** (2016)