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Spatial progression in the brain

Figure: Figure from the "Medical Care Corporation"
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The amyloid-beta protein

Peptides of 36 to 43 amino acids
from cleavage of APP (amyloid
precursor protein)
Aβ is produced by healthy neuronal
cells throughout their life
Its endogenous role is unclear
Misfolded Aβ transforms normal
Aβ and is prone to aggregation Figure: The Aβ protein
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Aggregation pathways
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The cascade hypothesis

Figure: Schematic representation of the cascade hypothesis

Alzheimer’s Disease: The Amyloid Cascade Hypothesis, Hardy, J.
A. & Higgins, G. A., Science, 1992
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Protein misfolding induced toxicity

Figure: Figure from Soto, Science, 2003
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Neurotoxicity depends on size

Figure: Figure from Sengupta et al. EBioMedicine, 2016
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Progression in the brain

Figure: Figure from Sowade et al., Nature, 2017

The spatial dynamics of Aβ proteins remain elusive
Oligomers propagate from local seeds
Microscopic → Stokes-Einstein Diffusion
Macroscopic → other mechanisms (exosomes, astrocytes...)
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A size-continuous model (non-spatial)

Continuous in size
No spatial propagation
Fibrils, oligomers and plaques
Interaction with Prion Protein (toxicity)
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A spatial model

Discrete in size
Spatial propagation
Fibril coalescence
Mostly numerical, strong theoretical work but few biological
justifications
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Modeling scope
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Variables and notations

Local densities
m: monomers
µi : proto-oligomers of size i , for i = 2 . . . i0 (i0 for oligomers)

Processes
Diffusion with coefficient Di

Polymerization with rate ri

Depolymerization with rate b

Fragmentation with rate βi
Monomer production with rate λk (k for each neuron)
Monomer degradation δ
Absorption at the external boundary γ
Neurotoxicity τ

16 / 28



Biological overview of AD
Mathematical basis

Introduction of our model
Numerical results

Hypotheses
Formulation
Analytical results

Domain

Figure: Domain definition and notations
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The mathematical model

On Ω

∂m

∂t
=D1∆m +

i0−1∑
j=3

bµj −
i0−1∑
j=2

rjµjm + 2β
i0−1∑
j=2

µj − δm +
N∑

k=1

λk(t)1∂ωk
(x),

∂µi

∂t
=Di∆µi + bµi+1 − bµi + ri−1µi−1m − riµim − β(i − 1)µi + 2β

i0−1∑
j=i+1

µj ,

∂µi0

∂t
=Di0∆µi0 + ri0−1µi0−1m.

For ξ = µ1 . . . µi0

∇ξ · ~n|Γ = −γξ and ∇ξ · ~n|∂ωk
= 0.
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Modeling neurotoxicity

Monomer production rate λk (of
neuron k) verifies

dλk
dt

=− τλk(t)

∫
Σε

k

µi0(x , t)dx ,

λk(0) =λ0.
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Analytical results

Proposition
The system of partial differential equations has an unique solution
in E = L2([0,T ]× Ω) ∩ L∞([0,T ]× Ω).

Proposition
For non-negative initial conditions, the solution is non-negative at
all times.

+ Boundedness under the right conditions.

Proofs to come in the proceedings.
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2 (or 3) neurons
Using Finite Elements Method with Freefem++
Time integration with Euler scheme (implicit diffusion, explicit
reaction)
Initial condition: slightly perturbed healthy situation
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Parameter choice

Stokes-Einstein formula D = kbT
6πµrh

≈ 10−10m2.s−1

We use D ≈ 10−14m2.s−1

Spatial scale L ≈ 100µm
Concentration scale C ≈ 10−9M(mol .L−1)

Order 1 reaction rates ≈ 10−4 − 10−3s−1

Polymerization rate r ≈ 107M−1s−1

Monomer production rate λ ≈ 10−13M.s−1

Time scale T ≈ 30000s

Critical parameters

Fragmentation rate β ≈ 10−5 − 10−3s−1.
Toxicity efficiency τ ≈ 1010M−1.s−1.

Choices based on biological references and discussion with Human
Rezaei (INRA, Jouy-en-Josas)
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Fragmentation rate β = 1.10−4s−1
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Fragmentation rate β = 5.10−3s−1

26 / 28



Biological overview of AD
Mathematical basis

Introduction of our model
Numerical results

Method of resolution
Scaling
Results

Just for fun ... with 3 neurons (β = 1.10−4s−1)
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Perspectives

By order of feasiblity/time required/ambition
Optimize numerical simulation code
Obtain stronger analytical results
Numerical investigation of the parameters
Detailed study of the initial conditions

Derive a macroscopic model and including fibrils, plaques
Enrich the model with the help of biologists (in particular
concerning the neurotoxicity)
Study potential therapeutical strategies
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Thank you for your attention !
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