Multiscale population dynamics Interactions between scales in developmental and reproductive biology

Céline Bonnet, Keltoum Chahour

CEMRACS 2018 22 Août 2018

- Biological background on ovarian follicles
- Modeling approaches
- Theoretical and numerical results

Biological background (1)

Main steps of follicle development : activation, growth and ovulation

Stage-repartition of the whole follicle population

イロト イヨト イヨト イヨト

Biological background (2)

<u>Question</u> : Can we find a nonlinear model explaining these data and integrating recent biological knowledge?

Biological background (3) : Feedback regulations

Order of magnitude of the follicle population in women :

- Quiescent follicles At puberty : $X_0(t=0) = 10^4 - 10^6$ At menopause : $X_0(t = menopause) < 10^2 - 10^3$
- Growing follicles
 Only 400 follicles will ever reach the pre-ovulatory stage
- Activation influx $\forall t$, $\lambda_0 X_0(t) \sim$ "A few per days"
- Mathematical hypotheses : Set $\varepsilon \sim 10^{-4}$, so that : $X_0(t=0) \in \frac{[1,100]}{\varepsilon}$ $\lambda_0 = \varepsilon \overline{\lambda_0}, \ \overline{\lambda_0} \sim 1(/d)$ $\mu_0 = \varepsilon \overline{\mu_0}, \ \overline{\mu_0} \sim 1(/d)$

- 同下 - ヨト - ヨト

Slow-Fast ODE System : discrete stages

$$\forall t \in \mathbb{R}_+, \forall i \in \{1, \ldots, d\},\$$

$$\begin{aligned} \frac{dX_0(t)}{dt} &= -(\lambda_0(X(t)) + \mu_0)X_0(t)\\ \varepsilon \frac{dX_i(t)}{dt} &= \lambda_{i-1}(X(t))X_{i-1}(t) - \lambda_i(X(t))X_i(t) - \mu_i(X(t))X_i(t) \end{aligned}$$

$$\begin{split} \lambda_0(X) &= \frac{c_0}{1 + K_0 \sum_{i=1}^d a_i X_i}, \quad a_i \in [0, 1] \\ \mu_0(X) &= \mu_0 \\ \lambda_i(X) &= \frac{f_i}{1 + K_{1,i} \sum_{j=1}^d \omega_{1,j} X_j}, \quad f_d = 0 \\ \mu_i(X) &= g_i (1 + K_{2,i} \sum_{j=1}^d \omega_{2,j} X_j). \end{split}$$

Variable of interest : $\rho(t, x)$ represents the follicle population density with size $x(x \in (0, 1))$ at time $t \in (0, T)$.

$$\begin{split} \lambda_0(\rho(t,.)) &= \frac{c_0}{1 + K_0 \int_0^1 a(y)\rho(t,y)dy} \\ \mu_0(\rho(t,.)) &= \mu_0 \\ \lambda(\rho(t,.),x) &= \frac{f(x)}{1 + K_1(x) \int_0^1 \omega_1(y)\rho(t,y)dy}, \quad x \in (0,1) \\ \mu(\rho(t,.),x) &= g(x) \left(1 + K_2(x) \int_0^1 \omega_2(y)\rho(t,y)dy\right), \quad x \in (0,1) \end{split}$$

PDE system : nonlinear transport equation

Let
$$T > 0$$
, for all $t \in (0, T)$, for all $x \in (0, 1)$,

$$\begin{aligned} \frac{d\rho_0(t)}{dt} &= -(\lambda_0(\rho(t,.)) + \mu_0)\rho_0(t) \\ \varepsilon \partial_t \rho(t,x) &= -\partial_x(\lambda(\rho(t,.),x)\rho(t,x)) - \mu(\rho(t,.),x)\rho(t,x), \\ \lim_{x \to 0} \lambda(\rho(t,.),x)\rho(t,x) &= \lambda_0(\rho(t,.))\rho_0(t) \end{aligned}$$

For the initial condition :

$$egin{aligned} &
ho_{0}(t=0)=
ho_{0}^{\mathit{ini}} \ &orall x\in(0,1), \ &
ho(t=0,x)=
ho^{\mathit{ini}}(x) \end{aligned}$$

< 3 >

PDE system : nonlinear transport equation

Let
$$T > 0$$
, for all $t \in (0, T)$, for all $x \in (0, 1)$,

$$\begin{aligned} \frac{d\rho_0(t)}{dt} &= -(\lambda_0(\rho(t,.)) + \mu_0)\rho_0(t) \\ \varepsilon \partial_t \rho(t,x) &= -\partial_x(\lambda(\rho(t,.),x)\rho(t,x)) - \mu(\rho(t,.),x)\rho(t,x), \\ \lim_{x \to 0} \lambda(\rho(t,.),x)\rho(t,x) &= \lambda_0(\rho(t,.))\rho_0(t) \end{aligned}$$

<u>Question</u> : Can we understand the limit behavior of (ρ_0, ρ) when $\varepsilon \to 0$

For all
$$t \in (0, T)$$
, for all $x \in (0, 1)$,

$$\begin{aligned} \frac{d\rho_0^{\infty}}{dt} &= -(\lambda_0(\rho^{\infty}(t,.)) + \mu_0)\rho_0^{\infty}(t) \\ \mathbf{0} &= -\frac{d}{dx} \big(\rho^{\infty}(t,x)\,\lambda(\rho^{\infty}(t,.),x)\big) - \mu(\rho^{\infty}(t,.),x)\,\rho^{\infty}(t,x) \\ \lim_{x\to 0} \lambda(\rho^{\infty}(t,.),x)\rho^{\infty}(t,x) &= \lambda_0(\rho^{\infty}(t,.))\rho_0^{\infty}(t) \end{aligned}$$

For the initial condition :

$$ho_0^\infty(t=0)=
ho_0^{ ext{ini}}$$

- 170

A B F A B F

Analytical solution in the linear case

$$\forall t \in [0, T], \quad \rho_0^{\infty}(t) = \rho_0(t) = \frac{c_0}{f(0)} \rho_0^{ini} \, e^{-(c_0 + \mu_0) t}$$

 $\forall x \in (0, 1), \forall t \in (0, T), \text{ for appropriate } f \text{ and } g,$ • If $t > \int_0^x \frac{\varepsilon}{f(y)} dy,$

$$\rho(t, x) = \frac{c_0}{f(0)} \rho_0^{ini} \, e^{-(c_0 + \mu_0) \, (t - \int_0^x \frac{\varepsilon}{f(y)} dy)} \, e^{-\int_0^x \frac{g(y) + f'(y)}{f(y)} dy}$$

• Else,

$$\rho(t,x) = e^{-\int_{X(0;t,x)}^{x} \frac{g(y)+f'(y)}{f(y)}dy} \rho^{ini}(X(0;t,x))$$

イロト イヨト イヨト イヨト

Convergence theorem in the linear case

For
$$t > \int_0^x \frac{\varepsilon}{f(y)} dy$$
,

$$\rho^{\varepsilon}(t, x) = \frac{c_0}{f(0)} \rho_0^{ini} e^{-(c_0 + \mu_0)(t - \int_0^x \frac{\varepsilon}{f(y)} dy)} e^{-\int_0^x \frac{g(y) + f'(y)}{f(y)} dy}$$

 $\forall x \in (0, 1), \forall t \in (0, T),$

$$\rho^{\infty}(t, \mathbf{X}) = rac{c_0}{f(0)} \rho_0^{ini} \, e^{-(c_0 + \mu_0) \, t} \, e^{-\int_0^{\mathbf{X}} rac{g(y) + f'(y)}{f(y)} dy}$$

Convergence Theorem

$$\forall \xi > 0, \lim_{\varepsilon \to 0} \sup_{t \in [\xi, T]} \sup_{x \in (0, 1)} |\rho^{\varepsilon}(t, x) - \rho^{\infty}(t, x)| = 0$$

Numerical illustration of the convergence in the linear case

Convergence of ρ^{ε} towards ρ^{∞} in the linear case :

< ∃⇒

PDE numerical resolution

Direct Explicit discretization in time/space

$$\rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\varepsilon \Delta x} (\lambda_{i+1}^n \rho_{i+1}^n - \lambda_i^n \rho_i^n) - \frac{\Delta t}{\varepsilon} \mu_{i+\frac{1}{2}}^n \rho_i^n$$

• Stability condition involving λ and μ .

Change of variables

$$\tilde{\rho}(t, \mathbf{x}) = \mathbf{e}^{\int_0^x \frac{\mu(t_n, \mathbf{y})}{\lambda(t_n, \mathbf{y})} d\mathbf{y}} \rho(t, \mathbf{x})$$
$$\rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\varepsilon \Delta \mathbf{x}} (\lambda_{i+1}^n \rho_{i+1}^n - \lambda_i^n \rho_i^n \mathbf{e}^{-\Delta \mathbf{x} \frac{\mu_{i+\frac{1}{2}}^n}{\lambda_{i+\frac{1}{2}}^n} d\mathbf{y}}$$

• Stability condition only on λ .

(日)

Numerical illustration of the convergence in the nonlinear case

Convergence of $(\rho_0^{\varepsilon}, \rho^{\varepsilon})$ towards $(\rho_0^{\infty}, \rho^{\infty})$:

"Qualitative" fit using the reduced Model

Evolution of the growing follicles' density according to the size x for different times t for the size x for different tim

Conclusions and perspectives

Conclusions

- Design and simulation of a slow/fast PDE model
- Convergence to a quasi steady-state reduced model
- Qualitative behavior consistent with available data

Work in progress

- Proof of convergence in $\varepsilon \rightarrow 0$ in the general case
- Quantitative fitting (parameter estimation)
- Stochastic models to represent small population sizes

Conclusions

- Design and simulation of a slow/fast PDE model
- Convergence to a quasi steady-state reduced model
- Qualitative behavior consistent with available data

Work in progress

- Proof of convergence in $\varepsilon \rightarrow 0$ in the general case
- Quantitative fitting (parameter estimation)
- Stochastic models to represent small population sizes

Thanks for your attention !