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Dengue virus in numbers

According to the World Health Organization:

- 390 million of persons are infected by dengue per year,

- 3.9 billion people, in 128 countries, are at risk of infection with

dengue viruses.

As there exist no vaccine against dengue, e�ective control of the

vector population is mandatory.
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Aedes population in France
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Controlling Aedes population

Up to now : pesticides → Aedes mosquitoes can develop resistance

Now : wolbachia bacteria → seems to work (tested in Rio and

Australia)

E�ect on mosquitoes population :

- No dengue transmission,

- Vertical transmission,

- Cytoplasmic incompatibility (CI) (no viable eggs when uninfected

females mate to an infected males),

- Lifespan :

Death rate of infected (d1) > Death rate of uninfected(d2).
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Research question

How to spatially release wolbachia infected mosquitoes to have an

invasion in a given time?
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The model

Equation (1)

For all (x , t) ∈ Ω×]0,T ]

∂tn1 −∆n1 =
b0
1

ε
n1(1− n1 + n2

K
)(1− n2

n1 + n2
)− d1n1,

∂tn2 −∆n2 =
b0
2

ε
n2(1− n1 + n2

K
)− d2n2 + u,

∂νn1 = ∂νn2 = 0 on ∂Ω×]0,T ],

n1(0, x) = n01(x), n2(0, x) = n02(x) in Ω.

(1)

n1 : uninfected mosquitoes,

n2 : infected mosquitoes,

u : the control : number of infected mosquitoes released
b0i
ε : birth rate, di : death rate,

K : Carrying capacity.
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Asymptotic model as ε→ 0

De�ning

p(x , t) =
n2(x , t)

n1(x , t) + n2(x , t)
= proportion of infected mosquitoes

and letting ε→ 0, we �nd

Equation (2){
∂tp −∆p = f (p) + ug(p), for (x , t) ∈ Ω×]0,T ]

∂νp = 0 on ∂Ω×]0,T ], p(0) = 0.
(2)

With

f (p) = p(1−p)
b2d1 − b1d2(1− p)

b1(1− p)2 + b2p
and g(p) =

1

K

b1(1− p)2

b1(1− p)2 + b2p
.
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The equation : ∂tp −∆p = f (p)

Figure: The bistable reaction term f

Proposition

p(0, x) = C < θ ⇒ p(t) →
t→+∞

0 ( = Extinction)

p(0, x) = C > θ ⇒ p(t) →
t→+∞

1 ( = Invasion)
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The equation : ∂tp −∆p = f (p)

Comparison Principle

Let p− and p+ be a subsolution and a supersolution of

∂tp −∆p = f (p) such that p−(0) ≤ p+(0)

then for all time t > 0

p−(t) ≤ p+(t).

Many functions lead to invasion :

Invasion whenever p(0, x) = C01B(0,r0)(x), for well-chosen
values of r0 > 0 and C0 > θ,

Bubble functions.
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Assumptions on the control

Equation (2){
∂tp −∆p = f (p) + ug(p), for (x , t) ∈ Ω×]0,T ]

∂νp = 0 on ∂Ω×]0,T ], p(0) = 0.
(2)

The control u is taken such that:

Maximum production capacity of infected mosquitoes :∫ T

0

∫
Ω
u(x , t)dx < C ,

Maximum release in one point :

0 ≤ u(x , t) ≤ m, ∀(x , t) ∈ Ω× [0,T ].
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Assumptions on the control

Assumption: The releases are "instantaneous":

u(x , t) =
N−1∑
i=0

ui (x)

δ
1[Ti ,Ti+δ)(t) with Ti = i × T

N
.

Letting δ → 0, we �nd

Equation (3)


∂tp −∆p = f (p) in Ω×]0,T ],

∂νp = 0 on ∂Ω×]0,T ],

p(T+
i ) = G−1(ui + G (p(T−i )) for i ∈ {0, ...,N − 1}

(3)

with G (p) =
∫ p
0

1

g(s)ds.
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The Optimization Problem

The cost function is

J(u) =

∫
Ω

(1− p(x ,T ))2dx .

Proposition

There exists at least a function

u ∈ VT ,C ,M =

{
u ∈ (L∞(Ω))N | 0 ≤ ui ≤ m,

N−1∑
i=0

∫
Ω ui ≤ C

}
such that

J(u) = min
u∈D

J(u).

Remark : We do not have any result about the uniqueness of the

minimizer.
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Single release problem

Goal

min

{∫
Ω

(1− p(x ,T ))2dx : u ∈ VT ,C ,M
}

With p solution of
∂tp −∆p = f (p) in Ω×]0,T ],

∂νp = 0 on ∂Ω×]0,T ],

p(x , 0) = G−1(u(x)) in Ω

Constraint on u ∫
Ω
u(x)dx ≤ C ,

0 ≤ u(x) ≤ m.
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Numerical Tools

We used FreeFem++ since it has an interface with IPOPT.

FreeFem++ : Finite Element library for solving PDEs.
Vh �nite element space, (ϕi )i basis :

p ≈ ph =
∑

i piϕi , u ≈ uh =
∑

i uiϕi

IPOPT : software library for large scale, non-linear, constrained

optimization problems.

Cost function : Jh(u1, ..., un) =
∫

Ω
(1− ph(T , x))2 dx ,

Constraints : 0 ≤ uh(x) ≤ m and

ch(u1, ..., un) =
∫

Ω
uh(x) dx ≤ C ,

Gradient of cost function : ∇Jh =
(

∂Jh
∂ui

)
i

Gradient of constraints : ∇ch =
(

∂ch
∂ui

)
i
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Gateaux-di�erential of cost

Proposition

Let u ∈ VT ,C ,M and δu an admissible perturbation. The

Gateaux-di�erential of J at u in direction δu is

〈dJ(u), δu〉 =
∫

Ω δu(x)(G−1)′(u(x))q(0, x) dx ,

where q is the unique solution of the backward problem
−∂tq(t, x)−∆q(t, x)− f ′(p(t, x))q(t, x) = 0,
∂nq(t, x) = 0,
q(T , x) = p(T , x)− 1.

Approximation : δu ≈
∑

i δuiϕi

〈dJ(u), δu〉 ≈
∑
i

δui

∂Jh
∂ui︷ ︸︸ ︷∫

Ω
ϕi (x)(G−1)′(u(x))q(0, x) dx



Introduction The optimization problem Numerical results The Gaussian releases Perspectives

The heat equation

We �rst tested IPOPT with the heat equation:
∂tp −∆p = 0 in Ω×]0,T [,

∂νp = 0 on ∂Ω×]0,T ],

p(0) = u such that

∫
Ω
u ≤ C = 1, 0 ≤ u ≤ m.

We found numerically the following theoretical result :

Proposition

The constant u = max(m, C
|Ω|) is the unique minimizer in VT ,C ,M of

J(u) =

∫
Ω

(1− P(T ))2dx .
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C > G (θ) : Constant solution
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C > G (θ) : "Bang-Bang" solution
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C > G (θ) : Greater Di�usion
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C ≤ G (θ) : IPOPT Failure
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Problem Encountered

C too small → IPOPT does not succeed

C close to G (θ) → partial success (high tolerance) and only

with large �nal time

IPOPT is dependent on the optimization parameters,

IPOPT stops on local minimizers,

Solutions are not feasible in practice.
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Gaussian releases

New problem

Look for u on the form

u(x) =
K∑

k=0

m exp(
‖x − xk‖2

σ2
),

with xk ∈ Ω and m, σ such that
∫

Ω u = C .

Goal : Look for the best position of the releases xk .
Advantages :

Finite dimensional system (with a "small" dimension),

More close to the reality of the releases: each Gaussian

represents a box of mosquitoes.
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Dependence on initial guess

Initial Guess

IPOPT Solution
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Problem of Gaussian release

C small → extinction (even with C > G (θ)),

Strong dependence of the initial conditions,

Small variance (σ) → Extinction.
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Perspectives

Large number of releases of Gaussian (in space),

Take into account the cytoplasmic incompatibility,

Multiple releases in time,

Change the boundary condition,

Change the cost function J,

Enter the PDE as a constraint,

Better understanding of why IPOPT does not work.
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Thank you for your attention !
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