Data Assimilation: A Deterministic Vision – Theory and Applications – Asymptotic observers

Philippe Moireau Inria Project-Team MEDISIM

Inria Université Paris-Saclay LMS, Ecole Polytechnique, CNRS

Outline

Asymptotic observer - motivations and definition

Luenberger observers

Parameter estimation using asymptotic observers

Examples

New challenges: shape observations

Conclusion

Asymptotic observer - motivations and definition

Summary

Definition

An observer is a causal functional $\mathbb{R}^+ \ni t \mapsto \hat{y}(y_\diamond, z_{|[0,t]}^\delta)$, s.t. $\forall 0 \le r \le s \le t$,

• For any $\epsilon > 0$, there exist α , $\beta \delta K^{\infty}$ functions¹ such that

 $\|\check{y}(r) - \hat{y}(r)\|_{\mathcal{Y}} \leq \alpha(\epsilon), \|\check{\nu}\|_{\mathcal{U}_{[r,s]}} \leq \beta(\epsilon), \|\check{\eta}\|_{\mathcal{Z}_{[r,s]}} \leq \delta(\epsilon) \Rightarrow \|\check{y}(t) - \hat{y}(t)\| \leq \epsilon$

• For any $\epsilon, \alpha, \beta, \delta > 0$, there exists $\tau(\epsilon, \alpha, \beta, \delta)$ such that if $t - s \ge \tau$ then $\|\check{y}(r) - \hat{y}(r)\|_{\mathcal{Y}} \le \alpha, \|\check{\nu}\|_{\mathcal{U}_{[r,s]}} \le \beta, \|\check{\eta}\|_{\mathcal{Z}_{[r,s]}} \le \delta \Rightarrow \|\check{y}(t) - \hat{y}(t)\| \le \epsilon$

¹a continuous strictly increasing function f on \mathbb{R}^+ such that f(0) = 0 and $\lim_{+\infty} f = +\infty$

Definition

An observer is a causal functional

• The state estimation is uniformly continuous with respect to the uncertainties

$$\|\check{\zeta}\|_{\mathcal{Y}}, \|\check{\nu}\|_{L^{2}([0,T];\mathcal{U})}, \|\check{\eta}\|_{L^{2}([0,T];\mathcal{Z})}$$

• Asymptotic stability of the noise free estimator, i.e. without noise we have

 $\hat{y}(s) = \check{y}(s) \Rightarrow \hat{y}(t) = \check{y}(t), t \ge s$

We define $\tilde{y} = \check{y} - \hat{y}$

• In a linear context

$$\dot{\check{y}} = A\check{y} + B\check{\nu}$$

$$-\dot{\hat{y}} = A\hat{y} + G(z^{\delta} - C\hat{y}) \quad \text{with } z^{\delta} = C\check{y} + \eta$$

$$\dot{\tilde{y}} = (A - GC)\tilde{y} + G\eta + B\check{\nu}$$

So the question is can we build G so that the error is (exponentially) stable to 0

- In a non-linear context: the error dynamics is no more autonomous
- Sufficient condition: Linearization around the target trajectory: dA(ỹ), dC(ỹ) to find a linearized error and proved its (exponential) stability

Definition (Observability)

A system is observable if

$$\check{z}_1 \equiv \check{z}_2 \Rightarrow \check{y}_{|\zeta_1,0} \equiv \check{y}_{|\zeta_2,0}.$$

It means that Ker $\Psi_T = \{0\}$ which in infinite dimension can be associated with the approximate observability (Tucsnak and Weiss, 2009).

Definition (Detectability)

A system is detectable if

$$\check{z}_1 \equiv \check{z}_2 \Rightarrow \lim_{t \to +\infty} \|\check{y}_{|\zeta_1,0} - \check{y}_{|\zeta_2,0}\|_{\mathcal{Y}} = 0.$$

• Grammian of observability

$$\Upsilon_{\mathcal{T}} = \int_0^{\mathcal{T}} \Phi(t,0)^* C^* C \Phi(t,0) \, \mathrm{d}t$$

Observability \Leftrightarrow Grammian coercivity. Remember $(y, \Upsilon_T y) = \|\Psi_T y\|^2$.

• For autonomous system in finite dimension (dim = N_y), it is equivalent to the Kalman Criterion

rank
$$\begin{pmatrix} C & CA & \cdots & CA^n \end{pmatrix}^{\mathsf{T}} = N_y$$

• The Hautus test: Observable \Leftrightarrow for all modes φ , $C\varphi = 0 \rightarrow \varphi = 0$ in dim ∞ as a system may not have a complete basis of eigenmodes.

Definition (Detectability)

The pair (A, C) is (exponentially) detectable if there exists G such that A - GC is (exponentially) stable

Interpretation in finite dimension: The modes that are not observable are already stable. But again 2 in dim ∞ as a system may not have a complete basis of eigenmodes.

Definition (Stabilizability)

The pair (A, B) is (exponentially) stabilizable if there exists G such that A - BG is (exponentially) stable

The kalman estimator as an asymptotic observer: the finite dimension linear case

- The estimation error: $\tilde{y} = \hat{y} \check{y}$
- A Liapunov functional: $\tilde{\mathscr{V}}(y,t) = \frac{1}{2}(y,\Pi^{-1}y)_{\mathscr{Y}}$
- A Liapunov result $\frac{\mathrm{d}}{\mathrm{dt}} \tilde{\mathscr{V}}(\tilde{y}(t), t) \leq -c_{\mathrm{st}} \|y\|_{\mathcal{Y}}^2$

Theorem

Let $\tilde{y} = 0$ be an equilibrium point and $D \subset \mathcal{Y}$ be a domain containing x = 0. Let $\tilde{\mathscr{V}}$ be a continuously differentiable on $D \times \mathbb{R}^+$ function such that $W_1 \leq \tilde{\mathscr{V}}(\tilde{x}, t) \leq W_2(x)$ and $\frac{d}{dt}\tilde{\mathscr{V}} + (\nabla_y \tilde{\mathscr{V}}, (Ay))_{\mathcal{Y}} \leq -W_3(x)$ where $W_1(X)$, $W_2(x)$, and $W_3(x)$ are continuous positive definite functions on D. Then, y = 0 is uniformly asymptotically stable.

• Exists also for discrete-time $\tilde{\mathscr{V}}_n(y) = \frac{1}{2}(y, \Pi_n^{-1}y)_{\mathscr{Y}}$

- Managing the robustness with respect to errors (Krener, 1998)
- The non-linear case :

$$\forall y \in \mathcal{Y}, \quad \tilde{\mathscr{V}}(y,t) = \mathscr{V}(y+\hat{y}(t),t) - \mathscr{V}(\hat{y}(t),t),$$

which satisfies

$$\begin{split} \frac{\mathrm{d}}{\mathrm{dt}} \tilde{\mathscr{V}}(\tilde{y}(t),t) &= \partial_t \mathscr{V}(\check{y}(t),t) + \nabla \mathscr{V}(\check{y}(t),t)^{\mathsf{T}} \dot{\check{y}}(t) - \partial_t \mathscr{V}(\hat{y}(t),t) - \nabla \mathscr{V}(\hat{y}(t),t)^{\mathsf{T}} \dot{\hat{y}}(t) \\ &= -\frac{1}{2} \nabla \mathscr{V}(\check{y}(t),t)^{\mathsf{T}} B Q B^{\mathsf{T}} \nabla \mathscr{V}(\check{y}(t),t) + \underbrace{\frac{1}{2} \|J(\check{y},t)\|_R^2}_{=0} \\ &+ \underbrace{\frac{1}{2} \nabla \mathscr{V}(\hat{y}(t),t)^{\mathsf{T}} B Q B^{\mathsf{T}} \nabla \mathscr{V}(\hat{y}(t),t)}_{=0} - \frac{1}{2} \|J(\hat{y}(t),t)\|_R^2 \leq 0. \end{split}$$

- EKF convergence: continuous (Krener, 2003) or discrete (Boutayeb et al., 1997)
- In dim ∞ no dynamics for Π^{-1} in general but possible alternatives

Summary

• In finite dimension

Theorem

The steady-state Riccati equation $A\Pi + \Pi A^* - \Pi C^* RC\Pi + BQB^* = 0$ admits one a only one solution in $S(\mathcal{Y})^+$ if (1) (A, C) is detectable and (2) (A, B) is stabilizable.

• Generalizes in dim ∞ (Bensoussan et al., 2007)

Theorem (The pole shifting theorem)

Let (A, C) satisfying the Kalman condition, then there exists G such that for all monic polynomial μ – i.e. with a nonzero coefficient of highest degree equal to 1 – of degree N_y,

$$\det(\lambda \mathbb{1} - A - GC) = \mu(\lambda).$$

- In practice (and proof) (Kraus and Kučera, 1999)
- Various cases to be considered + iterative design: Relocation of (1) real simple eigenvalue, (2)real multiple eigenvalues, (3) Complex conjugate pair of eigenvalues

$$A = \begin{bmatrix} v_1 \\ \cdots \\ v_n \end{bmatrix} \begin{pmatrix} \lambda_1 & 0 \\ \ddots \\ 0 & \lambda_n \end{pmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \text{ with } w_j^{\mathsf{T}} v_j = 0$$

Let $BQB^{\mathsf{T}} = v_1q_1v_1^{\mathsf{T}}$ hence $\Pi_{\infty} = v_1p_1v_1^{\mathsf{T}}$, with $2\lambda_1p_1 - (Cv_1, RCv_1)p_1^2 + q_1 = 0 \Rightarrow p_1 = \frac{\lambda_1 + \sqrt{\lambda_1^2 + \gamma_1q_1}}{\gamma_1}$ where $\gamma_1 = (Cv_1, RCv_1)$ Let now define (μ_1, \dots, μ_n) the eigenvalues of $A - \Pi_{\infty}C^{\mathsf{T}}RC = A - v_1p_1v_1^{\mathsf{T}}C^{\mathsf{T}}RC$. if $i \neq 1$, $(A^{\mathsf{T}} - C^{\mathsf{T}}RCv_1p_1v_1^{\mathsf{T}})w_i = A^{\mathsf{T}}w_i = \lambda_iw_i$ Let $u_1 = \sum \alpha_iw_i$, we have $\sum \alpha_i\lambda_iw_i - \alpha_1C^{\mathsf{T}}RCv_1p_1v_1^{\mathsf{T}}w_1 = \mu_1 \sum \alpha_iw_i$ Hence by taking the scalar product w.r.t w_1 , we get $\alpha_1\lambda_1 - \alpha_1p_1v_1^{\mathsf{T}}C^{\mathsf{T}}RCv_1 = \alpha_1\mu_1$. So Finally $\mu_1 = \lambda_1 - p_1\gamma_1 = -\sqrt{\lambda_1 + \gamma_1q_1} \leq -|\lambda_1|$

- We decompose the initial condition $y = y_{\diamond} + \Pi_{r}^{*}\zeta_{r}$.
- Estimator Dynamics

$$\begin{cases} \dot{\hat{y}} = Ay + f + LU^{-1}L^*C^*(z^{\delta} - Cy), & \hat{y}(0) = y_{\diamond} \\ \dot{L} = AL, & L(0) = \Pi_r^* \\ \dot{U} = L^*C^*RCL, & U(0) = U_0 \end{cases}$$

• Associated to the minimization

$$\min_{\zeta_{\mathrm{r}}} \left\{ \mathscr{J}(\zeta_{\mathrm{r}},t) = \frac{1}{2} \|\zeta_{\mathrm{r}}\|_{U_{0}}^{2} + \frac{1}{2} \int_{0}^{t} \left(\|z^{\delta}(s) - C(y_{|\zeta_{\mathrm{r}}}(s))\|_{R}^{2} \right) \, \mathrm{d}s \right\}.$$

• Error Analysis $(\tilde{y}_{\perp}, \tilde{y}_{\rm r}) \mapsto (\lambda, \mu) = (\tilde{y}_{\perp} - L_{\perp} L_{\rm r}^{-1} \tilde{y}_{\rm r}, (L_{\rm r})^{-1} \tilde{y}_{\rm r})$

$$egin{aligned} \dot{\lambda} &= (A_{\perp\perp} - L_{\perp}L_{\mathrm{r}}^{-1}A_{\mathrm{r}\perp})\lambda \ \dot{\mu} &= -U^{-1}L^*C^*RCL\mu - U^{-1}L^*C^*RC(\mathbb{1} - \Pi_{\mathrm{r}})(\lambda + \eta), \end{aligned}$$

Luenberger observers

• A linear conservative system $\dot{y} = Ay$ with A is skew adjoint – *i.e.* $A^* = A$

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{2}\|y\|^2\right) = (y, Ay) = 0$$

• Find G so that A - GC is exponentially stable

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{2}\|\tilde{y}\|^2\right) = -(\tilde{y}, GC\tilde{y})$$

• With
$$G = C^* R$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{1}{2} \| \tilde{y} \|^2 \right) = -(C^* \tilde{y}, RC \tilde{y}) \leq 0.$$

• (Haraux, 1989) \tilde{y} is exponentially stable if $\exists T_0$ s.t. $\forall T > T_0$

$$\exists c_{st} \mid \int_0^T (C^* y, RC y) \ge c_{st} \|y(0)\|^2, \text{ for } \dot{y} = Ay$$

• if only detectable then the stability is not exponential (see for instance (Burq and Gérard, 2002))

Effect of G on the poles

Example : The wave equation (i)

- Model: $\partial_{tt}^2 u \Delta u = f$ in Ω , with adequate B.C. ex: u = 0 on $\partial \Omega$
- First order system with $y = \begin{pmatrix} u \\ v \end{pmatrix}$, and $A = \begin{pmatrix} 0 & \mathbb{1} \\ \Delta & 0 \end{pmatrix}$

• Case 1: Observation $z = \dot{u}_{|\omega}$, namely $C = \begin{pmatrix} 0 & \mathbb{1}_{|\omega} \end{pmatrix}$

• Observer: $\dot{\hat{y}} = A\hat{y} + \gamma C^*(z^{\delta} - C\hat{y})$, we get the so-called Direct Velocity Feedback

$$\partial_{tt}^2 u - \Delta u = f + \gamma \mathbb{1}_{\omega} (z^{\delta} - \partial_t u_{\omega})$$

- Detectability: Holmgren theorem: modes can not canceled in the observation zone (see for instance Burq and Gérard (2002))
- Observability: Geometric Control Condition (GCC, Bardos et al. (1987)) : ∃T₀
 s.t. ∀T > T₀

$$\exists c_{st} \mid \int_0^T \int_{\omega} |\partial u(x,t)|^2 \geq c_{st}(\|u(0)\|_{H^1_0(\Omega)}^2 + \|\partial_t u(0)\|_{L^2(\Omega)}^2)$$

Example : The wave equation (ii)

- Case 2: Observation $z = u_{|\omega}$, namely $C = \begin{pmatrix} \mathbb{1}_{|\omega} & 0 \end{pmatrix}$
- Observer: $\dot{\hat{y}} = A\hat{y} + \gamma C^*(z^{\delta} C\hat{y})$, we get the so-called Direct Velocity Feedback

$$\begin{cases} \partial_t u = v + R_\omega (z^\delta - u_\omega) \\ \partial_t v - \Delta u = f \end{cases} \text{ with } R_\omega : \varphi \mapsto \psi \text{ s.t. } \begin{vmatrix} -\Delta \psi = 0 \text{ in } \Omega \\ \psi = \varphi \text{ in } \omega \\ \psi = 0 \text{ on } \partial \Omega \end{cases}$$

- Detectability: Holmgren theorem: modes can not canceled in the observation zone
- Observability: Geometric Control Condition (Chapelle et al. (2012))

$$\exists c_{\rm st} \mid \int_0^T \int_{\omega} |\nabla u(x,t)|^2 \geq c_{\rm st}(\|u(0)\|_{H^1_0(\Omega)}^2 + \|\partial_t u(0)\|_{L^2(\Omega)}^2)$$

- γ is not conditioned by $\delta:$ overdamping phenomena
- Reduced order methods do not work in the conservative
- Recover the initial condition with the *back and forth* observer (Ramdani et al., 2010)

$$\begin{cases} \dot{\hat{y}}^k = A\hat{y}^k + \gamma C^*(z^{\delta} - C\hat{y}^k) \\ \hat{y}(0) = \hat{y}_b^{k-1}(0) \end{cases}$$

with $\hat{y}_b^{-1}(0) = y_\diamond$ and for $k \ge 0$

$$\begin{cases} \dot{\hat{y}}_b^k = A\hat{y}_b^k - \gamma C^*(z^\delta - C\hat{y}_b^k) \\ \hat{y}_b^k(T) = \hat{y}^k(T) \end{cases}$$

- Works for unbounded domain: GCC becomes GCC-Exterior
- Works also for elastodynamics problem: GCC becomes GCC-Elasticity

- γ is not conditioned by $\delta:$ overdamping phenomena
- Reduced order methods do not work in the conservative
- Recover the initial condition with the *back and forth* observer (Ramdani et al., 2010)

$$\begin{cases} \dot{\hat{y}}^k = A\hat{y}^k + \gamma C^*(z^{\delta} - C\hat{y}^k) \\ \hat{y}(0) = \hat{y}_b^{k-1}(0) \end{cases}$$

with $\hat{y}_b^{-1}(0) = y_\diamond$ and for $k \ge 0$

$$\begin{cases} \dot{\hat{y}}_b^k = A\hat{y}_b^k - \gamma C^*(z^\delta - C\hat{y}_b^k) \\ \hat{y}_b^k(T) = \hat{y}^k(T) \end{cases}$$

- Works for unbounded domain: GCC becomes GCC-Exterior
- Works also for elastodynamics problem: GCC becomes GCC-Elasticity

Numerical example

Direct problem **(D)**

Observation area $\boldsymbol{\omega}$

TBC

TBC

Direct problem **(D)**

Observation area $\boldsymbol{\omega}$

What about discretization

• Estimator scheme

$$\begin{cases} \mathbf{K}\frac{\hat{\mathbf{u}}_{n+1} - \hat{\mathbf{u}}_n}{\delta t} = \mathbf{K}\hat{\mathbf{v}}_{n+\frac{1}{2}} + \gamma^{\flat}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{\omega}\left(\mathbf{z}_{n+\frac{1}{2}}^{\delta} - {}^{\natural}\mathbf{C}\hat{\mathbf{u}}_{n+\frac{1}{2}}\right)\\ \mathbf{M}\frac{\hat{\mathbf{v}}_{n+1} - \hat{\mathbf{v}}_n}{\delta t} + \mathbf{K}\hat{\mathbf{u}}_{n+\frac{1}{2}} = \mathbf{f} \end{cases}$$

• Energy balance

$$\frac{\tilde{\mathscr{E}}_{n+1} - \tilde{\mathscr{E}}_n}{\delta t} = -\gamma \tilde{\mathbf{u}}_{n+\frac{1}{2}} {}^{\flat} \mathbf{C}^{\mathsf{T}} \mathbf{K}_{\omega} {}^{\flat} \mathbf{C} \tilde{\mathbf{u}}_{n+\frac{1}{2}}$$

• Observability condition

n

$$\sum_{k=1}^{n} \tilde{y}_{n+\frac{1}{2}}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{R} \mathbf{C}^{\mathsf{T}} \tilde{y}_{n+\frac{1}{2}} \not\geq, \alpha \, \tilde{y}_{0}^{\mathsf{T}} \Lambda_{0} \tilde{y}_{0}$$

- Several remedies: Mixed Element Methods, Numerical viscosity, adaptative meshes...
- New estimates and paradigm

$$\|\hat{y}_h^n - \breve{y}(n\Delta t)\|_{\mathcal{Y}} \leq c(y_0) \max(\epsilon, \epsilon^2 h^{-1}\Delta t), \quad \forall n \in \mathbb{N}$$

Conservative system

3000

2000

1000

Data sampling: Time sampling

• General time scheme

$$\begin{cases} \frac{\hat{y}_{n+1}^{-} - \hat{y}_{n}^{+}}{\delta t} = A \frac{\hat{y}_{n+1}^{-} + \hat{y}_{n}^{+}}{2}, & n > 0\\ \frac{\hat{y}_{n+1}^{+} - \hat{y}_{n+1}^{-}}{\delta t} = \delta^{n+1} \gamma C^{*} \left(d_{n+1} - C \hat{y}_{n+1}^{+} \right) + u_{\delta t} A^{2} \hat{y}_{n+1}^{+}, & n > 0\\ \hat{y}_{+}^{0} = \hat{y}_{0}, & \text{Sampling}^{\dagger} \end{cases}$$

• Use data only when they are available

$$\delta^{n} = \begin{cases} 1 \\ 0 \end{cases} \quad d_{n} = \begin{cases} z_{r} & \text{if } \exists r \in \mathbb{N} : n = j_{r} \\ 0 & \text{otherwise.} \end{cases} \qquad \text{Observer using interpolated data}$$
• Interpolate the data

$$\delta^{n} = I \qquad \forall n, \qquad d_{n} = \frac{n - j_{r}}{j_{r+1} - j_{r}} z_{r+1} + \left(I - \frac{n - j_{r}}{j_{r+1} - j_{r}}\right) z_{r} \qquad j_{r} \le n \le j_{r+1}.$$

Data sampling: Space sampling

• Linear elasticity $\int_{\Omega} \rho \partial_{tt} \underline{u} : \underline{w} \, d\Omega + \int_{\Omega} \underline{\underline{\varepsilon}}(\underline{u}) : \underline{\underline{A}} : \underline{\underline{\varepsilon}}(\underline{w}) \, d\Omega = \int_{\Omega} \underline{\underline{f}} \cdot \underline{w} \, d\Omega$

• Eigen-problem associated with the discretization of the error system

$$\begin{bmatrix} {}^{\natural}C^{*}{}^{\natural}C & K \\ -K & -D_{\epsilon} \end{bmatrix} \begin{bmatrix} \Phi_{u} \\ \Phi_{v} \end{bmatrix} = \lambda \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} \Phi_{u} \\ \Phi_{v} \end{bmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ -20 \\ -20 \\ -40 \\ 0 \\ -20 \\ -40 \\ 0 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -20 \\ -40 \\ -20 \\$$

- Transport equation
- Estimation for Saint-Venant systems (circulation flows)

System

$$\begin{cases} \partial_t h + \partial_x \left(h u \right) = 0 \\\\ \partial_t \left(h u \right) + \partial_x \left(h u^2 + \frac{g}{2} h^2 \right) = 0 \end{cases}$$

Observation $z^{\delta} = \check{u} + \eta$ Estimator:

$$\begin{cases} \partial_t \hat{h} + \partial_x \left(\hat{h} \hat{u} \right) = \gamma (z^{\delta} - \hat{h}) \\ \partial_t \left(\hat{h} \hat{u} \right) + \partial_x \left(\hat{h} \hat{u}^2 + \frac{g}{2} \hat{h}^2 \right) = \gamma \hat{u} (z^{\delta} - \hat{h}) \end{cases}$$

Parameter estimation using asymptotic observers
• Model:
$$\dot{y} = Ay + \beta + B\theta$$

• Estimator (Zhang, 2002; Moireau et al., 2008)

$$\begin{cases} \dot{\hat{y}} = Ay + B\hat{\theta} + \beta + G(z^{\delta} - Cy) + L\dot{\theta}, \quad \hat{y}(0) = y_{\diamond} \\ \dot{\hat{\theta}} = U^{-1}L^*C^*R(z^{\delta} - C\hat{y}), \quad \hat{\theta} = \theta_{\diamond} \\ \dot{L} = AL + B, \quad L(0) = 0 \\ \dot{U} = L^*C^*RCL, \quad U(0) = U_{\diamond} = \mathbb{C}\mathrm{ov}(\theta)^{-1} \end{cases}$$

• min
$$\mathscr{J}(\theta) = \|\theta\|_{U^{-1}_{\diamond}, \mathcal{P}}^2 + \int_0^T \|z^{\delta} - C\breve{y}\|^2 \, \mathrm{d}s$$
, where
 $\dot{\breve{y}} = Ay + B\check{\theta} + \beta + G(z^{\delta} - C\breve{y})$

• Analyzis: Triangularize the error system $(\tilde{y}, \tilde{\theta}) \rightarrow = (\mu = \tilde{y} - L\tilde{\theta}, \tilde{\theta})$

$$egin{cases} \dot{\mu} = (\mathsf{A} - \mathsf{GC})\mu \ \dot{ ilde{ heta}} = -\mathit{UL}^*\mathit{C}^*\mathit{RCL} ilde{ heta} - \mathit{ULC}^*\mathit{RC}\mu + \mathsf{noise} \end{cases}$$

• Model: $\dot{y} = A(y, \theta)$

Estimator (Zhang and Xu, 2001; Moireau et al., 2008)

$$\begin{cases} \dot{\hat{y}} = A(\hat{y}, \hat{\theta}) + G(z^{\delta} - Cy) + L\dot{\theta}, \quad \hat{y}(0) = y_{\diamond} \\ \dot{\hat{\theta}} = U^{-1}L^*C^*R(z^{\delta} - C\hat{y}), \quad \hat{\theta} = \theta_{\diamond} \\ \dot{L} = d_yAL + d_\thetaA, \quad L(0) = 0 \\ \dot{U} = L^* d_yJ^*R d_yJL, \quad U(0) = U_{\diamond} = \mathbb{C}\mathrm{ov}(\theta)^{-1} \end{cases}$$

- No more minimization
- But analyzis: Triangularize the linearized error system $(\tilde{y}_{\ell}, \tilde{\theta}_{\ell}) \rightarrow = (\mu = \tilde{y}_{\ell} - L\tilde{\theta}_{\ell}, \tilde{\theta}_{\ell})$ $\begin{cases} \dot{\mu} = (d_y A - GC)\mu \\ \dot{\tilde{\theta}}_{\ell} = -UL^* d_y J^* R d_y J L\tilde{\theta}_{\ell} - UL d_y J^* R d_y J \mu + \text{noise} \end{cases}$

- Model: $y_{n+1} = \Phi_{n+1|n}(y_n, \theta_n)$
- Estimator (Moireau and Chapelle, 2011)

Sampling
$$\begin{cases} \hat{y}_{n|n}^{(i)} = \hat{y}_{n|n} + L_n^y \sqrt{U_n^{-1}}^T e^{(i)}, & 1 \le i \le p+1 \\ \hat{\theta}_{n|n}^{(i)} = \hat{\theta}_n^+ + L_n^\theta \sqrt{U_n^{-1}}^T e^{(i)}, & 1 \le i \le p+1 \end{cases}$$

Prediction
$$\begin{cases} \hat{y}_{n+1|n}^{(i)} = \Phi_{n+1|n}(\hat{y}_{n|n}^{(i)}, \hat{\theta}_{n|n}(i)) \\ \hat{y}_{n+1|n} = E_{\alpha}(A_{n+1|n}(\hat{y}_{n|n}^{*}, \hat{\theta}_{n|n}^{*})), \quad \hat{\theta}_{n+1|n} = \hat{\theta}_{n|n} \end{cases}$$

$$\begin{cases} L_{n+1}^{y} = [\hat{y}_{n+1|n}^{*}]D_{\alpha}[e^{*}]^{T}, \quad L_{n+1}^{\theta} = [\theta_{n+1|n}^{*}]D_{\alpha}[e^{*}]^{T} \\ \Gamma_{n+1}^{(i)} = J(y_{n+1}^{(i)-}, t_{n+1}), \quad DJ_{n+1} = [\Gamma_{n+1}^{(i)}]D_{\alpha}[e^{*}]^{T} \\ U_{n+1} = \mathbb{1} + DJ_{n+1}^{T}W_{n+1}^{-1}DJ_{n+1} \\ \hat{y}_{n+1|n+1} = \hat{y}_{n+1|n} + L_{n+1}^{y}U_{n+1}^{-1}DJ_{n+1}^{T}R_{n+1}^{-1}(E_{\alpha}(\Gamma_{n+1}^{*})) \\ \hat{\theta}_{n+1|n+1} = \hat{\theta}_{n+1|n} + L_{n+1}^{\theta}U_{n+1}^{-1}DJ_{n+1}^{T}R_{n+1}^{-1}(E_{\alpha}(\Gamma_{n+1}^{*})) \end{cases}$$

Combine the strategies with the reduced order UKF, (ii)

Numerical illustration

• Linear elastodynamics with pre-stress loading

$$\int_{\Omega} \rho \partial_{tt} \underline{u} : \underline{w} \, d\Omega + \int_{\Omega} \underline{\underline{\varepsilon}}(\underline{u}) : \underline{\underline{\varepsilon}}(\underline{w}) \, d\Omega = \int_{\Omega} \underline{\underline{\sigma}}(t) : \underline{\underline{\varepsilon}}(\underline{w}) \, d\Omega$$

- with

$$\underline{\underline{\sigma}}(t) = \theta \underline{\underline{\sigma}_0} \lambda(t)$$

• Domain decomposition into 17 regions

$$\check{\theta}_{|4} = 0.5, \quad \check{\theta}_{||,|3] \cup [|5,|7]} = 1$$

 $\hat{\theta}_{||,|7]}(0) = 1$

Numerical illustration

Linear elastodynamics with pre-stress loading

$$\int_{\Omega} \rho \partial_{tt} \underline{u} : \underline{w} \, d\Omega + \int_{\Omega} \underline{\underline{\varepsilon}}(\underline{u}) : \underline{\underline{\varepsilon}}(\underline{w}) \, d\Omega = \int_{\Omega} \underline{\underline{\sigma}}(t) : \underline{\underline{\varepsilon}}(\underline{w}) \, d\Omega$$
- with

$$\underline{\underline{A}}(t) = 2^{\theta} \underline{\underline{\underline{A}}}_{\underline{\underline{\underline{A}}}}(t)$$

• Domain decomposition into 17 regions

$$\check{\theta}_{|4} = 0.3, \quad \check{\theta}_{[1,13]\cup[15,17]} = 0$$
$$\hat{\theta}_{[1,17]}(0) = 0$$

Examples

Sainte-Marie, J., Chapelle, D., Cimrman, R., & Sorine, M. - Modeling and estimation of the cardiac electromechanical activity. Computers & Structures, 84(28), 1743–1759 - 2006 Chapelle, D., Le Tallec, P., Moireau, P., & Sorine, M - An energy-preserving muscle tissue model: formulation and compatible discretizations. International Journal of Multiscale Computational Engineering, 2011

Measurements

Courtesy: ETH

New challenges: shape observations

• Remember we can consider complex data termes

$$\mathscr{J}_{data}(z^{\delta},y) = \int_{\Sigma} |\mathsf{dist}_{\mathfrak{S}}(\underline{x} + \underline{u}(\underline{x},t),t)|^2 \,\mathrm{d}\Gamma$$

• in a Non-linear elasticity case

$$\forall \underline{w} \in \mathcal{V}, \left(\partial_t \underline{\hat{u}}, \underline{w}_s\right)_{\mathcal{E}_l} = \left(\underline{\hat{v}}, \underline{w}\right)_{\mathcal{E}_l} + \gamma \left(L_{\underline{n}_{\Sigma}}(\operatorname{dist}_{\mathfrak{S}}(\underline{x} + \underline{\hat{u}}, t)\underline{n}_{\mathfrak{S}}), \underline{w}\right)_{\mathcal{E}_l},$$

• Stability: after linearisation equivalent to observation of normal displacement to the surface

• Remember we can consider complex data termes

$$\mathscr{J}_{data}(z^{\delta},y) = \int_{\Sigma} |\mathsf{dist}_{\mathfrak{S}}(\underline{x} + \underline{u}(\underline{x},t),t)|^2 \,\mathrm{d}\Gamma$$

• in a Non-linear elasticity case

$$\forall \underline{w} \in \mathcal{V}, \left(\partial_t \underline{\hat{u}}, \underline{w}_s\right)_{\mathcal{E}_l} = \left(\underline{\hat{v}}, \underline{w}\right)_{\mathcal{E}_l} + \gamma \left(L_{\underline{n}_{\Sigma}}(\mathsf{dist}_{\mathfrak{S}}(\underline{x} + \underline{\hat{u}}, t)\underline{n}_{\mathfrak{S}}), \underline{w}\right)_{\mathcal{E}_l},$$

• Stability: after linearisation equivalent to observation of normal displacement to the surface

A first real data case

Model Calibration on Baseline (T0)

Model Calibration on Baseline (T0)

Baseline (T0) simulations compared to T38 images

- Model *without* infarct

 Segmentation of the *infarcted* left ventricle

Adapt model contractility

Model without infarct Estimator Segmentation Cardiologist representation of the various regions of the heart I parameter estimated by region

Infarct quantification

A second real data case

Estimation of elastic boundary support

P. Moireau, N. Xiao, M. Astorino, C.A. Figueroa, D. Chapelle, C.A.Taylor & J.-F. Gerbeau — External tissue support and fluid– structure simulation in blood flows. BMMB, 2012

P. Moireau, C. Bertoglio, N. Xiao, C. A. Figueroa, C. A. Taylor, D. Chapelle & J.-F. Gerbeau — Sequential identification of boundary support parameters in a fluidstructure vascular model using patient image data — BMMB 2013

Real Data

CT sequence from Stanford

Sequential Estimation Results

Patient specific simulation

Use directly the image

Electrophysiology and shapes

Maps of electrical activation (isochronous)

Data problem statement

Real data

Similarity measure

 Inspired from a segmentation problem in image processing from level set

> TF Chan, L Vese, Active contours without edges — IEEE Trans Image Proc. 2001.

- To be compared to: $\phi(w) = w c_{th}$
- We define *c*_{th} as the depolarisation constant, namely the depolarisation area is given by

$$\Omega_{+}(t) = \{ \underline{x} \in \mathcal{S} \, | \, w(\underline{x}, t) > c_{th} \}$$

$$\Gamma_{w}(t) = \{ \underline{x} \in \mathcal{S} \, | \, w = c_{th} \} = \Gamma_{\phi=0}(t)$$

 Our comparator is based on the Mumford-Shah functional (Chan-Vese)

$$\mathcal{J}(z,w) = \int_{\mathcal{S}_{obs}} H(w - c_{th}) (z - C_1(z,w))^2 dx + (1 - H(w - c_{th}))) (z - C_2(z,w))^2 dx,$$

$$C_1(z,w) = \frac{\int_{\mathcal{S}_{obs}} H(\phi(w)) z \, dx}{\int_{\mathcal{S}_{obs}} H(\phi(w)) \, dx}, \quad C_2(z,w) = \frac{\int_{\mathcal{S}_{obs}} (1 - H(\phi(w))) z \, dx}{\int_{\mathcal{S}_{obs}} (1 - H(\phi(w))) \, dx}.$$

Front-based state observer

• Target
$$\begin{cases} c\partial_t \breve{w} - \nabla \cdot (\mathbf{D} \cdot \nabla \breve{w}) &= kf(\breve{w}, \kappa), & \text{in } \mathcal{S} \times (0, T), \\ \dot{\breve{\kappa}} &= \eta(\kappa, \breve{w}) & \text{in } \mathcal{S} \times (0, T) \\ (\mathbf{D} \cdot \nabla \breve{w}) \cdot n &= 0, & \text{on } \partial \mathcal{S} \times (0, T), \\ \breve{w}(x, 0) &= \breve{w}_0(x), & \text{in } \mathcal{S}. \end{cases}$$

• Observer
$$\begin{cases} c\partial_t \hat{w} - \nabla \cdot (\mathbf{D} \cdot \nabla \hat{w}) &= kf(\hat{w}, \kappa) + g(z, \hat{w}), & \text{in } \mathcal{S} \times (0, T), \\ \hat{\kappa} &= \eta(\hat{\kappa}, \hat{w}) & \text{in } \mathcal{S} \times (0, T) \\ (\mathbf{D} \cdot \nabla \hat{w}) \cdot n &= 0, & \text{on } \partial \mathcal{S} \times (0, T), \\ w(x, 0) &= \hat{w}_0(x), & \text{in } \mathcal{S}. \end{cases}$$

with
$$g(z, \hat{w}) = \gamma_{sh}(x) \,\delta(\hat{w} - c_{th}) \left(-\left(z(t) - C_1(z, \hat{w})\right)^2 + \left(z(t) - C_2(z, \hat{w})\right)^2 \right) + \gamma_{topo}(x) H\left(\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right)(\hat{w} - c_{th})\right) \left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 - \left(z - C_2(z, \hat{w})\right)^2\right) + \alpha_{topo}(x) H\left(\left(z - C_1(z, \hat{w})\right)^2 + \alpha_{topo}(z, \hat{w})\right)^2 + \alpha_{topo}(z, \hat{w}) + \alpha_{topo}(z$$

Proposition.

 \sim

The data correction stabilises the observer on the target trajectory for sufficiently small errors.

Mathematical justification

• Compute the error norm $\tilde{u} = \breve{u} - \hat{u}$

$$\int_{\mathcal{S}} \partial_t \hat{w}^2 \, dx = -\int_{\mathcal{S}} D \, \underline{\nabla} \tilde{w} \cdot \underline{\nabla} \, \tilde{w} \, dx + \int_{\mathcal{S}} k(f(\breve{w}) - f(\hat{w})) \, \tilde{w} \, dx$$
$$+ \gamma \int_{\Gamma_{\hat{w}}} \frac{1}{|\underline{\nabla} \hat{w}|} \left(\left(z - C_1 \right)^2 - \left(z - C_2 \right)^2 \right) \tilde{w} \, d\Gamma$$

Dissipative?

• Stabilization property of

$$\mathcal{Q}_{w}(\tilde{w}) = \int_{\Gamma_{\tilde{w}}} \frac{\gamma}{|\underline{\nabla}w|} \left(\left(z - C_{\perp} \right)^{2} - \left(z - C_{2} \right)^{2} \right) \tilde{w} \, d\Gamma.$$

• Around the target trajectory

$$\begin{pmatrix} d_{\hat{w}}\mathcal{Q}_{\breve{w}}(\tilde{w})\,;\,\tilde{w} \end{pmatrix} = 2 \Big(\mathcal{C}_{2}(z,\breve{w}) - \mathcal{C}_{1}(z,\breve{w}) \Big) \int_{\Gamma_{\breve{w}}} \gamma \,\partial_{n} z_{\breve{w}} \frac{\tilde{w}}{|\underline{\nabla}\breve{w}|} \frac{\tilde{w}}{|\underline{\nabla}\breve{w}|} \,d\Gamma$$
$$- 2 \Big(\frac{\mathcal{C}_{2}(z,\breve{w}) - \mathcal{C}_{1}(z,\breve{w})}{2} \Big)^{2} \Big(\frac{1}{|\Omega_{\breve{w}}|} + \frac{1}{|\mathcal{S}\setminus\overline{\Omega_{\breve{w}}}|} \Big) \int_{\Gamma_{\breve{w}}} \frac{\tilde{w}}{|\underline{\nabla}\breve{w}|} \,d\Gamma \times \int_{\Gamma_{\breve{w}}} \gamma \,\frac{\tilde{w}}{|\underline{\nabla}\breve{w}|} \,d\Gamma$$

A. Collin, D. Chapelle, P. Moireau, A Luenberger observer for reaction-diffusion models with front position data — Journal Of Computational Physics, 2015

1D illustration: state estimation

• Reaction diffusion system of Mitchell-Schaeffer type (similar to Fitzugh-Nagumo)

A. Collin, D. Chapelle, P. Moireau, Sequential State Estimation for Electrophysiology Models with Front Level-Set Data Using Topological Gradient Derivations — FIMH 2015

State and parameter estimation

• Model: bidomain surface model

With topological gradient

Toward real data

- A data completion tool
 - different surface model

With A. Gérard, A. Collin, Y. Coudière

• But parameter estimation is also possible

Ingredients for real data robustness

- **Different** cases
 - Simple pacing
 - Multiple pacing
 - Fibrilation ?

With A. Collin

- Sampled data
 - interpolate the feedba
- Partial data
 - Correct where you have the data or find better correction based on H₁ Sobolev _
 - gradient concepts

P. Moireau, D. Chapelle, P. Le Tallec — Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging — Inverse Problems 2009

G. Charpiat, P. Maurel, J.P. Pons, R. Keriven, O. Faugeras —

Generalized gradients: Priors on minimization flows, Int. J. Comput. Vision

Other examples

M.C. Rochoux, A. Collin, C. Zhang, A. Trouve, D. Lucor and
P. Moireau — Front Shape Similarity Measure For Shape-Oriented Sensitivity Analysis And Data Assimilation For
Eikonal Equation — Proceedings of the CEMRACS 2016

Other examples

M.C. Rochoux, A. Collin, C. Zhang, A. Trouve, D. Lucor and P. Moireau — Front Shape Similarity Measure For Shape-Oriented Sensitivity Analysis And Data Assimilation For Eikonal Equation — Proceedings of the CEMRACS 2016

©(A. Marrocco)

Conclusion

The framework

For each physical model (hence evolution PDE) and measurements

- **Challenge 1:** Formulation of adequate similarity measures adapted to the system of interest and design of the control feedback;
- **Challenge 2:** Analysis of the resulting observer: existence, stability, convergence;
- **Challenge 3:** Joint identification of model parameters namely, adaptive observer formulation and analysis of identification properties; Statistics on shape for Kalman based formulations
- **Challenge 4:** Discretization, numerical strategies and numerical analysis of the observer formulation;
- **Challenge 5:** Applications with real data, in particular in the cardiovascular context, but not only

- Non-linear systems in infinite dimension : theoretical aspects
- Shapes
- Constraints: theoretical aspects, and practical aspects (pressure measurements)
- link identifiability and parameter-observer convergence
- Combining Data assimilation and Learning

References

- C. Bardos, G. Lebeau, and J. Rauch. Control and Stabilization of wave equation. In *Journée Équations aux dérivées partielles*, pages 1–15, July 1987.
- A. Bensoussan, M. C. Delfour, G. Da Prato, and S. K. Mitter. *Representation and Control of Infinite Dimensional Systems*. Birkhauser Verlag, second edition edition, 2007. ISBN 3-7643-3641-2.
- M Boutayeb, H Rafaralahy, and M Darouach. Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. *IEEE Transactions on Automatic Control*, 42(4): 581–586, 1997.
- N. Burq and P. Gérard. Contrôle optimal des equations aux derivees partielles. Cours de l'Ecole Polytechnique, 2002.
- D. Chapelle, N. Cîndea, M. De Buhan, and P. Moireau. Exponential Convergence of an Observer Based on Partial Field Measurements for the Wave Equation. *Mathematical Problems in Engineering*, 2012:1–12, 2012.
- A Haraux. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. *Portugal. Math.*, 46(3):245–258, 1989.
- F J Kraus and V Kučera. Linear quadratic and pole placement iterative design. In *1999 European Control Conference (ECC*, pages 653–658. IEEE, 1999.

- A.J. Krener. A Lyapunov theory of nonlinear observers. In G G Yin and Qing Zhang, editors, *Stochastic analysis, control, optimization and applications*, pages 409–420. Springer, 1998.
- A.J. Krener. The convergence of the extended Kalman filter. In *Lecture Notes in Control and Inform. Sci.*, pages 173–182. Springer, Berlin, 2003.
- P. Moireau and D. Chapelle. Reduced-Order Unscented Kalman Filtering with Application to Parameter Identification in Large-Dimensional Systems. *ESAIM Control Optim. Calc. Var.*, 17(2):380–405, April 2011.
- P. Moireau, D. Chapelle, and P. Le Tallec. Joint state and parameter estimation for distributed mechanical systems. *Comput Method Appl M*, 197 (6-8):659–677, 2008.
- K. Ramdani, M. Tucsnak, and G. Weiss. Recovering the initial state of an infinite-dimensional system using observers. *Automatica*, 46(10):1616–1625, 2010.
- M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009. ISBN 978-3-7643-8993-2. doi: 10.1007/978-3-7643-8994-9. URL http://dx.doi.org/10.1007/978-3-7643-8994-9.

- Qinghua Zhang. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. *IEEE Trans. Automat. Control*, 47(3):525–529, 2002.
- Qinghua Zhang and Aiping Xu. Global adaptive observer for a class of nonlinear systems. *Decision and Control, 2001. Proceedings of the 40th IEEE Conference on DOI - 10.1109/.2001.980478*, 4:3360–3365 vol.4, 2001.