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Fluid-Structure Interaction

Fluid inside or surrounding a solid.
Fluid flow � Solid structure

Fluid flow → deforms the solid structure

Structure deformation → impacts the flow

Examples:

Airflow around an aircraft
wing

Balloon inflating

Wind action on a yacht sail
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Fluid equations

Incompressible Navier-Stokes equations

ρ
(∂u
∂t

+ (u · ∇)u
)

= −µ∆u +∇p

∇ · u = 0

1 Balance equation for linear momentum and conservation of
mass equation

2 Linear dependence of stresses on strain rate

3 Non-linearity arising from the convective term

4 Neglecting inertia leads to Stokes equations

Stokes equations

µ∆u −∇p = 0

∇ · u = 0
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Solid equations

Elasticity equations

ρ
∂2η

∂t2
−∇ · (FΣ) = fs

1 Balance equations

2 Formulated in terms of the displacement η(t, x) between
reference and current configuration

3 Non-linearity depends on the elasticity model, encoded in Σ
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Continuous coupling conditions

Coupling conditions on fluid-solid interface

∂η

∂t
= u

Tnf + FΣns = 0

1 Velocity continuity

2 Normal stress continuity

Warning

Fluid and elasticity equations are not defined on the same
reference frame (Eulerian vs. Lagrangian).
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Discrete coupling conditions

There are several techniques to discretize the continuous coupling
conditions:

1 Dirichlet-Neumann: velocity continuity (fluid side) - stress
continuity (solid side)

2 Robin-Robin: combination of Dirichlet and Neumann
conditions (fluid & solid sides)

3 . . .

The choice depends on the fluid/solid system and solution
technique.
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FEEL++

Finite Element Embedded Library in C++

Open source library → github.com/feelpp

Galerkin methods

Domain Specific Embedded Language (DSEL) in C++

Scaling : from laptops to supercomputers

Easy deployment → Docker, Singularity

(Multi)Physics toolboxes: Heat Transfer, Aerothermics, CFD,
CSM, FSI, Maxwell

docs.feelpp.org

YouTube → Feel++ channel
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Project: Cells under flow in the zebrafish
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“Life at low Reynolds number” - Purcell (1976)

At the microscale the Reynolds number is small and inertia forces
play no role in the motion of microorganisms.

Swimmers that perform
reciprocal strokes are not
able to move.

Microorganisms have
adopted non-reciprocal
swimming strategies.
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Magneto-elastic microswimmer at ISIR - UPMC

Composite microrobot which can perform non-reciprocal strokes.

Viscous fluid

Elastic body

Magnetic head

Driven by external magnetic
field

Micro-robots can be applied for targeted drug delivery and
non-invasive surgical operations.
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From Navier-Stokes to Stokes equations

Incompressible Navier-Stokes equations

ρ
(∂u
∂t

+ (u · ∇)u
)

= −µ∆u +∇p

∇ · u = 0

1 Identify typical length (L), velocity (U), timescale (T).

2 Adimensionalize

Re
(∂u∗
∂t∗

+ (u∗ · ∇)u∗
)

= −∆u∗ +∇p∗

∇ · u∗ = 0

where

Re =
LUρ

µ
u∗ =

u

U
t∗ =

t

LU
p∗ =

pL

µU
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From Navier-Stokes to Stokes equations

For microswimmers (spermatozoa, bacteria) in water

L ≈ 10−6 m

U ≈ 30 · 10−6 m/s

µ/ρ ≈ 10−6 m2/s

Hence, Re ≈ 10−5

Stokes equations

µ∆u −∇p = 0

∇ · u = 0
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Rigid motion with imposed displacement

In the swimmer frame one can decompose the Stokes problem

µ∆u −∇p = 0 in Ω \ S
∇ · u = 0 in Ω \ S

u = ω × x + v + wd on ∂S

u = 0 on ∂Ω \ ∂S

in 7 (3D) or 4 (2D) independent Stokes problems to extract rigid
body motion.
This is possible because Stokes equations are linear in (u, p).
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Stokes problem decomposition

Solve the Stokes problem with the following boundary conditions
(in the swimmer frame):

1 e1 × x produces solution u1 (3D)

2 e2 × x produces solution u2 (3D)

3 e3 × x produces solution u3 (3D) - u1 (2D)

4 e1 produces solution u4 (3D) - u2 (2D)

5 e2 produces solution u5 (3D) - u3 (2D)

6 e3 produces solution u6 (3D)

7 wd produces solution u7 (3D) - u4 (2D)

u =
3∑

i=1

ωiui +
6∑

i=4

viui + u7 p =
3∑

i=1

ωipi +
6∑

i=4

vipi + p7
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Newton equations

Newtonian fluid - Stress tensor

T (u, p) = −pI + 2µ
∇u +∇uT

2

Newton equations ∫
∂St

T (u, p) = 0∫
∂St

x × T (u, p) = 0

Luca Berti, Francois Der Hovsepian Modeling and simulation of deformable bodies in low-Reynolds flows



Stokes problem decomposition (3D)

Mz + N = 0 where z = (ω, v)

Mij =


∫
∂St

(x × ei ) · T (uj , pj)n dx 1 ≤ i ≤ 3, 1 ≤ j ≤ 6∫
∂St

ei−3 · T (uj , pj)n dx 4 ≤ i ≤ 6, 1 ≤ j ≤ 6

Nj =


∫
∂St

(x × ei ) · T (u7, p7)n dx 1 ≤ i ≤ 3∫
∂St

ei−3 · T (u7, p7)n dx 4 ≤ i ≤ 6
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Stokes problem decomposition (2D)

Mz + N = 0 where z = (ω, v)

Mij =


∫
∂St

(x × e3) · T (uj , pj)n dx 1 ≤ j ≤ 3∫
∂St

ei · T (uj , pj)n dx 2 ≤ i ≤ 3, 1 ≤ j ≤ 3

Nj =


∫
∂St

(x × e3) · T (u4, p4)n dx∫
∂St

ej · T (u4, p4)n dx 2 ≤ j ≤ 3
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Self-propulsion constraints

The absence of inertial effects makes the problem independent of
mass.

For massless swimmers it’s necessary to account for these
self-propulsion constraints on the deformation.

Self-propulsion constraints∫
∂St

∂tηd(t, x) dx = 0∫
∂St

∂tηd(t, x)× ηd(t, x)dx = 0
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Scallop theorem

A body which deforms and
follows the same deformation
path back in time will not show a
net motion.
An example of such body is the
scallop (Coquille de Saint
Jacques), which moves by
repeatedly opening and closing
its valves.
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Influence of the viscosity coefficient

In the absence of inertia forces, the rigid body motion computed
this way is independent of the viscosity coefficient.

µ = 1.0 µ = 5.0
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Influence of obstacles/boundaries

It is experimentally observed that micro-swimmers are attired by
boundaries. In the case of a reciprocal swimmer, the proximity to
the boundary produces a net motion towards it.
In our case the scallop approaches the left corner of the box and
rotates.
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Spermatozoon

The previous method could be applied to spermatozoa by
prescribing the velocity wd coming from deformation. A formula
coming from experiments is proposed. The tangent angle is

ψ(s, t) = K0s + 2A0s cos(ωt − 2πs

λ
)

Mean curvature K0

Varying amplitude A0s

Travelling wave λ, ω
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Perspectives and improvements

Parallelize the solution of the Stokes subproblems

Feed displacement velocity from a FSI code

Couple the system with equations for magnetic field

Improve meshing and remeshing strategies
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Cancer cell metastasis

Cancer cells metastasis: cells
going from primary to secondary
site in the host body, using the
vascular system.
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The zebrafish embryo: a model organism

Zebrafish (ZF) features:

Easy to observe: thin and
transparent

Cheap to maintain

Endless supply: Hundreds of
offspring weekly

Extremely fast development
(1 day ZF → 1 month
Human)

Complete genome sequence
is known: 70% of genes
shared with humans
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Two kinds of cells

Red Blood Cells (RBC) in...
green

Elliptical (in embryo:
≈ 5× 2.5µm)

Circulating Tumor Cell (CTC or
TC) in red

Softer

Bigger (radius ≈ 5µm)
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Region of interest : Caudal plexus

Tumor cells
preferentially stop
in the caudal
plexus.
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Goals

Goals:

Model and simulate cells in the zebrafish

Model cell-cell and cell-wall contacts

The plan:

Create a 2D mesh of the ZF

Model and simulate a single cell in the flow using the level set
method

Extend to multiple cells and manage contacts
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Blood flow - Stokes model

Blood in a ZF blood vessel :

incompressible newtonian fluid

density ρ = 1000kg/m3, dynamic viscosity µ = 2× 10−3Pa.s

mean velocity U = 1× 10−3m/s

characteristic dimension L = 20× 10−6m (ZF blood vessel)

Reynolds number Re = ρUL
µ = 10−2

⇒ We use the Stokes model for incompressible newtonian fluids{
−µ∆u +∇p = F

∇ · u = 0

Where u is the velocity, p is the pressure and F are the external
forces.
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Modeling cells in blood flow - Level set method

Cell model → vesicle: an inextensible membrane filled with fluid.
⇒ A cell in blood flow: an interface Γ separating two fluids.

inextensibility of the interface: ∇s · u = ∇ · u − (∇u · n) · n = 0 on
Γ with n the outward normal vector.

The level set method → Track the interface implicitly.
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The level set method

define a level set function φ on the fluid domain Ω

φ : signed distance to the interface (negative inside the cell)

advect it using the fluid velocity field
∂φ

∂t
+ u · ∇φ = 0

∇ · u = 0
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Interface related quantities

Smoothed Heaviside function

Hε(φ) =


0, φ ≤ −ε

1
2

(
1 + φ

ε +
sin(πφ

ε
)

π

)
, −ε ≤ φ ≤ ε

1, φ ≥ ε

→ define quantities in each fluid : ρ(φ(x)) = ρ2 + (ρ1 − ρ2)Hε(φ).
Smoothed delta function

δε(φ) =


0, φ ≤ −ε

1
2ε

(
1 + cos(πφε )

)
, −ε ≤ φ ≤ ε

0, φ ≥ ε

→ define quantities on interface :
∫

Γ 1 ≈
∫

Ω δε(φ)
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Membrane force

Helfrich model: bending energy proportional to the square of the
curvature of the membrane. In 2D :

Eb =

∫
Γ

kB
2
κ2

with kB ≈ 10−19J for a vesicle.

Corresponding force:

Fb =

∫
Ω
kB∇·

[
−κ2

2

∇φ
|∇φ|

+
1

|∇φ|

(
Id − ∇φ⊗∇φ

|∇φ|2

)
∇{|∇φ|}κ

]
δε
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Full system

D(ρ(φ(x))u)
Dt −∇ ·

([
µ(φ(x))(∇u + (∇u)T )

])
+∇p = F in Ω
∇ · u = 0 in Ω
∇s · u = 0 on Γ

∂φ
∂t + u · ∇φ = 0 in Ω

u = g on ∂Ω
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Mesh from a 2D image
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Mesh from a 2D image
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Octave script

Octave script to generate geometry file:

extract contours

filter out duplicate points

write geometry file for GMSH
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Mesh size

Mesh should be:

fine enough to preserve geometry

fine enough to define a cell with level set method

coarse enough to save computing time
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Mesh from a 2D image
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Mesh from a 2D image
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FEEL++ Multifluid toolbox

The point: solve a physics problem without rewriting everything

How it works:

choose your toolbox : Multifluid with built-in level set method.

give it a mesh or a geometry

pick and adjust the physical models

select and tune the solver

have fun
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