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Introduction

Fluid-structure interaction in biomechanics

» Phospholipidic vesicles: red blood cell model
Area change and bending energies, membrane shear (for real RBC)

LiPhy.

» Willmore problem to model RBC shape:

Find I, a curve (in 2D) or surface (3D) of fixed length or area, which encloses a given area (resp.
volume) and minimizes the Willmore energy:

inf / H?do
£(MN)=£o,Ae(MN)=A0 JT

where H is the (mean) curvature.

» The dynamics coupling of RBC with an incompressible flow (plasma)
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Introduction

Level set method

Level Set method (Osher-Sethian)

Let o, and ©0(x) = e(x) dist(x, [®) where
e = —1 (resp. 1) if x int. (resp. ext.).
To find (x, t) — ¢(x, t) such that

r(t) = {x € Q,¢(x,t) =0}.

Spreaded Dirac function

If ¢ is a cut-off function, then under
regularity assumptions on ¢,

10 (£) 1Vl = bpm0y  in M(Q)

Warning: this is not scale-independent !

TN
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Introduction

An example of level-set function




Introduction

Some facts about Level Set framework (Osher, Sethian, Siissman and others)

Geometry (regularity assumptions needed):

Normal n = %, curvature H = div(n), enclosed area (resp. volume) Ac[p] = f{so<0} dx

length (resp. area) £[p] = f{¢:0} do, Willmore energy W[y] = %f{(p:O} H?do

Derivatives of Enclosed area, Length and Willmore energy (the latter in 2D):

dAA(Y) = — /{ IVel o, drlelw) = - /{ | HeAT P

»=0 »=0
1

dWe](¥) = /{ o (A{so:o}"’ + 5"’3) Ydo
o

Kinematics:

Moving with velocity u is expressed as 0rp + u- Vi =0

Divergence-free u

Area (3D) or length (2D) variations = |V¢| (Cottet-Maitre 06, generalization for compressible
case Beale-Strain 07, Bresch et al 08)
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Introduction

Area variation in the levet set context

Let ¢ a function advected by the velocity field u, drp + u- Ve =0. If uis
incompressible then |V| captures the area variation
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Introduction

Variations of area recorded in [V 7

For a divergence free u: dV = dodn with
ov = p(x + én%) — o(x) = 0n|Ve| 4+ o(dn). Thus dv = |Vp|dn and

dV = V| Ls06v

But dV is conserved in the flow and §v too (¢ is advected) thus |V| varies as do.

on
i, T el
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Introduction

Area change in level-set

@ Let (x,t) = X(x, t) the forward characteristics of u, and (x, t) — Y(x, t) the backward
ones, defined respectively by

X =u(X,t), X(x,0)=x, and 8:Y+u-VY =0, Y(x,0)=x.

@ Then X(Y(x,t),t) = x and Y(X(x,t),t) = x. Let J(x,t) = det VY(x, t).
@ There holds 9:J + u-VJ = —Jdivu, J(x,0) = 1. In incompressible case J = 1.

Proposition
Let u:RY x [0, T] — RY of class C* and ¢ a C* solution of Ot + u -V =0, p = @o with
[Vo| > a > 0 in a neighborhood of {x = 0}. Then for all f continuous with compact support,
/ F(€)|Vipol ~H(£)do(8) = / (Y (x, ))J(x, )|Vl " (x, t)do(x) (1)
{o(£)=0} {(x,t)=0}

which means that J=1|V|/|Vo| records the area change of I'y wrt I'g.

[Cottet-Maitre 06 for J = 1, Beale-Strain 07, Bresch et al 07]

NB: in measure theory we would write Y#J|Vo|™18{,_0y = [Vo| ™16 p0—0} -
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Introduction

Defining energies

@ Length penalizing and curvature energies

1
flel= [ E(Vehgode Sll= [ G(Hydo
{p=0} Vel (=0}
where E(r) = 3(r — 1)2, G(r) = %r? are usually chosen.

@ Regularization by a cut-off (:
_ 1 /e _ 1 /¢
eilel = [ EVeDe (£) a Gelol= [ G(H)ITelZc (£) ox

@ Differentiating along 0t + u- Vo = 0 gives for &.:

Felel = div (E(TeDIVel - 22392 (£))

@ Sharp interface: see T. Milcent Thesis.
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Introduction

Complex fluid form

@ The fluid-structure coupling then reads:

p(p)(Bet + u - Vu) = div(u(p) D(u) — E'(|V])| V| YEERL L¢ (£)) + Vrr = 0
divu=0
Otp+u-Vo=0

which is a generalized Korteweg model (Sy et al 06). Regularization does not induce extra
dissipation:

. / pelp(x, T (x, T)x + / / () D(u)?dxdt + / E(VeDz¢(2)dx

=5 | oleobNaae+ | EIVeol Z¢(2)ae

Theorem (Cottet—Maitre—Milcent)

Let Q be a open bounded connected and regular domain of R3. Let p > 3, and wo € Wz’p(Q),
such that |Vpo| > a > 0 in a neighborhood of {0 = 0}, and ug € Wol’p(Q) N W?P(Q), with
divug = 0. Then 3T*(uo, po,€) > 0 and ¢ € L=(0, T*; W2P(Q)), u €

L*°(0, T*; WOI’P(Q)) N LP(0, T*; W2P(Q)), Vrr € LP(0, T*; LP(RQ)) solution of the multiphysics
problem.
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Pros/Cons of this complex fluid formulation

@ Simple to implement starting from a fluid solver (projection method). See the software
section of my homepage http://1jk.imag.fr/membres/Emmanuel.Maitre
for an elementary yet functional Matlab/Octave implementation.
Use the Navier-Stokes solver of Benjamin Seibold (MIT), and WENO advection from Level-Set
package of Baris Sumengen (included in the code so that it is standalone). Two versions: Diffusion
is treated implicitly, with constant time-step and Choleski factorization, or diffusion is explicit with
adaptive time-step.

Pressure and siream function at tme t = 0.4 Pressure profls at fime t= 0.4
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Introduction

Pros/Cons of this complex fluid formulation

@ FreeFEM++ Code with adaptative mesh refinement.

04

0 0s f

@ Fast method on fixed mesh with FFT.

@ Dimension independent formulation.
@ Stability issues (see below). Less accurate than BIM and ALE at a given number of DOF.
Full membrane elasticity not recorded in ¢.

12/22



Introduction

Origin of instabilitties

» High stiffness of interface (area conservation)
» High order on derivatives of ¢ due to ArH.

» Idea: device a fast predictor motion following the Willmore flow and correct it to get the
right area and enclosed volume.

» In a former study (Cottet-Maitre JCP'16) we used a predictor based on a rough
linearization of the elastic force.

» Arnaud’s work is about exploring potential of other schemes to approach geometric
motions.
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Introduction

Principles of diffusion-truncature schemes (Merriman-Bence-Osher JCP'94)
Aim: a fast algorithm to solve mean curvature flows. In level-set, that would need solving:

Vo
Orp = div [Vl
Vel
Idea: given a set and its charateristic function, apply a diffusion kernel for t and threshold at
1/2.
radius 1 radius 7
)2& = Gst * XO
Threshold 1/2
0 =5t X‘St =0
X = 0 X" > 0
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Introduction

Principles of diffusion-truncature schemes (Merriman-Bence-Osher JCP'94)

HP) < 1/2
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Introduction

Principles of diffusion-truncature schemes (Merriman-Bence-Osher JCP'94)

In cylindrical coordinates centered on the os-
culating circle at a point P, the heat equa-
tion can be written as x=0

1
Orx + ?8rX —Onx =0
since 6 derivatives are vanishing. This means

that point P will be moving at speed %
which is the curvature. X

Il
=
o

Algorithm (Mean curvature flow)
Given the characteristic function x" of set
at time step n:
1) Solve 8:x — Ax = 0 with initial
condition x(0) = x" for dt.
2) Set x"t1 =

Len>1y-
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Introduction

Higher order motion (Esedoglu,Ruuth,Tsai '08 / Gzhibovskis, Heintz '08)

Later, expansion were computed:

— Locally the interface near a point P
can be considered as the graph of a
function f.

— Without loss of generality one can £(x)
consider that the origin is at point P
and the normal to interface is the y = >
axis.

The following expansion was obtain (in 2D, see second article for 3D):
1 1 1 1 1 3 5
G, 1 0,y) = - — ——=ydt 2 + —Hdt2 + —Wit2 + O(6t2).
5t x 1y r(3(0,¥) RN +2\/E +4\/E +0(dt2)

where H is the (mean in 3D) curvature, and W is the Willmore term.
Theresholding at % we see that interface y = 0 becomes

1 3
y = H6t+§W6t2+O(6t).
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Introduction

Higher order motion (Esedoglu,Ruuth,Tsai '08 / Gzhibovskis, Heintz '08)

1 1 L 1 1 1 3 5
Gst *1{y<f(x)} = 5 = ﬁy& 2 + ﬁHétz aF mWJtz =F O(sz).

Theresholding at % we see that interface y = 0 becomes

1
y = Hot + 4 Wét? + O(5t3).

Moreover, we see that if we combine two different time steps dt; and dta we can get rid of lower
order terms and obtain higher order geometric motion.

— We tried this for our RBC problem
(thus with conserved enclosed area
and fixed length), and succeeded in
compute with FreeFEM++ the
shape, but at the expense of a local
adaptive remeshing.

— Indeed, with a coarse grid, the
characteristic function is too rough to
capture a descent interface, and the
thresholdong scheme often does not
move at all interface.
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Introduction

Diffusion-redistancing schemes (Esodoglu,Ruuth, Tsai '10 in 2D)

The idea is to apply a diffusion step to a signed distance to an interface and look to which
geometrical quantities we could access to. Then we could move the zero level set according to
this geometric quantities and redistance the function. We have the following proposition :

Proposition
In 2D, we have the local expansion for the signed distance function near the interface :
1
Gsexd" = d" + Hot + = [AsH + H3] 5t + O (5¢3) (2)
In 3D, we have the local expansion for the signed distance function near the interface :

Gse xd" = d" + 2Hot + [Ax H + 4H (H? — K)] §t% + O(st3). (3)

Sketch of calculation. Let d solution of:

Od(t,x) — Ad(t,x) =0in Q )
d(0,x) = d"(x)
Then an expansion gives:
2
Gsp xd" = d(t + 6t,x) = d"(x) + 6td:d"(x) + %and"(x) +0O(5t3)
(5)

2
— d"(x) + 5tAd"(x) + %Azd"(x) +O(5t3)

We shall now express the terms Ad and A?d in geometric quantities involving the mean

curvature and the gaussian curvature.
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Introduction

Diffusion-redistancing schemes: algorithm

A classical result give in RV (see Gilbarg-Trudinger):
(N—-1)Ad=H
and a more involved calculation produces:
3D: A%d = 2ArH + 8H(H? — K) 2D: A%d = ArH + H?

This gives the following algorithm for Willmore flow:

Algorithm (Willmore flow in 2D)

Given the signed distance function d" of interface at time step n:

1) Compute G 5z d" and G 5% d" (two heat equations)
2) Compute A=2G /5 xd" — G s xd" andB:(Gm*d”—d")?’.

3) Set d"t! = redist(A + g) (using redistancing scheme of Dapogny&Frey)

Problem: what about length and enclosed area constraints ?
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Introduction

Diffusion-redistancing schemes: constraints

Let us write the full Lagrangian corresponding to our Willmore optimisation problem:

L((p,)\,p,):%/ H2d0+)\</ do€0>+u</ don)
{e=0} {e=0} {e<0}

Differentiating wrt ¢ gives:

1
dL(p, X\, ) () = / (AW:O}H + 7H3) Ydo — )\/ Hydo — u/ Ydo
{#=0} 2 {=0} {#=0}

We know already how to find the right gradient direction Ay, _oyH + %H"’ thank to our
diffusion-redistancing scheme.

— We have to correct this direction by adding something like AH + p, where normally A and
w depend on the unknown ¢ in a non linear way.

— Instead, we act as follows: we first move the distance function along the gradient to get a
d, and then compute \, i so that d + AH + p fulfills the contraints.

— This can be done analytically. We found
_ Ao — Ae(d) \ o — ¢(d)
ody J{pm0y (H — H?)2do
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Introduction

Numerical example using FEEL++ (A. Sengers)
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