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Interface reconstruction: context

The context of the problem is :
image segmentation
multimaterial hydrodynamic simulations with ALE
. . .

The different families of methods in the literature are:
Interface reconstruction method, such as Young’s method:

conservation of partial volumes, robust, CPU cost
discontinuous interface

Interface tracking (Level set method)
continuous interface, robust
no conservation of partial volumes

Anti-diffusive methods (VoFiRe method)



Interface reconstruction

A new method in the family of IR was recently proposed :

DPIR method.

It combines all the advantages of the previous methods :
1. continuity of the interface
2. preservation of volume fractions
3. robustness on cartesian meshes
4. moderate computational cost



Example : the J test case
Reconstruction of a J with two materials on a cartesian mesh.
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”DPIR” method : minimization step

DPIR method

”DPIR” = Dynamic Programming Interface Reconstruction
[L. Dumas, J.M. Ghidaglia, P. Jaisson, R. Motte, A new volume-preserving and
continuous interface reconstruction method for 2D multi-material flows, Int. J.
Numer. Meth. Fluids (2017).]

It is made of two steps. The first one consists in:
1) the minimization of a cost functional based on volume
fractions least square errors by using dynamic programming:

min
P0,...,PN

{ N−1∑
i=0

|vol(Pi,Pi+1)− voltarget|p + λ∥Pi − Pi+1∥
}

subject to P0 = PN, with Pi = xiIi + (1− xi)Ei, xi ∈ [0, 1].



Dynamic Programming : context

DPIR method

Let S be a state set (#S < ∞ in our case) and G an application
such that:

G : (x, y) ∈ S × S 7→ G(x, y) ∈ R̄.

The horizon − N dynamic programming problem writes as :

infx1,...,xN{G(x0, x1) + G(x1, x2) + ...+ G(xN−1, xN) + KxN}

with KxN ∈ R̄.



Dynamic Programming : Resolution

DPIR method

The dynamic programming equation can be written as follows :

v0x = Kx, ∀x ∈ S,
vn

x = inf
y∈S

(G(x, y) + vn−1
y ), ∀1 ≤ n ≤ N, ∀x ∈ S.

Using Bellman operator :

B : R̄S → R̄S, (B(w))x 7→ inf
y∈S

(G(x, y) + wy),

this equation becomes :

vn = B(vn−1).

In term of flops : O(N|S|) instead of O(|S|N) with a naive paths
enumeration.
[J. F. Bonnans, S. Gaubert, Recherche Opérationnelle : aspects mathématiques et
applications, 2017.]



”DPIR” method : correction step

DPIR method

”DPIR” = Dynamic Programming Interface Reconstruction
[L. Dumas, J.M. Ghidaglia, P. Jaisson, R. Motte, A new volume-preserving and
continuous interface reconstruction method for 2D multi-material flows, Int. J.
Numer. Meth. Fluids (2017).]

The second step consists in:
2) a local correction phase: we add a control point on the
perpendicular bisector of each segment PiPi+1 in order to
obtain the desired volume fraction.



Comparison DPIR - Young’s

DPIR method
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On the left: the reconstruction of the cercle with Young’s.
On the right: the reconstruction of the cercle with DPIR (λ = 0.2).
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Goals of the project

Goals of the project

1. Passing from a polygonal to a curve reconstruction for the
interface

2. Improve the robustness of the method in the case of
unstructured meshes

3. Extend the method to three materials



Quadratic rationnal Bézier Curve

Goals of the project

It is a parametric curve, to which
we associate:

a control point P1

a weight ω ∈ [0,+∞]

We can compute its area in the following way:

Area = f (ω) · A(P0,P1,P2)



Quadratic rationnal Bézier Curve

Goals of the project

Area = f (ω) · A(P0,P1,P2)

where:
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Correction comparison

Goals of the project
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Reconstruction of a circle

Structured meshes
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On the left: the reconstructed circle with Bezier curves and control
points (computed with ω=1, λ = 0.01).
On the right: a zoom that shows the control point (in black) and
the Bezier curve (in grey).



Reconstruction of a square

Structured meshes
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On the left: the square on a cartesian mesh.
On the right: the square on a perturbed cartesian mesh.
For both cases, we reconstructed with ω = 1 and λ = 0.01.



Reconstruction of a J

Structured meshes
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On the left: the J on a cartesian mesh.
On the right: the J on a perturbed cartesian mesh.
For both cases, we reconstructed with and ω = 1 and λ = 0.01.



Unstructured meshes

Unstructured meshes



Reconstruction of a circle : problem

Unstructured meshes
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On the left: the reconstructed circle.
On the right: a zoom on the ”singular” points. We remark a
problem when the curve passes really close to the nodes of the
mesh.



Improvements of robustness

Unstructured meshes

Discretization : switch to Chebyshev nodes : for k = 1, . . . n,
xk = cos

(
2k−1
2n π

)
Search direction of the control points : towards the center
of the cell
Correction of the functional : We added a further
penalization λ̃ to the cost functional:

λ̃ =
|voltarget − vol(Pi,Pi+1)|

vol(Pi,Pi+1)
,

that now becomes:

min
P0,...,PN

{ N−1∑
i=0

|vol(Pi,Pi+1)− voltarget|p + λ∥Pi − Pi+1∥+ λ̃
}



Reconstruction of a circle : correction

Unstructured meshes
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On the left: the reconstructed circle.
On the right: a zoom on the corrected ”singular” points.
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DPIR: extension to three materials

Extension to three materials

We apply a new strategy, that is made of three steps:

1) Dynamic Programming: We reconstruct separately the
interfaces of the three materials by minimizing the same functional
of the two material’s case:

min
Pk
0,...,Pk

N

{ N−1∑
i=0

|vol(Pk
i ,Pk

i+1)− (voltarget)
k|p + λ∥Pk

i − Pk
i+1∥

}
with k = 1, 2, 3 is the index of the material.

At this stage, we have three sets of different ”interface points”,
one per material.



Result after Dynamic Programming

Extension to three materials
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On the left: the cercle after the Dynamic programming.
On the right: a zoom on the three interfaces.



DPIR: extension to three materials

Extension to three materials

We apply a new strategy, that is made of three steps:

2) Correction of the optimal coordinates: We obtain one
general set of optimal coordinates on the edges crossed by the
interface by averaging the ones we had at the previous step.



Result after the first correction

Extension to three materials
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On the left: the cercle after the correction of the optimal
coordinates.
On the right: a zoom on new interface.



DPIR: extension to three materials

Extension to three materials

We apply a new strategy, that is made of three steps:

3) Correction of volumes: At this point, we treat separetly the
mixed cells, by distinguish the ones with two or three materials.

Two materials cells: we apply the ”standard” correction of
DPIR (with Bezier curves) since we have just two materials.
we evaluate the signs of the corrections, that determine an
order of treatment that ensures robustness.



DPIR: extension to three materials

Extension to three materials

We apply a new strategy, that is made of three steps:

3) Correction of volumes: At this point, we treat separetly the
mixed cells, by distinguish the ones with two or three materials.

Three materials cells: Defining

v :=

vol(P1
i ,P1

i+1)− (voltarget)1

vol(P2
i ,P2

i+1)− (voltarget)2

vol(P3
i ,P3

i+1)− (voltarget)3


we evaluate the signs of the corrections, that determine an
order of treatment that ensures robustness.



Result after the second correction

Extension to three materials
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On the left: the cercle after the correction of the volumes.
On the right: a zoom on the final interface (λ = 0.01, ω = 1).



Filament issue

Filament issue



Detection of the issue

Filament issue
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Filament issue

Filament issue

DPIR can’t handle the case in which the interface crosses twice
an edge of a cell. This can happen :

when we deal with compressible fluids,
if the mesh is not sufficiently refined,
near the triple points in the three materials case.

Strategies:
▶ locally refine the mesh and correctly repartition the volume

fractions
▶ increase the number of dof in the cost functional (that

induces a different topology at the DynPro level)
▶ change the discretizations on the segments
▶ merge the filament cells and treat them together in a single

correction step



Conclusions and Perspectives

Conclusions and Perspectives



Conclusion

Conclusions and Perspectives

What we did:
We modified DPIR in order to reconstruct curve interfaces,
We improved the robustness of DPIR in the case of
unstructured meshes:

▶ by adding the penalization λ̃
▶ by changing the discretization of the edges at the

DynPro level by using Chebyshev nodes
▶ by modifiyng the search direction of the control point

We extended DPIR to three materials for structured meshes.



Perspectives

Conclusions and Perspectives

Short term:
treat the filament issue,
locally adapt to each cell the choice of the Bézier weight ω,
other tests for the three materials case.

Long term:
rewrite the DynPro taking
into account the new
improvements,
extend to n materials,
coupling to ALE.
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Conclusions and Perspectives

1. [D.L. Youngs, Time-dependent multi-material flow with large fluid distorsion,
Numerical Methods for Fluid Dynamics, 24 (1982), 273-285]

2. [P.O. Persson, The Level-Set method, Lecture Notes, MIT 16, 920J / 2,097J /
6,339J, Numerical Methods for Partial Differential Equations, 2005]

3. [L. Dumas, J.M. Ghidaglia, P. Jaisson, R. Motte, A new volume-preserving and
continuous interface reconstruction method for 2D multi-material flows, Int. J.
Numer. Meth. Fluids (2017)]

4. [ X. Roynard, P. Hoch, S. Borel-Sandou, Extension du schéma VoFiRe aux
maillages à bords coniques, rapport stage 2013]

Thank you for your attention!



Penalization comparison

Conclusions and Perspectives
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Penalization comparison

Conclusions and Perspectives
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