Influence of the mode of reproduction on species invasion

Joachim Crevat¹, Léonard Dekens², Benoit Fabrèges³, Frédéric Kuczma⁴ & Florian Lavigne⁵

Under the supervision of Vincent Calvez⁶ & Gaël Raoul⁷

CEMRACS Project

August 23rd 2018

SMAI'

¹ Institut de Mathématiques de Toulouse
²École Normale Supérieure de Lyon
³Univ. Lyon 1
⁴ Laboratoire de Mathématiques et de Physique Théorique de Tours
⁵ Aix-Marseille University, INRA of Avignon
⁶ CNRS and Univ. Lyon 1
⁷ École Polytechnique
⁶ CNRS and Univ. Lyon 1

Asexual reproduction: copy all the traits from the sole parent

Asexual reproduction: copy all the traits from the sole parent
 Clonal, up to genetic mutations [Berestycki, Mouhot, Raoul '15]

- Asexual reproduction: copy all the traits from the sole parent
 Clonal, up to genetic mutations [Berestycki, Mouhot, Raoul '15]
- Sexual reproduction: inherit from both parents

- Asexual reproduction: copy all the traits from the sole parent
 - \rightsquigarrow Clonal, up to genetic mutations [Berestycki, Mouhot, Raoul '15]
- Sexual reproduction: inherit from both parents
 - ~ Allows recombinations

- Asexual reproduction: copy all the traits from the sole parent
 ~~ Clonal, up to genetic mutations [Berestycki, Mouhot, Raoul '15]
- Sexual reproduction: inherit from both parents
 - \rightsquigarrow Allows recombinations

Question

How does a given mode of reproduction structure a biological invasion?

Table of contents

Preliminaries

Sexual case: Formal analysis

Numerical results

Conclusion and prospects

Table of contents

Preliminaries

Sexual case: Formal analysis

Numerical results

Conclusion and prospects

< □ > < @ > < 분 > < 분 > 분 · ♡ < 0 4/28

Biological background

Biological background

Invasion of cane toad (Rhinella Marina) in Australia

Source: Wikipedia

- Sexual reproduction
- Influence of the phenotype (long legs) on the speed of propagation
- Acceleration of the front of propagation

イロト イロト イヨト イヨト 三日

The model

The model

$$\begin{split} f & \partial_t f - \theta \, \Delta_x f = r \left(\mathcal{B}[f] - \rho \, f \right) \quad t > 0 \,, \, x \in \mathbb{R} \,, \, \theta \in (1, +\infty), \\ \rho(t, x) &= \int_1^\infty f(t, x, \theta') \, \mathrm{d}\theta' \qquad t \ge 0 \,, \, x \in \mathbb{R}, \\ f(0, x, \theta) &= f_0(x, \theta) \qquad \qquad x \in \mathbb{R} \,, \, \theta \in [1, +\infty), \\ \partial_\theta f(t, x, 1) &= 0 \qquad \qquad t \ge 0 \,, \, x \in \mathbb{R}. \end{split}$$

The model

$$\begin{cases} \partial_t f - \theta \Delta_x f = r \left(\mathcal{B}[f] - \rho f \right) & t > 0, x \in \mathbb{R}, \ \theta \in (1, +\infty), \\ \rho(t, x) = \int_1^\infty f(t, x, \theta') \, \mathrm{d}\theta' & t \ge 0, x \in \mathbb{R}, \\ f(0, x, \theta) = f_0(x, \theta) & x \in \mathbb{R}, \ \theta \in [1, +\infty), \\ \partial_\theta f(t, x, 1) = 0 & t \ge 0, x \in \mathbb{R}. \end{cases}$$

$$(1)$$

The model

$$\begin{cases} \partial_t f - \theta \Delta_x f = r \left(\mathcal{B}[f] - \rho f \right) & t > 0, x \in \mathbb{R}, \ \theta \in (1, +\infty), \\ \rho(t, x) = \int_1^\infty f(t, x, \theta') \, \mathrm{d}\theta' & t \ge 0, x \in \mathbb{R}, \\ f(0, x, \theta) = f_0(x, \theta) & x \in \mathbb{R}, \ \theta \in [1, +\infty), \\ \partial_\theta f(t, x, 1) = 0 & t \ge 0, x \in \mathbb{R}. \end{cases}$$

$$(1)$$

The model

$$\begin{array}{l} \left(\begin{array}{c} \partial_t f - \theta \, \Delta_x f \, = \, r \left(\mathcal{B}[f] - \rho \, f \right) & t > 0 \,, \, x \in \mathbb{R} \,, \, \theta \in (1, +\infty), \\ \\ \rho(t, x) \, = \, \int_1^\infty f(t, x, \theta') \, \mathrm{d}\theta' & t \ge 0 \,, \, x \in \mathbb{R}, \\ f(0, x, \theta) \, = \, f_0(x, \theta) & x \in \mathbb{R} \,, \, \theta \in [1, +\infty), \\ \\ \partial_\theta f(t, x, 1) \, = \, 0 & t \ge 0 \,, \, x \in \mathbb{R}. \end{array}$$

Mode of reproduction: $\mathcal{B}[f]$

Mode of reproduction: $\mathcal{B}[f]$

Asexual reproduction and mutation

$$\mathcal{B}[f](t,x,\theta) := f(t,x,\theta) + \Delta_{\theta}f(t,x,\theta),$$

Mode of reproduction: $\mathcal{B}[f]$

Asexual reproduction and mutation

$$\mathcal{B}[f](t, x, \theta) := f(t, x, \theta) + \Delta_{\theta} f(t, x, \theta),$$

Mode of reproduction: $\mathcal{B}[f]$

Asexual reproduction and mutation

$$\mathcal{B}[f](t,x,\theta) := f(t,x,\theta) + \Delta_{\theta}f(t,x,\theta),$$

Sexual reproduction and recombination

$$\mathcal{B}[f](t,x,\theta) := \frac{1}{\sqrt{\pi}} \iint_{(1,\infty)^2} \exp\left[-\left(\theta - \frac{\theta_1 + \theta_2}{2}\right)^2\right] f(t,x,\theta_1) \frac{f(t,x,\theta_2)}{\rho(t,x)} \,\mathrm{d}\theta_1 \,\mathrm{d}\theta_2.$$

Sexual case: Reproduction term

$$\mathcal{B}[f](t,x,\theta) := \iint_{(1,\infty)^2} \frac{1}{\sqrt{\pi}} \exp\left[-\left(\theta - \frac{\theta_1 + \theta_2}{2}\right)^2\right] f(t,x,\theta_1) \frac{f(t,x,\theta_2)}{\rho(t,x)} \,\mathrm{d}\theta_1 \,\mathrm{d}\theta_2.$$

Sexual case: Reproduction term

$$\mathcal{B}[f](t,x,\theta) := \iint_{(1,\infty)^2} \frac{1}{\sqrt{\pi}} \exp\left[-\left(\theta - \frac{\theta_1 + \theta_2}{2}\right)^2\right] f(t,x,\theta_1) \frac{f(t,x,\theta_2)}{\rho(t,x)} \,\mathrm{d}\theta_1 \,\mathrm{d}\theta_2.$$

Chances of an individual of phenotype θ_1 encountering another individual of phenotype θ_2 at time t and location x.

Sexual case: Reproduction term

$$\mathcal{B}[f](t, x, \theta) := \iint_{(1,\infty)^2} \frac{1}{\sqrt{\pi}} \exp\left[-\left(\theta - \frac{\theta_1 + \theta_2}{2}\right)^2\right] f(t, x, \theta_1) \frac{f(t, x, \theta_2)}{\rho(t, x)} d\theta_1 d\theta_2.$$

Random choice of the child phenotype θ with a Gaussian law centered in the mean value of the phenotypes of both parents.

Theorem [Berestycki, Mouhot, Raoul '15]

Theorem [Berestycki, Mouhot, Raoul '15]

Let f be the solution of the equation

$$\left\{ egin{array}{ll} \partial_t f \ = \ rac{ heta}{2} \Delta_{ ext{x}} f \ + \ rac{1}{2} \Delta_{ heta} f \ + \ f \ (1-
ho) \,, \quad t \ge 0 \,, \, x \in \mathbb{R} \,, \, heta \ge 1 \ \partial_ heta f(t,x,1) \ = \ 0, \qquad \qquad t \ge 0 \,, \, x \in \mathbb{R}, \end{array}
ight.$$

with a regular enough non-negative initial condition f_0 compactly supported in $(1,\infty)$, and uniformly exponentially decreasing in space.

Theorem [Berestycki, Mouhot, Raoul '15]

Let f be the solution of the equation

$$\left\{ egin{array}{ll} \partial_t f \ = \ rac{ heta}{2} \Delta_{ extsf{x}} f \ + \ rac{1}{2} \Delta_{ heta} f \ + \ f \ (1-
ho) \,, \quad t \ge 0 \,, \, x \in \mathbb{R} \,, \, heta \ge 1 \,, \ \partial_{ heta} f(t,x,1) \ = \ 0, \qquad t \ge 0 \,, \, x \in \mathbb{R}, \end{array}
ight.$$

with a regular enough non-negative initial condition f_0 compactly supported in $(1, \infty)$, and uniformly exponentially decreasing in space. For all $t \ge 0$ and $x \in \mathbb{R}$, we define

$$S(t,x) := \sup_{\theta} f(t,x,\theta)$$
, and $\gamma_0 := rac{2}{3} 2^{1/4}$.

Then we have for all $\gamma > \gamma_0$,

$$\lim_{t\to\infty}\sup_{x>\gamma t^{3/2}}S(t,x)=0,$$

and for $\gamma < \gamma_0$,

$$\lim_{t\to\infty}\sup_{x<\gamma t^{3/2}}S(t,x)>0.$$

Theorem [Berestycki, Mouhot, Raoul '15]

Let f be the solution of the equation

with a regular enough non-negative initial condition f_0 compactly supported in $(1, \infty)$, and uniformly exponentially decreasing in space. For all $t \ge 0$ and $x \in \mathbb{R}$, we define

$$S(t,x) := \sup_{\theta} f(t,x,\theta), \text{ and } \gamma_0 := \frac{2}{3} 2^{1/4}.$$

Then we have for all $\gamma > \gamma_0$,

$$\lim_{t\to\infty}\sup_{x>\gamma t^{3/2}}S(t,x)=0,$$

and for $\gamma < \gamma_0$,

$$\lim_{t\to\infty}\sup_{x<\gamma t^{3/2}}S(t,x)>0.$$

Purpose

Formally and numerically determine the asymptotic speed of propagation of the population in the sexual case.

10/28

Table of contents

Preliminaries

Sexual case: Formal analysis

Numerical results

Conclusion and prospects

Hopf-Cole transformation

For $t \gg 1$, we consider the function u such that:

$$f(t, x, \theta) = \exp\left[-t u\left(\log(t), \frac{x}{t^{\alpha}}, \frac{\theta}{t^{\beta}}\right)\right].$$

Hopf-Cole transformation

For $t \gg 1$, we consider the function u such that:

$$f(t, x, \theta) = \exp\left[-t u\left(\log(t), \frac{x}{t^{\alpha}}, \frac{\theta}{t^{\beta}}\right)\right].$$

Let $s = \log(t)$, $y = \frac{x}{t^{lpha}}$, $\eta = \frac{\theta}{t^{eta}}$, so $u(s, y, \eta)$ satisfies the equation

$$\begin{aligned} -u - \partial_s u + \alpha y \partial_y u + \beta \eta \partial_\eta u \\ &= -\eta e^{(1 - 2\alpha + \beta)s} \Delta_y u + \eta e^{(2 - 2\alpha + \beta)s} (\partial_y u)^2 + r \left(\frac{\mathcal{B}[f]}{f} - \rho \right), \end{aligned}$$

12/28

Hopf-Cole transformation

For $t \gg 1$, we consider the function u such that:

$$f(t, x, \theta) = \exp\left[-t u\left(\log(t), \frac{x}{t^{\alpha}}, \frac{\theta}{t^{\beta}}\right)\right].$$

Let $s = \log(t)$, $y = \frac{x}{t^{\alpha}}$, $\eta = \frac{\theta}{t^{\beta}}$, so $u(s, y, \eta)$ satisfies the equation

$$\begin{aligned} -u - \partial_s u + \alpha y \partial_y u + \beta \eta \partial_\eta u \\ &= -\eta e^{(1 - 2\alpha + \beta)s} \Delta_y u + \eta e^{(2 - 2\alpha + \beta)s} (\partial_y u)^2 + r \left(\frac{\mathcal{B}[f]}{f} - \rho\right), \end{aligned}$$

with $\mathcal{B}[f]$ defined by

$$\frac{e^{2\beta s}}{\rho\sqrt{\pi}}\iint_{(e^{-\beta s},\infty)^2}\exp\left[-e^{2\beta s}\left(\eta-\frac{\eta_1+\eta_2}{2}\right)^2-e^{s}u(s,\,y,\,\eta_1)-e^{s}u(s,\,y,\,\eta_2)\right]\,d\eta_1\,d\eta_2.$$

Hopf-Cole transformation

For $t \gg 1$, we consider the function u such that:

$$f(t, x, \theta) = \exp\left[-t u\left(\log(t), \frac{x}{t^{\alpha}}, \frac{\theta}{t^{\beta}}\right)\right].$$

Let $s = \log(t)$, $y = \frac{x}{t^{lpha}}$, $\eta = \frac{\theta}{t^{eta}}$, so $u(s, y, \eta)$ satisfies the equation

$$\begin{aligned} -u - \partial_s u + \alpha y \partial_y u + \beta \eta \partial_\eta u \\ &= -\eta e^{(1 - 2\alpha + \beta)s} \Delta_y u + \eta e^{(2 - 2\alpha + \beta)s} (\partial_y u)^2 + r \left(\frac{\mathcal{B}[f]}{f} - \rho\right), \end{aligned}$$

with $\mathcal{B}[f]$ defined by

$$\frac{e^{2\beta s}}{\rho\sqrt{\pi}} \iint_{(e^{-\beta s},\infty)^2} \exp\left[-e^{2\beta s}\left(\eta-\frac{\eta_1+\eta_2}{2}\right)^2 - e^{s}u(s,\,y,\,\eta_1) - e^{s}u(s,\,y,\,\eta_2)\right] \,d\eta_1 \,d\eta_2.$$

We choose

$$(\alpha,\beta) = \left(\begin{array}{c} , \frac{1}{2} \right).$$

Hopf-Cole transformation

For $t \gg 1$, we consider the function u such that:

$$f(t, x, \theta) = \exp\left[-t u\left(\log(t), \frac{x}{t^{\alpha}}, \frac{\theta}{t^{\beta}}\right)\right].$$

Let $s = \log(t)$, $y = \frac{x}{t^{lpha}}$, $\eta = \frac{\theta}{t^{eta}}$, so $u(s, y, \eta)$ satisfies the equation

$$\begin{aligned} -u - \partial_s u + \alpha y \partial_y u + \beta \eta \partial_\eta u \\ &= -\eta e^{(1 - 2\alpha + \beta)s} \Delta_y u + \eta e^{(2 - 2\alpha + \beta)s} (\partial_y u)^2 + r \left(\frac{\mathcal{B}[f]}{f} - \rho\right), \end{aligned}$$

with $\mathcal{B}[f]$ defined by

$$\frac{e^{2\beta s}}{\rho\sqrt{\pi}} \iint_{(e^{-\beta s},\infty)^2} \exp\left[-e^{2\beta s}\left(\eta-\frac{\eta_1+\eta_2}{2}\right)^2 - e^{s}u(s,\,y,\,\eta_1) - e^{s}u(s,\,y,\,\eta_2)\right] \,d\eta_1 \,d\eta_2.$$

We choose

$$(\alpha, \beta) = \left(\frac{5}{4}, \frac{1}{2}\right).$$

Formal Taylor expansion of *u*

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \underset{t \to \infty}{o} \left(\frac{1}{t}\right),$$

Formal Taylor expansion of *u*

$$\begin{split} u(\log(t),y,\eta) \, = \, u_0(y,\eta) + \frac{1}{t} u_1(y,\eta) + \mathop{o}_{t\to\infty} \left(\frac{1}{t}\right), \end{split}$$
 where $u_0(y,\eta) \, := \, b(y) + \frac{(\eta - \mathsf{a}(y))^2}{2}$ and

Formal Taylor expansion of *u*

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \mathop{o}\limits_{t
ightarrow \infty} \left(\frac{1}{t}
ight),$$

where $u_0(y,\eta):=b(y)+rac{(\eta-a(y))^2}{2}$ and

• a(y) is the main phenotype at position y

Formal Taylor expansion of *u*

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \mathop{o}_{t \to \infty} \left(\frac{1}{t}\right),$$

where $u_0(y,\eta):=b(y)+rac{(\eta-a(y))^2}{2}$ and

- a(y) is the main phenotype at position y
- b(y) is destined to be a front marker

Formal Taylor expansion of u

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \mathop{o}_{t \to \infty} \left(\frac{1}{t}\right),$$

where $u_0(y,\eta) := b(y) + \frac{(\eta - a(y))^2}{2}$ and

- a(y) is the main phenotype at position y
- b(y) is destined to be a front marker

Formally, for $t \gg 1$, we get the stationary equation

$$\begin{aligned} &-u+\alpha y\partial_y u+\beta\eta\partial_\eta u\\ &=\eta(\partial_y u)^2+r\left(\exp\left[u_1(y,\,\eta)+u_1(y,a(y))-2u_1\left(y,\,\frac{\eta+a(y)}{2}\right)\right]-\rho_\infty(y)\right),\end{aligned}$$

where $\rho_{\infty}(y) = H(y_c - y)$ for a constant y_c yet to be determined.

Formal Taylor expansion of u

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \mathop{o}_{t \to \infty} \left(\frac{1}{t}\right),$$

where $u_0(y,\eta) := b(y) + \frac{(\eta - a(y))^2}{2}$ and

- a(y) is the main phenotype at position y
- b(y) is destined to be a front marker

Formally, for $t \gg 1$, we get the stationary equation

$$\begin{aligned} &-u + \alpha y \partial_y u + \beta \eta \partial_\eta u \\ &= \eta (\partial_y u)^2 + r \left(\exp \left[u_1(y, \eta) + u_1(y, \mathbf{a}(y)) - 2u_1 \left(y, \frac{\eta + \mathbf{a}(y)}{2} \right) \right] - \rho_\infty(y) \right), \end{aligned}$$

where $\rho_{\infty}(y) = H(y_c - y)$ for a constant y_c yet to be determined. Asymptotically

$$\left(egin{array}{c}
ho_\infty(y) = 1 & ext{if } b(y) = 0, \
ho_\infty(y) = 0 & ext{if } b(y) > 0. \end{array}
ight.$$

Formal Taylor expansion of *u*

$$u(\log(t), y, \eta) = u_0(y, \eta) + \frac{1}{t}u_1(y, \eta) + \mathop{o}_{t \to \infty} \left(\frac{1}{t}\right),$$

where $u_0(y,\eta) := b(y) + \frac{(\eta - a(y))^2}{2}$ and

- a(y) is the main phenotype at position y
- b(y) is destined to be a front marker

Formally, for $t \gg 1$, we get the stationary equation

$$\begin{aligned} &-u+\alpha y\partial_y u+\beta\eta\partial_\eta u\\ &=\eta(\partial_y u)^2+r\left(\exp\left[u_1(y,\,\eta)+u_1(y,a(y))-2u_1\left(y,\,\frac{\eta+a(y)}{2}\right)\right]-\rho_\infty(y)\right),\end{aligned}$$

where $\rho_{\infty}(y) = H(y_c - y)$ for a constant y_c yet to be determined. Asymptotically

$$\begin{cases} \rho_{\infty}(y) = 1 & \text{if } b(y) = 0, \\ \rho_{\infty}(y) = 0 & \text{if } b(y) > 0. \end{cases}$$

Putting the Taylor expansion of u into the stationary equation, we get

$$\begin{cases} -b(y) + \alpha y b'(y) &= r(1 - \rho_{\infty}(y)) + a(y)(b'(y))^2, \\ -\alpha y a'(y) + \beta a(y) &= (b'(y))^2 - 2a(y)b'(y)a'(y). \end{cases}$$

Putting the Taylor expansion of u into the stationary equation, we get

$$\begin{cases} -b(y) + \alpha y b'(y) &= r(1 - \rho_{\infty}(y)) + a(y)(b'(y))^2, \\ -\alpha y a'(y) + \beta a(y) &= (b'(y))^2 - 2a(y)b'(y)a'(y). \end{cases}$$

Numerical results lead us to consider solutions of type $a(y) = C y^n$ and $b(y) = K y^m - r$.

Putting the Taylor expansion of u into the stationary equation, we get

$$\begin{cases} -b(y) + \alpha y b'(y) &= r(1 - \rho_{\infty}(y)) + a(y)(b'(y))^2, \\ -\alpha y a'(y) + \beta a(y) &= (b'(y))^2 - 2a(y)b'(y)a'(y). \end{cases}$$

Numerical results lead us to consider solutions of type $a(y) = C y^n$ and $b(y) = K y^m - r$.

Formal results

$$b(y) = \begin{cases} 0 & \text{if } y \le y_c, \\ \\ \left(\frac{9}{128}\right)^{1/3} y^{4/3} - r & \text{else}, \end{cases}$$

and

$$a(y) = \begin{cases} \left(\frac{3^{r}}{2}\right)^{1/5} y^{2/5} & \text{if } y \leq y_{c}, \\ \\ \left(\frac{3}{4}\right)^{1/3} y^{2/3} & \text{else}, \end{cases}$$

where
$$y_c := \left(\frac{128 r^3}{9}\right)^{1/4} \approx 1.94 r^{3/4}$$
.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Table of contents

Preliminaries

Sexual case: Formal analysis

Numerical results

Conclusion and prospects

↓ □ → ↓ □ → ↓ E → ↓ E → ○ Q ○
15/28

Numerical scheme for f: Asexual case

$$\begin{cases} \partial_t f - \theta \Delta_x f = r \Delta_\theta f + r f (1 - \rho), \\ f_0(x, \theta) = \sqrt{\frac{2}{\pi}} e^{-(x^2 + (\theta - 1)^2)/2}. \end{cases}$$

Parameters: $\Delta x = 3$, $\Delta \theta = 0.23$, $\Delta t = 0.05$, r = 1

Evolution of $\rho(t, x)$

Numerical scheme for f: Asexual case

• Linear regression of the front position: Speed of propagation of order $t^{1.48}$

Numerical scheme for f: Asexual case

- Linear regression of the front position: Speed of propagation of order $t^{1.48}$
- Linear regression of the mean trait: Speed of propagation of order $t^{0.96}$

Numerical scheme for f: sexual case

$$\begin{cases} \partial_t f - \theta \Delta_x f = r \left(\mathcal{B}[f] - \rho f \right), \\ f_0(x, \theta) = \sqrt{\frac{2}{\pi}} e^{-(x^2 + (\theta - 1)^2)/2}. \end{cases}$$

Parameters: $\Delta x = 4$, $\Delta \theta = 0.7$, $\Delta t = 0.05$, r = 1

Evolution of $\rho(t, x)$

Numerical scheme for f: Sexual case

• Linear regression of the front position: Speed of propagation of order $t^{1.27}$

Numerical scheme for *f*: Sexual case

- Linear regression of the front position: Speed of propagation of order t^{1.27}
- Linear regression of the mean trait: Speed of propagation of order $t^{0.53}$

Numerical scheme for f: Sexual case

Contour lines at time t=1600, with r=1 and $f_0(x,\theta)=\sqrt{\frac{2}{\pi}}e^{-(x^2+(\theta-1)^2)/2}$

Numerical scheme for *u*: Asexual case

Hopf-Cole transformation: We define u such that

$$f(e^s, y, \eta) := \exp\left[-e^{-s} u(s, y, \eta)\right].$$

Equation for the asexual reproduction case

$$\partial_{s}u + \eta e^{(2-2\alpha+\beta)s}(\partial_{y}u)^{2} - \alpha y \partial_{y}u + re^{(2-2\beta)s}(\partial_{\eta}u)^{2} - \beta \eta \partial_{\eta}u$$

= $-u + \eta e^{(1-2\alpha+\beta)s}\Delta_{y}u + r\left[e^{(1-2\beta)s}\Delta_{\eta}u - 1 + \rho\right].$

Two hamiltonians

$$\blacktriangleright \mathcal{H}_1(s,\eta,y,u) := \eta e^{(2-2\alpha+\beta)s} (\partial_y u)^2 - \alpha y \partial_y u$$

• $\mathcal{H}_2(s,\eta,y,u) := re^{(2-2\beta)s}(\partial_\eta u)^2 - \beta \eta \partial_\eta u$

Numerical scheme for Hamilton-Jacobi equations: Crandall & Lions (1984)

Purpose

Numerically show that if $(\alpha, \beta) \neq (\frac{3}{2}, 1)$, then *u* converges towards a constant function or the indicator function of $\{0\}$

Numerical scheme for *u*: Asexual case

$$\frac{\mathcal{H}_{\mathcal{H}_{i}}}{\mathcal{H}_{i,j}} = \max \left\{ \mathcal{H}_{i,j}^{n}, \mathcal{H}_{i,j}^{n} - u_{i,j}^{n} \right\}$$
Numerical scheme for $u_{i,j}^{n} \approx u(s^{n}, y_{i}, \eta_{j})$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta s} + \max \left\{ \mathcal{H}_{1}^{-} \left(\frac{u_{i,j}^{n} - u_{i,j}^{n}}{\Delta y} \right), \mathcal{H}_{1}^{+} \left(\frac{u_{i,j}^{n} - u_{i,-1,j}^{n}}{\Delta y} \right) \right\}$$

$$+ \max \left\{ \mathcal{H}_{2}^{-} \left(\frac{u_{i,j+1}^{n} - u_{i,j}^{n}}{\Delta \eta} \right), \mathcal{H}_{2}^{+} \left(\frac{u_{i,j}^{n} - u_{i,j-1}^{n}}{\Delta \eta} \right) \right\}$$

$$= -u_{i,j}^{n} + \eta_{j} e^{(1-2\alpha+\beta)s^{n}} (\mathcal{A}_{y}u^{n})_{i,j} + r \left[e^{(1-2\beta)s^{n}} (\mathcal{A}_{\eta}u^{n})_{i,j} - 1 + \rho_{i}^{n} \right],$$

where A_y and A_η are the discrete Laplace matrices with Neumann boundary conditions respectively in y and η .

Numerical scheme for *u*: Asexual case

Parameters:
$$\Delta y = 10^{-4}$$
, $\Delta \eta = 10^{-4}$, $\Delta s = 10^{-5}$, $u_0(y,\eta) = rac{1}{2} \left(y^2 + \eta^2\right)$

Evolution of ρ with rescaled variables and $\beta = 1$

• Confirmation of the propagation speed of order $1.3 t^{3/2}$

(□) (圖) (필) (필) (필) (④) (○) 23/28

Table of contents

Preliminaries

Sexual case: Formal analysis

Numerical results

Conclusion and prospects

Conclusion

Numerical scheme for the PDEs satisfied by the density f and the Hopf-Cole transformation for the asexual case

 \rightsquigarrow Validation of the acceleration in power 3/2 and of the acceleration constant

Formal study of the propagation diffusion for the sexual case

$$x(t) = 1.94 r^{3/4} t^{5/4}$$

Numerical scheme for the PDE satisfied by the density f for the sexual case

 \rightsquigarrow Validation of the acceleration in power 5/4

Conclusion

Numerical scheme for the PDEs satisfied by the density f and the Hopf-Cole transformation for the asexual case

 \rightsquigarrow Validation of the acceleration in power 3/2 and of the acceleration constant

Formal study of the propagation diffusion for the sexual case

$$x(t) = 1.94 r^{3/4} t^{5/4}$$

Numerical scheme for the PDE satisfied by the density f for the sexual case

 \rightsquigarrow Validation of the acceleration in power 5/4

Prospects

- Scheme for the Hopf-Cole transformation u for the sexual case
- Validation of the acceleration constant

イロト (過) (ヨ) (ヨ) (ヨ) ()

Bibliography

```
    R. Shine, G.P. Brown, B.L.Phillips.
An evolutionary process that assembles phenotypes throughspace rather than through time.
PNAS,2011.
    N. Berestycki, C. Mouhot, G.Raoul.
Existence of self-accelerating fronts for a non-local reaction-diffusion equations.
preprint arXiv,2015.
    E. Bouin, C. Henderson, L.Ryzhik.
Super-linear spreading in local and non-local cane toads equations.
Journal de Mathématiques Pures et Appliquées,2017.
```


E. Bouin et al.

in preparation,2018.

E. Bouin, C. Henderson, L.Ryzhik.

Two Approximations of Solutions of Hamilton-Jacobi Equations. *Mathematics of computation*, 43(167):1–19, 1984.

Thank you for your attention!