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What is a cancer ?
Cancer is a very old disease, already reported by Hippocrate
(460-377 b. JC).He compared cancer to a crab, karkinoma in
greek.
Definition. Cancer is a group of diseases involving abnormal
cell growth with the potential to invade or spread to other
parts of the body.

Characteristics.
Limitless replicative potential
Self-sufficiency in growth signals
Insensitivity in anti-growth signals
Sustained angiogenesis
Tissue invasion and metastases
Dedifferentiation
Genome instability and mutation
Deregulation of metabolism
Deregulation of immune system
Promoting inflammation

Hanahan, Weinberger 2011
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What is a cancer ?
Main steps of the disease

1 Avascular growth
Cancer cells start dividing
Nutrients are transported by blood vessel and
diffuse in the tissues

 3-4mm of diameter.
2 Vascular growth or angiogenesis

Hypoxic cells secrete Endothetial Growth Factors
inducing the creation of new vessels.
The new vascularization provide the nutrients
necessary to the tumor growth.

3 Metastatic invasion
Tumor cells can leave the primary tumor through
the blood vessels or the lymphatic network and
colonize a distant place.

 Development of secondary tumors or metastases.
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Cancer Treatments
1 Surgery
2 Radiation therapy
3 Anti-cancer drug

Chemotherapy
Targeted therapy (ex anti angiogenic drugs)
Immune therapy
Hormone therapy

4 Stem cells transplant
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Some medical issues
Is it possible to improve the efficiency of existing treatments ?

There might exist a metastatic boost after surgery. Can it be
anticipated ?
Chemotherapies induce high toxicities requiring delay between
two administrations. Is it possible to reduce this delay ?
Chemotherapies induce resistance. Is there an administration
protocole that could lead to less resistance or postpone it ?
Chemotherapy are more and more used in combination with
anti-angiogenic or immune therapies. Is it possible to optimize
the efficiency of such treatment ?
Treatments efficiency and toxicity is patient dependant. Is it
possible to individualize the drug delivery ?
In radiotherapy, can it be possible to improve the radiated zone ?
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Some medical issues

How to evaluate the metastatic state of the patients ?
Metastases are the major cause of death in cancer. But
metastatic state of the patient is often difficult to evaluate, as
micro-tumors are hardly detectable from imagery.
Among patients with a breast cancer detected at early stage that
followed an adjuvant chemotherapy, only few of them presented
probably a metastatic risk. Elias (2006), Spielmann & al (2006)

Is it possible to better understand the action of some existing drug ?
Some chemotherapy agents (MTAs) reveal to have an
anti-angiogenic affect at lower dose. Is it possible to understand
the mechanism ?
....
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Mathematical issues
1 How build adequate tumor growth models ?
2 How model the efficiency and toxicity of the treatments ?

Choose the right scale (Genes-proteins-enzymes-tissus-organs)

Intra-cellular scale Microscopic scale

Macroscopique scale Multi-scale interactions
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Mathematical issues
1 How build adequate tumor growth models ?
2 How model the efficiency and toxicity of the treatments ?

Choose the right mathematical tools
Deterministics models

ODE models (population models)
PDE models (population structured models, diffusion models,
transport models,...)

Stochastic models
Common issues

Calibration or estimation of the parameters’ s model from the
biological data
Validation of the model in term of reproductability, predictability
Use the system within an optimization problem (eg. optimize in
silico the treatment’s protocole)
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Outline of the talk

1 The simplest tumor growth models
2 Pharmacokinetics and pharmacodynamics (PK/PD) of a drug
3 A phase I/II clinical trial driven by a mathematical model
4 Low grade glioma : prolonged action of TMZ
5 One example of model of drug resistance
6 One example of interaction with the immune system
7 PDE system : meningioma
8 Radiotherapy driven by imagery
9 Structured models
10 Microtubule targeting agent
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The simplest tumor growth models
A tumor can be seen as a population of cancer cells

Y number of individuals
Y ′(t) = birth number︸ ︷︷ ︸

Nn

− death number︸ ︷︷ ︸
Nm

Malthus model - end of 18th century

Y ′(t) = λY (t)− µY (t) ⇒ Y ′

Y
= λ− µ := a

1766-1834

Logistic or Verhultz model (1838)
I Populations are able to regulate their natality !

Y ′(t)

Y (t)
= a

(
1− Y (t)

K

)
⇒ Y ′(t)

Y (t)
∼t→∞ C e−at

1804-1849

Gompertz model (1825)
I Exponential decay of the growth rate

Y ′(t)

Y (t)
= µ0e

−at ⇒
(
Y ′

Y

)′
= −a(ln(Y ))′ ⇒ Y ′(t)

Y (t)
= a ln

(
b

Y (t)

)
1779-1865
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The simplest tumor growth models
Logistic model (1838)

Y ′(t) = a

(
1− Y (t)

K

)
Y (t)

Gompertz model (1825)

Y ′(t) = ag ln

(
b

Y (t)

)
Y (t)

Von Bertalanffy model (1949)

Y ′(t) = a

((
Y (t)

K

)− 1
3

− 1

)
Y (t)

West model (1997)

Y ′(t) = a

((
Y (t)

K

)− 1
4

− 1

)
Y (t)

I Sigmoid shape
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Pharmacokinetics (PK)/Pharmacodynamics (PD) of a
drug

Drug Administered

Drug in Tissues
of Distribution

Drug concentration in
Systemic circulation

Drug Metabolized

Drug concentra-
tion at site action

Pharmacological
Effect

Clinical response

PK

PD

Absorption

Toxicity Efficiency

Distribution Elimination }

}
1 PK : How the organism affects the drug
2 PD : How the drug affects the organism
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Pharmacokinetics of a drug
How the organism affects the drug

One compartment model - infusion - one administration
Example of a cytotoxic : Etoposide oral

Jong et al 1997

Small cell lung cancer

V, c(t)

u(t)

Cl

dc

dt
= −Cl

V
c+

u(t)

V
, c(tinj) = 0

t 7→ u(t) infusion protocol
V Specific volume
Cl Clearance
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Pharmacokinetics of a drug
How the organism affects the drug

One compartment model - Oral administration - one tablet
Example of targeted therapy ( kinase inibitors) : Imatinib

Widmer et al 2006

Chronic myelogenous leukemia or Gastro Intestinal Stromal
Tumors

Abs. Gastro Intest.

ka

c1, V1

Cl

D

Cmax

Tmax

Cmax

2

T 1
2

dqa
dt

= −kaqa, qa(tabs) = D

dc

dt
= −Cl

V
c+

ka
V
qa, c(tabs) = 0

D dose
ka Absorption rate
V Specific volume
Cl = k10

V Clearance
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Pharmacokinetics of a drug
How the organism affects the drug

Informations on Imatinib PK found in the Vidal
La pharmacocinétique de l’imatinib a été évaluée à des doses comprises
entre 25 et 1000 mg. Les profils pharmacocinétiques plasmatiques ont été
analysés à J1, puis à J7 ou J28, au moment où les concentrations
plasmatiques ont atteint un état d’équilibre.
Absorption : La biodisponibilité absolue moyenne de l’imatinib est de 98 %.
Il existe une forte variabilité interpatient de l’ASC de l’imatinib plasmatique
après une prise orale. Lorsqu’il est pris au cours d’un repas riche en lipides,
le taux d’absorption de l’imatinib est peu réduit (diminution de 11 % de la
Cmax et prolongation de 1,5 h de Tmax), avec une légère diminution de
l’ASC (7.4 %) comparée à une prise à jeun. L’effet d’une chirurgie
gastro-intestinale antérieure sur l’absorption du produit n’a pas été étudiée.
Distribution : A des concentrations d’imatinib cliniquement significatives, la
fraction liée aux protéines plasmatiques est approximativement de 95 %,
sur la base des études in vitro ; il s’agit principalement d’une liaison à
l’albumine et aux alphaglycoprotéines acides et, dans une faible mesure,
aux lipoprotéines.
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Pharmacokinetics of a drug
How the organism affects the drug

Informations on Imatinib PK found in the Vidal
Elimination : Après administration d’une dose orale d’imatinib
marqué au 14C, environ 81 % de la dose est éliminée au bout de 7
jours (68 % dans les fèces et 13 % dans les urines). La forme
inchangée représente 25 % de la dose (5 % dans les urines, 20 % dans
les fèces), le reste étant composé de métabolites.
Pharmacocinétique plasmatique : Après administration par voie orale
chez le volontaire sain, la demi-vie, d’environ 18 h, est compatible
avec une prise quotidienne unique. L’augmentation de l’ASC moyenne
de l’imatinib est linéaire et proportionnelle à la dose administrée à des
doses orales allant de 25 à 1000 mg. Lors d’administrations répétées
en prise quotidienne unique, la cinétique de l’imatinib n’est pas
modifiée, mais son accumulation, à l’état d’équilibre, est augmentée
d’un facteur de 1,5 à 2,5.
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Pharmacokinetics of a drug
How the organism affects the drug

One compartment model - Oral administration - one week of
treatment

Example of targeted therapy ( kinase inibitors) : Imatinib
Widmer et al 2006

Chronic myelogenous leukemia or Gastro Intestinal Stromal
Tumors
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Pharmacokinetics of a drug

How the organism affects the drug
Two compartments model - injection

Example of anti-angiogenic drug : Bevacizumab Bruno et al 1996

Lung cancer, kidney cancer, glioblastoma,...

V2, c2(t)

u(t)

Cl2

A(t) = c2(t)

k21

k12

Cl1

V1, c1(t)

dc1
dt

= −
(
Cl1
V1

+ k12

)
c1 + k21

V2

V1
c2(t) +

U(t)

V1

dc2
dt

= k12
V1

V2
c1 −

(
Cl2
V2

+ k21

)
c2
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Pharmacokinetics of a drug

How the organism affects the drug
Three compartment model - injection

Example of a chemotherapy agent : Doxetacel Meille et al 2008

Breast cancer

k13k21

k31k12

u(t)

V1, c1V2, c2 V3, c3

C(t) = c1(t)

Cl1

dc1

dt
= −

(
Cl1

V1

+ k12 + k13

)
c1 + k21

V2

V1

c2(t)

+k31
V3

V1

c3(t) +
U(t)

V1

dc2

dt
= k12

V1

V2

c1 −
(
Cl2

V2

+ k21

)
c2

dc3

dt
= k13

V1

V3

c1 −
(
Cl3

V3

+ k31

)
c3
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Pharmacokinetics of a drug
How the organism affects the drug

Compartment models
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Pharmacokinetics of a drug
How the organism affects the drug

How to choose the best model ?
Population studies using parameter estimation with non-linear
mixed effect models (SAEM, see eg Monolix software)

Marc Lavielle, Chapman et al 2014
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Pharmacodynamics of the drug
How drug affects the organism

A non quantitative approach : the minimal concentration
Demetri et al, 2009

Imatinib - Gastro Intestinal Stromal Tumors

Cref
min

Cmin

Cmin

Cmin

Efficiency is deeply patient dependant !
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Pharmacodynamics of the drug
How drug affects the organism

A non quantitative approach : the minimal concentration
Demetri et al, 2009

Imatinib - Gastro Intestinal Stromal Tumors

Efficiency threshold

The dose 600mg is classical administrated, it corresponds to the
minimal dose ensured the efficiency of the drug for a “mean”
patient.
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Pharmacodynamics of the drug
How drug affects the organism

A non quantitative approach : the minimal concentration
Honoré,Hubert, 2016

Imatinib - Gastro Intestinal Stromal Tumors

The efficiency is deeply related to the regularity of the uptake !
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Pharmacodynamics of a cytotoxic drug
How drug affects the organism

A quantitative approach. First models
Action proportional to

The drug concentration in the plasma.
Example for a cytotoxic drug :

Y ′(t) = Y (t)ln

(
b

Y (t)

)
−C(t)Y (t)

The concentration above a threshold Cthres

Y ′(t) = Y (t)ln

(
b

Y (t)

)
−(C(t)− Cthres)+Y (t)
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Pharmacodynamics of a cytotoxic drug

How drug affects the organism
A quantitative approach. Interface model Meille et al 2008 Drug efficiency
is linked to its exposition ce

dce
dt

= −Acee−Bce + (C(t)− Cthres)+

Case A = 0. ce corresponds to
∫ t
0
(C(s)− Cthres)+ ds : AUC

General case. Model saturation effects in the effect compartment.

Y ′(t) = Y (t)ln

(
b

Y (t)

)
−ce(t)Y (t)
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Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model
Hahnfeldt, Folkman & al model

The tumor size Y follows a Gompertz law.
The maximal size θ of the tumor changes
with its vascularization = the carrying
capacity .

dY

dt
= aY ln

(
θ

Y

)
dθ

dt
= cY︸︷︷︸

(VEGF)

−dθY
2
3︸ ︷︷ ︸

Vasculature inhibition
M. J. Folkmann (1933-2008)
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Pharmadynamics of an anti-angiogenic drug
Extension of the Gompertz model

Hahnfeldt, Folkman & al model

Effect of a combined anti-angiogenic therapy

dx

dt
= ax ln

(
θ

x

)
dθ

dt
= R2(cangio(t))x− dθx

2
3−γθR(cangio(t))

Antiangiogenic drugs acts on the carrying capacity :
Reduction
Possible stimulation at the beginning reflecting the normalization
of its vascularization.

Ebos & al. Cancer cell (2009)

15



Pharmadynamics of an anti-angiogenic drug
Extension of the Gompertz model

Hahnfeldt, Folkman & al model

Effect of a combined anti-angiogenic/chemotherapy

dx

dt
= ax ln

(
θ

x

)
−F(x)R1(cchemo(t))

dθ

dt
= R2(cangio(t))x− dθx

2
3−γθR(cangio(t))

Chemotherapy acts on the tumor size.
Antiangiogenic drugs acts on the carrying capacity.

Reduction.
Possible stimulation at the beginning reflecting the normalization
of its vascularization.

Ebos & al. Cancer cell (2009)
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Pharmadynamics of an anti-angiogenic drug
Extension of the Gompertz model

Hahnfeldt, Folkman & al model

Benzekry, Chapuisat, Ciccolini, Erlinger, H. (2011) Feature :
Chemotherapy is distributed through vessels.
Antiangiogenic drugs on one hand destroy vessels, on the other
hand normalize vasculature.

⇒ Take into account stable (functional, mature,...) endothelial cells
and unstable (non functional, new...) ones !

Biological assumptions :
Only stable ECs are able to distribute nutrients, drugs.... with a
rate depending on their quality.
Only unstable ECs are perturbed by stimulation or inhibitor
growth factors.
The quality of vasculature depends on the proportion of stable
ECs amount the global amount of ECs.
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Pharmadynamics of an anti-angiogenic drug
Extension of the Gompertz model

Hahnfeldt, Folkman & al model

Benzekry, Chapuisat, Ciccolini, Erlinger, H. (2011)

Recent preclinical study Benzekri et al. 2017

Variables
Y (t) : tumor size
s(t) : density of stable ECs
u(t) : density of unstable ECs
q(t) : quality of the vasculature

Equations :

dY

dt
= λY log

( s
Y

)
−kY cchemo(t)qs︸ ︷︷ ︸

Chemo effect

ds

dt
= χu − τs

du

dt
= −χu + γY − δY

2
3 u −ηucangio(t)qs︸ ︷︷ ︸

AA effect

Optimal delay between the two drugs : One week

Final size of the tumor w.r.t the delay between AA and chemo.
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Clinical trial of phase I/II (2005-2009) : MODEL I
CRO2 Marseille/ Hôpitaux Lyon Sud The group

Le groupe de chercheurs
Hôpitaux Lyon Sud (Group of Pr Freyer)
Mathematicians and pharmacokinetician of Marseille (D.
Barbolosi and A. Iliadis)
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Clinical trial of phase I/II (2005-2009) : MODEL I
CRO2 Marseille/ Hôpitaux Lyon Sud

Densification of a chemotherapy driven by a mathematical model with
a control of hematological toxicity.
Clinical description

20 patients with a metastatic breast cancer (HER2-, hormon
resistant),
Classical protocol in the 2000’s : 6 cycles of chemo for each
patients, cocktail of two chemotherapeutic agents DTX + EPI
with 21-days cycle
Question : is it possible to administrate such a cocktail on
15-days cycles, while controling toxicities ?

The chemotherapeutical drugs
Kill indifferently all proliferating cells.
Cause severe toxicities (hematologic, ...)
Necessity to space treatments, to let patient recover their
immunity 21-days cycles
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Clinical trial of phase I/II (2005-2009) : MODEL I
CRO2 Marseille/ Hôpitaux Lyon Sud

Mathematical description
Tumor growth model

Gompertz model adapted to take into

account the treatment. Let

efftrait(t, u) be death rate due to

drugs evaluated through PK-PD model.

x′u = axu ln

(
b

xu

)
− xu efftrait(t, u)

Toxicities constraints  hematological constraints.
I WD WBC should not fall down below a concentration WD

I WU The patient should not stay too long aplasia.

I Wa WBC should recover a concentration Wa before a

new cycle.

⇒ Results : Modeling the hematoxicity model leads to

t 7→ W (t;u), contraints becomes F (t, u) ≤ W where

t 7→ u(t) ∈ Rn stands for doses of the drugs.

0 7 14 21
0

1

2

3

4

5

Time [ d ]

ANC dynamics (G cells/L) 

Profil d’hématotoxicité

Absolute

  DWtw 

Recovery

  0WTw Relative

   UUU TWtwt 

Ut
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Clinical trial of phase I/II (2005-2009) : MODEL I
CRO2 Marseille/ Hôpitaux Lyon Sud

Mathematical description
Tumor growth

x′u = axu ln

(
b

xu

)
− xu efftreat(t, u)

with efftreat(t, u) obtained through an ODE system
Toxicity constraints. t 7→W (t) solves an ODE system involving
toxtreat(t, u). So that toxicities can be reduced into

K = {u/F (t, u) ≤ C}
with F (t, u) obtained through an ODE system.
Optimisation of the protocol

min
u∈K

min
t∈[0,T ]

xu(t)

Find an "admissible" protocol leading to the best tumoral
recession.

17



Clinical trial of phase I/II (2005-2009) : MODEL I
CRO2 Marseille/ Hôpitaux Lyon Sud

Mathematical results
Existence of an optimal protocol requiring an injection of G-CSF.

Methodology
Protocol of the first cycle based on average parameters.
Assay of ANC et wafer on 3 blood specimen during the first cycle.
Estimation of individual PK/PD parameters thanks to Bayesian
methods.
Optimisation of the protocol for the following cycles.

Conclusion
Densification possible.
Optimized protocols require injection of hematopoietic factors
G-csf. Necessity to reverse the order of administration of the two
drugs.

Response rate lightly lower than in previous study (31.5% vs
49-88 %) .
But Weeker progression ( 6% vs 5-18 %) and a better survival
median (54.6 vs 19.5-34 month) .
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Low grade glioma
ENS Lyon group/ CHU Lyon Prolonged action of TMZ
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Low grade glioma
ENS Lyon group/ CHU Lyon

Observations
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Low grade glioma
ENS Lyon group/ CHU Lyon

Model
d

dt
C = −KDEC

d

dt
P = λpP

(
1 −

P + Q + Qp

K

)
+kQpP

Qp − kPQP

−γe−res tKDECP
d

dt
Q = kPQP−γKDECQ

d

dt
Qp = −kQpPQp − δQp+γKDECQ

Results
Predition of the amplitude and the duration of the response to
TMZ.
A tool to optimize the drug scheduling leading optimise to the
best response.

More results
See also works of Víctor M Pérez-García group at Universidad de
Castilla-La Mancha, SPAIN
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Drug resistance
Carré,Carrère,Chapuisat

Tumor heterogeneity
Only part of the cells are sensible to the drug.
Sensible cells may control the resistant cells.

Without Treatment MTD 5nM

Metronomic

Is it possible to control the tumor thank to a “good protocol” ? 21



Drug resistance

Carré,Carrère,Chapuisat

Tumor heterogeneity
Only part of the cells are sensible to the drug.
Sensible cells may control the resistant cells.

S′(t) = ρS(t)

(
1− S(t) +mR(t)

K

)
−αC(t)S(t)︸ ︷︷ ︸
Drug effect

R′(t) = ρR(t)

(
1− S(t) +mR(t)

K

)
−βR(t)S(t)︸ ︷︷ ︸

Control by sensible cells

 Optimize protocoles studied by C. Carrère.
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Interaction with the immune system
Example in the case of the pancreatic cancer

Cancer cells
C

Stelatte cells
P

Macrophages
R

Lymphocites
T1

3

2

4
5 6

A Promote B
A B

A B
A Inhibit B

• C PCC Pancreatic Cancer Cells
• P PSC Pancreatic Stellate Cells
• R Fraction of pro-inflammatory macrophage amoung the macrophage
• T CD8+ Tcells (immune cells cytotoxic)
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Interaction with the immune system
Example in the case of the pancreatic cancer

Cancer cells
C

Stelatte cells
P

Macrophages
R

Lymphocites
T1

3

2

4
5 6

A Promote B
A B

A B
A Inhibit B

1 PCC promote growth and activity of PSC through the secretion
of TGFβ

2 PSC promote PCC growth and metastase
3 TCells are cytotoxic
4 R is the fraction of pro-inflammatory macrophage so promote

Tcells
5 PSC and PCC inhibites pro-inflammatory macrophages

recruitment
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Interaction with the immune system
Example in the case of the pancreatic cancer

Cancer cells
C

Stelatte cells
P

Macrophages
R

Lymphocites
T1

3

2

4
5 6

A Promote B
A B

A B
A Inhibit B

The dynamical system
dC

dt
= (kc + µcP )︸ ︷︷ ︸

2

C
3
4

1 −
(
C

C0

) 1
4

 − λc

Kc + (1 − R)︸ ︷︷ ︸
3

CT

dP

dt
=

kp +
µpC

Kp + C


︸ ︷︷ ︸

1

P

(
1 −

P

P0

)
− λpP

dR

dt
= kr − (λr + γpP + γcC)︸ ︷︷ ︸

5 , 6

R

dT

dt
=

ktR

Kt + (1 − R)︸ ︷︷ ︸
4

−λtT
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Interaction with the immune system
Action of a drug treatment

dC

dt
= (kc + µcP )C

3
4

1 −
(
C

C0

) 1
4

 − λc

Kc + (1 − R)
CT

dP

dt
=

kp +
µpC

Kp + C

P (1 −
P

P0

)
− λpP

dR

dt
= kr − (λr + γpP + γcC)R

dT

dt
=

ktR

Kt + (1 − R)
− λtT

TGFβ silencing : γc, γp, µp reduced of 10%
Immune activation - EGFR silencing : kt multiply by a factor 2
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Meningioma
Group INRIA MONC / CHU Bordeaux

Issues How to model an predict the tumour growth in such a complex
geometry ?

Properties. Slow and relatively homogeneous growth
Difficulty. The 3D geometry plays an important role

 Necessity to take intot account the spatial evolution of the tumor.
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Meningioma
Group INRIA MONC / CHU Bordeaux

A PDE model with 4 equations
Tumor growth P (t, x)

∂tP + div(vP ) =MP

Host system S(t, x)

∂tS + div(vS) = 0

Vascularization M(t, x)

∂tM = −αM

Velocity induced by the
growth v(t, x)

S+P = 1⇒ div(v) =MP with v = ∇π and ∇π·n = 0 on arachnoid matter

Approach already used in
Ribba et al JTB 2006

https ://www.youtube.com/watch ?v=l6XvWZXQNlg
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Radiotherapy driven by imagery
Many works !

Swanson Lab, Group INRIA Asclepios Sophia Antipolis
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Radiotherapy driven by imagery
Group INRIA Asclepios Sophia Antipolis/Centre Lacassagne/MGH Boston

One issue :
Irradiated zone not always covers the infiltrated zone

⇒ How to optimize the radiated zone ?
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Radiotherapy driven by imagery
Swanson group

Tumor model
The Fisher Kolmogorov equation :

Spatio-temporal evolution of the density of tumor cells

∂tu = div(D∇u)︸ ︷︷ ︸
Anisotropic diffusion

+ρu(1− u)︸ ︷︷ ︸
Logistic growth

Parameters
Anisotropic diffusion D(x) in the white matter, but isotropic in
the grey matter.
Growth rate ρ.
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Radiotherapy driven by imagery
Towards personnalized therapy
Original studies

Swanson group

Anisotropy in the white matter D0 (obtained with a diffusion
MRI)
Infiltration index : d/ρ (obtained with one MRI T2 flair + MRI
T1 Gd )
Propagation speed : 2

√
dρ (obtained with two acquisitions of

MRI T1 Gd)

Swanson et al , 2007
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Radiotherapy driven by imagery
Towards personnalized therapy
A more complex strategy

Group INRIA Asclepios Sophia Antipolis/Centre Lacassagne/MGH Boston

Radiotherapy optimization
 Estimation for each voxels of the dose di minimizing the
number of survival cells for a total dose imposed.

min
d dose

∑
ivoxels

ui︸︷︷︸
tumor model

exp

(
−di

(
α+

β

αNf
di

))
︸ ︷︷ ︸

Radiotherapy effect

with
1

NT

∑
i

di ≤ Dmax
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First example : A population balance equation for mitosis
Perthame, 2007

To take into account that cell division may depend on their age
A tumor cell of size a can divide into two cells of age 0.

∂tρ+ ∂aρ = −B(a)ρ(t, a), x > 0, t > 0

ρ(t, 0) = 2

∫ ∞
0

B(a)ρ(t, a) da, ρ(0, x) = ρ0(x)

ρ(t, a) density of tumor cells at time t of age a.
B(a) division rate
−B(a)ρ(t, a)da dt number of cell of age between a and a+ da
that divide between time t and t+ dt.

McKendrick-vonFoerster equation or renewal equation
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First example : A population balance equation for mitosis
Perthame, 2007

To take intot account that cell division may depend on their size
A tumor cell of size x can divide into two cells of equal size x/2.

∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) + 4B(2x)ρ(t, 2x), x > 0, t > 0

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

ρ(t, x) density of tumor cells at time t of size x.
B(x) division rate
−B(x)ρ(t, x)dx dt number of cell of size between x and x+ dx
that divide between time t and t+ dt.
2B(2x)ρ(t, 2x)d(2x) dt number of cell of size between 2x and
2(x+ dx) that divide between time t and t+ dt.

 Extensions to bacteria proliferation (Doumic, Gabriel, Martin
2018).
 Extensions to account the immune system (Atsou, Goudon 2018).
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Second example : metastase spreading
The original model of metastases

Iwata & al (2000) Verga, PhD Marseille (2010) Devys,PhD Lille (2011)

A tumor growth = ODE system : gompertz’s law

x′(t) = ga,b(x) := ax ln

(
b

x

)
Metastases = renewal equation
ρ(t, x) density of metastases at time t of size x.

∂tρ+ ∂x (ga,b(x)ρ) = 0, t > 0, x ≥ 1

Emission of metastases = a boundary layer : β(x) = mxα

ga,b(1)ρ(t, 1) = β(xp(t))︸ ︷︷ ︸
Emission by the primary tumor

+

∫ b

1

β(x)ρ(t, x) dx︸ ︷︷ ︸
emission by the metastases

t > 0

 McKendrick-vonFoerster equation
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Second example : metastase spreading
The original model of metastases

Iwata & al (2000) Verga, PhD Marseille (2010) Devys,PhD Lille (2011)

A tumor growth = ODE system : gompertz’s law

x′(t) = ga,b(x) := ax ln

(
b

x

)
Metastases = renewal equation
ρ(t, x) density of metastases at time t of size x.

∂tρ+ ∂x (ga,b(x)ρ) = 0, t > 0, x ≥ 1

t+ δt

ρ(x+ g(x)δt, t+ δt) (δx+ (g(x+ δx)− g(x))δt)

ρ(x, t)δx

x+ δxx

x+ δx+ g(x+ δx)δtx+ g(x)δt

t
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Second example : metastase spreading
The original model of metastases

Iwata & al (2000) Verga, PhD Marseille (2010) Devys,PhD Lille (2011)

A tumor growth = ODE system : gompertz’s law

x′(t) = ga,b(x) := ax ln

(
b

x

)
Metastases = renewal equation
ρ(t, x) density of metastases at time t of size x.

∂tρ+ ∂x (ga,b(x)ρ) = 0, t > 0, x ≥ 1

thus

ρ(t+ δt, x+ g(x)δt)(δx+ (g(x+ δx)− g(x))δt) = ρ(t, x)δx

and then
(ρ(t, x) + δt(g(x)∂xρ(x, t) + ∂tρ(x, t)) + o(δx, δt))(δx+δtδxg′(x)+o(δx)) = ρ(t, x)δx
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Second example : metastase spreading
Calibration of Iwata & al. model

Koscienly & al (1984) Verga PhD (2010)

Tubbiana’s study
2648 patients treated for breast cancer at Institut Gustave
Roussy, Paris between 1954 and 1972.
Proportion of patients that present metastases at detection.

In silico study
800 virtual patients. Parameters a, b fixed. Parameters m and α
following a log-normal distribution.

Results

32



Second example : metastase spreading
Identifiability of the parameters

∂tρ + ∂x(ga,b(x)ρ) = 0, g(1)ρ(t, 1) = βm,α(xp) +

∫ b
1
βm,α(x)ρ(t, x) dx

a real patient. A set of parameter a, b,m, α, x0, · · ·

Parameters of the primary tumor spreading
Parameters (a, b, x0) can be identify from 3 observations from the
primary tumor.

Parameters of the metastases spreading : link to Volterra equation
Hartung (2013)

Observables Ff (t) =
∫ b
1
f(x)ρ(t, x) dt are solution of a Volterra

equation

Ff (t) = [f(xp) ∗ β(xp)](t) + [Ff ∗ β(xp)](t)

 if Ff ∈ C1, Ff (0) = 0 and Ff + f(xp) ∈ C1, Ff + f(xp)(0) 6= 0,
β can be identified from Ff (t) and xp.
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Second example : metastase spreading
Preclinical validation

J. Ciccolini, S. Mollard (CRO2)

Animal experiments
Animals : 16 Female NOD Scid mice (8 weeks old)
 very immunodefficient.

Graft : orthoptic xenograft (Mammary glands).
 human tumor Luciferase transvected cells

Cells (human) MDA-MB-231-LUC (Caliper)
 cells that emits photons in presence of Luciferin.

Injection at d=0 150 000 cells/50µL Matrigel
Follow up by bioluminescence twice a week.
 3D reconstruction of the main tumor and the metastases (IVIS Sectrum. Living Image 4.2).
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Second example : metastase spreading
J. Ciccolini, S. Mollard (CRO2)

Comparison with the model
16 mice with few data per mouse. Total amount of observations :
166.

Primary Tumor Metastases

Strategy to identify a, b, x0,m, α

Use of Stochastic algorithm of
Expectation-Maximization proposed Monolix tools
(SAEM algorithm).
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Second example : metastase spreading
Extension of the Iwata & al. model

∂
∂tρ(t, x) + ∂

∂x [gm(x)ρ(t, x)] = 0, x ∈ [1, b), t ≥ 0

gm(1)ρ(t, 1) =
∫ b
1
β(x)ρ(t, x)dx + β(xp(t))

ρ(0, x) = 0,

with
x′p = gp(xp)

where gp and gm are one of the classical growth speed :

Gompertz model (1825) g(x) = ax ln
(
b
x

)
Logistic model (1838) g(x) = ax

(
1− x

K

)
Von Bertalanffy (1949) g(x) = ax

(
x−

1
3 − c

)
West& al (1997) g(x) = ax

(
x−

1
4 − d

)
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Second example : metastase spreading
N. Hartung (I2M)

Conclusions
The logical model is rejected by statistical tests.
Overestimation the value of x0 due to a poor estimate of the
initial growth speed.

An hybrid model is necessary !
Gomp-exp model gp(x) = min

(
ainvitro, ax ln

(
b
x

))
West-exp model gp(x) = min

(
ainvitro, ax

((
x
b

)− 1
4 − 1

))
I The parameter ainvitro is evaluated in vitro !
I The new estimated sizes x0 correspond to a 40-50% loss of cells

after the graft that sounds reasonnable.
I In peritoneum, for most the mice, we observed two secondary

tumoral mass. We proved that their growth can not be explain by
the classical ODE models. That enforced the utility of such a
metastases model.

I The estimated growth rate am in metastases differs from ap.
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Second example : metastase spreading
Metastases and chemotherapy

Verga PhD 2010

A tumor growth = ODE system : gompertz’s law extended

x′(t) = G(t, x) := ax ln

(
b

x

)
−xCchemo(t)

where Cchemo resumes the PK/PD of the chemotherapeutic agent.
Metastases = a new transport equation
ρ(t, x) density of metastases at time t of size x.

∂tρ+ ∂x (G(t, x)ρ) t > 0, x ≥ 1

Emission of metastases seen as a boundary layer : Birth law

G(1, t)ρ(t, 1) = mxp(t)
α︸ ︷︷ ︸

Emission by the primary tumor

+

∫ b

1

mxαρ(t, x) dx︸ ︷︷ ︸
emission by the metastases

t > 0

 Individualization of protocoles, taking into account metastases
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Second example : metastase spreading
Combined anti-angiogenesis/chemotherapy I Hahnfeldt & al (1999), Benzekry

& al (2012)

Tumor growth : Hahnfeldt & al model
dx

dt
= ax ln

(
θ

x

)
−F(x)R1(cchemo(t))

dθ

dt
= R2(cangio(t))x− dθx

2
3−γθR(cangio(t))

Chemotherapy acts on the tumor size.
Antiangiogenic drugs acts on the carrying capacity.

Reduction of the growth velocity.
Possible stimulation at the beginning reflecting the normalization
of the tumor.

Ebos & al. Cancer cell (2009)

Metastases growth = A transport equation
ρ(t, x, θ) density of metastases at time t with a feature X = (x, θ).

∂tρ+ div (G(t,X)ρ) , t > 0, X ∈ Ω

...
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Second example : metastase spreading
Extension to general emission

∂

∂t
ρ(t, x) +

∂

∂x
[gm(x)ρ(t, x)] = k(x, xp(t))

+

∫ +∞

x

k(x, y)ρ(t, y) dy − ρ(t, x)

∫ x

0

k(y, x) dy

ρ(t, 1) = 0

ρ(0, x) = 0,

x′p(t) = gp(xp(t))

I k(x, y) probability for a tumor of size x to emmit a metastase of
size y.

Schlicke, 2018. Hubert, Tournus 2018
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Microtubules targeting agent
A therapeutic target in oncology

MTs play a crucial role in
cell division
cell migration
intracellular transport

MTs are a favorite target of Microtubule Targeting Agents
(MTAs)
MTAs (taxanes, vinca alkaloids) are successfully used as
antimitotic and antiangiogenic agent in cancer treatments
but also in neurodegenerative diseases.
MTs are highly dynamic.

The dynamics is complex
The dynamics is mandatory to cell division and
cell migration.
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Microtubule targetting agent
MT in the cell

MTs are part of the
cytosqueleton.
MTs are caracterized
by their instabilities.

Protein structure
Each MT is a long (up to 50µm) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
Each protofilament is composed by an assembly of α|β tubulin
dimers.
The assembly is polarized with different dynamics at the + end
or - end.
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Microtubule targetting agent

MT structure
Each MT is a long (up to 50µm) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
Each protofilament is composed by an assembly of α|β tubulin
dimers.
The assembly is polarized with different dynamics at the + end
or - end.

+ End (tubulin β) : highly dynamic
− End (tubulin α) : link to centrosome in cells

Energetic structure of the dimers
Dimers can be in two energy states :

gtp : Guanosine triphosphate - active form
gdp : Guanosine diphosphate - inactive form
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Microtubule targeting agent
Different state of the dimers

Polymerized Non polymerized
Active form gtp polymerized in MTs Free gtp
Inactive form gdp polymerized in MTs Free gdp

Stabilizing gtp -cap
Thanks to EB-GFP fluorescent proteins that bind to GTP-tubulin,
are observed

A GTP-stabilizing cap
The disparition of the cap at the catastrophe

t
Main reactions

gdp gdp gdp gdp gdp gtp gtp gtp

gtp in MTgdp in MT

gtpgdp

Nucleation

Hydrolysis

Recycling

Depolymerization Polymerization

gtp gtp
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Microtubule targeting agent
A. Barlukova PhD 2016

Catastrophe

Nucleation

u↔ MT-GDP-GTP
q ↔ Free-GDP

p↔Free-GTP Polymerization γpol(p)

Hydrolysis γhydro(a)

Recycling

Depolymerization Rescuev ↔ MT-GDP

MTs in polymerization
1 u(t, a, z, x) density of MT in polymerization

t time, a age, x length, z length of the cap.
2 v(t, a, x) density of the population of MT in depolymerization

t time, a age, x length.
3 p = p(t) Free GTP tubulin
 t time.

4 q = q(t) Free GDP tubulin
 t time.
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Microtubule targeting agent
A. Barlukova PhD 2016

Balance equation for MT in Polymerization u

∂tu+ ( γpol(p(t))︸ ︷︷ ︸
Polymerization

− γhydro(a)︸ ︷︷ ︸
Hydrolysis

)∂zu+ γpol(p(t))︸ ︷︷ ︸
Polymerization

∂xu+∂au = 0

Boundary conditions for u
Nucleation,

u(t, a, x, x) = ψ(x)Ψ(a)N (p(t)).

Rescue event, if
γpol(p(t))− γhydro(a) > 0

v ⇒ u

q

Polymerization

Nucleation

Depolymerization

Catastrophe

Recycling

Rescue

p

u

v

ppc ps

αp

γpol

a

γoldhydro

γyounghydro

γhydro

ac as + δaasac + δa
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Microtubule targeting agent

A. Barlukova PhD 2016

Equation for MT in depolymerization v

∂tv −γdepol∂xv︸ ︷︷ ︸
Depolymerization

+∂au = Iu→v − Iv→u

where
Iv→u : Rescue event

Iu→v : Catastrophe event

q

Polymerization

Nucleation

Depolymerization

Catastrophe

Recycling

Rescue

p

u

v
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Microtubule targeting agent
A. Barlukova PhD 2016

Equation for free GTP p

d

dt
p = −γpol(p(t))

∫ ∞
0

∫ x

0

∫ ∞
0

u(t, a, z, x) dadzdx︸ ︷︷ ︸
Polymerization

+ κq︸︷︷︸
Recycling

−µN (p)︸ ︷︷ ︸
Nucleation

Equation for free GDP q

d

dt
q = γdepol

∫ ∞
0

∫ ∞
0

v(t, a, x) da dx︸ ︷︷ ︸
Depolymerization

−κq︸︷︷︸
Recycling
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Microtubule targeting agent
Output of the model concerning MTA

Small delay in the hydrolysis may explain the comportment at
low doses !

MTAs and migration

MTAs reduce endothelial migration
even at non-cytotoxic concentration.

⇒ Antiangiogenic effect at low dose.
Pourroy & al 2006

For more informations on MT and migration - see R.Tesson
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Conclusions
Winter 2020. Residential month on mathematical issues in biology
Coordinators : F.Hamel, F. Hubert, E. Pardoux, P. Pudlo (I2M)

Week 1 : February 3-7 Winter School PDE and probability for
biology

OC. G. Chapuisat, B. Cloez C. Henderson, P. Pudlo, G. Raoul
Week 2 : February 10-14 Workshop on Mathematical issues of
evolutionary biology

OC. N. Champagnat, J. Coville, R. Gomulkiewicz, F. Hamel, L.
Roques

Week 3 : February 17-21 Workshop on Mathematical modeling and
statistical analysis of infectious disease outbreaks

OC. T. Britton, E. Pardoux
Week 4 : February 24-28 Workshop on Mathematical issues of
complex systems in biology and medecine

OC. M. Cristofol, J.- M Freyermuth, C. Gomez, F. Hubert, S.
Ryan, M. Tournus

Week 5 : March 2-6 Winter school on Networks and molecular
biology

OC. A. Baudot, B. Mossé, E. Remy, L. Tichit, M. Vignes

Website : https ://mathsbiomonth.sciencesconf.org 46



Conclusions
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Conclusions

Thank you for your attention !
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