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What is a cancer ?

Cancer is a very old disease, already reported by Hippocrate
(460-377 b. JC).He compared cancer to a crab, karkinoma in
greek.

Definition. Cancer is a group of diseases involving abnormal
cell growth with the potential to invade or spread to other
parts of the body.

Characteristics.
o Limitless replicative potential
Self-sufficiency in growth signals

Insensitivity in anti-growth signals

Sustained angiogenesis

= Hallmarks % En‘alﬂ\:\g
Tissue invasion and metastases SRCSREEF
Dedifferentiation %Ql’d

Genome instability and mutation s

Deregulation of metabolism

Deregulation of immune system

Promoting inflammation .




What is a canc

Main steps of the disease
@ Avascular growth

o Cancer cells start dividing o
o Nutrients are transported by blood vessel and ';g\f:ﬁ N %

diffuse in the tissues SLR I

~ 3-4mm of diameter. ¥ PN ”

@ Vascular growth or angiogenesis

o Hypoxic cells secrete Endothetial Growth Factors
inducing the creation of new vessels.

o The new vascularization provide the nutrients
necessary to the tumor growth.

® Metastatic invasion

o Tumor cells can leave the primary tumor through *‘
the blood vessels or the lymphatic network and
colonize a distant place.
~~ Development of secondary tumors or metastases.




Cancer Treatments

@ Surgery
@ Radiation therapy
@ Anti-cancer drug
o Chemotherapy
o Targeted therapy (ex anti angiogenic drugs)
o Immune therapy
o Hormone therapy
@ Stem cells transplant

Opportunities for targeted treatment
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Some medical issues

Is it possible to improve the efficiency of existing treatments ?

o There might exist a metastatic boost after surgery. Can it be
anticipated ?

o Chemotherapies induce high toxicities requiring delay between
two administrations. Is it possible to reduce this delay 7

o Chemotherapies induce resistance. Is there an administration
protocole that could lead to less resistance or postpone it ?

o Chemotherapy are more and more used in combination with
anti-angiogenic or immune therapies. Is it possible to optimize
the efficiency of such treatment ?

o Treatments efficiency and toxicity is patient dependant. Is it
possible to individualize the drug delivery ?

o In radiotherapy, can it be possible to improve the radiated zone ?




Some medical issues

How to evaluate the metastatic state of the patients?
o Metastases are the major cause of death in cancer. But

metastatic state of the patient is often difficult to evaluate, as
micro-tumors are hardly detectable from imagery.

o Among patients with a breast cancer detected at early stage that
followed an adjuvant chemotherapy, only few of them presented
probably a metastatic risk.

Is it possible to better understand the action of some existing drug ?

o Some chemotherapy agents (MTAs) reveal to have an
anti-angiogenic affect at lower dose. Is it possible to understand
the mechanism ?




Mathematical issues

@ How build adequate tumor growth models ?

@ How model the efficiency and toxicity of the treatments ?

Choose the right scale (Genes-proteins-enzymes-tissus-organs)

—

Intra-cellular scale

& o

Macroscopique scale

Multi-scale interactions




Mathematical issues

@ How build adequate tumor growth models ?
@ How model the efficiency and toxicity of the treatments ?

Choose the right mathematical tools
@ Deterministics models
o ODE models (population models)
o PDE models (population structured models, diffusion models,
transport models,...)
o Stochastic models
Common issues
o Calibration or estimation of the parameters’ s model from the
biological data
o Validation of the model in term of reproductability, predictability
o Use the system within an optimization problem (eg. optimize in
silico the treatment’s protocole)




Outline of the talk

The simplest tumor growth models

Pharmacokinetics and pharmacodynamics (PK/PD) of a drug
A phase I/II clinical trial driven by a mathematical model
Low grade glioma : prolonged action of TMZ

One example of model of drug resistance

One example of interaction with the immune system

PDE system : meningioma

Radiotherapy driven by imagery

Structured models

M Microtubule targeting agent




Outline of the talk

The simplest tumor growth models




The simplest tumor growth models

A tumor can be seen as a population of cancer cells
@ Y number of individuals
Y’(t) = birth number — death number

Nn N’VYL

Malthus model - end of 18" century
!

Y B = 2Y () = pY(t) = % =A—p:i=a

Logistic or Verhultz model (1838)
» Populations are able to regulate their natality !

e (1 Y(t)) _ )

Y () R Y (t)

—at

~isoo Ce

Gompertz model (1825)
» Exponential decay of the growth rate

0 ()t T ()
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The simplest tumor growth models

Logistic model (1838)

e — ( — YI(;))Y(t) :

Gompertz model (1825)

VATt <let>>Y(t)

Von Bertalanffy model (1949)

Y'(t)=a ((i@) e 1) Y (t)

West model (1997)

5 » Sigmoid shape
Yee(t)v=te ((Y(ﬂ) - 1) Y (t)
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Outline of the talk

Pharmacokinetics and pharmacodynamics (PK/PD) of a drug

10




Pharmacokinetics (PK)/Pharmacodynamics (PD) of a

Drug Administered
Absorption
Drug Metabolizer PK
Distribution Elimination
Phormacologial PO Clinica response ] PD

Effect

Toxicity Efficiency

@ PK : How the organism affects the drug
@ PD : How the drug affects the organism

i 53 §




Pharmacokinetics of a drug

How the organism affects the drug
One compartment model - infusion - one administration

o Example of a cytotoxic : Etoposide oral

o Small cell lung cancer

i(f) (ji—z = —%C @, C(tin]‘) =)
V, c(t)
l cl o t — u(t) infusion protocol
e V Specific volume
o ('l Clearance
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Pharmacokinetics of a drug

How the organism affects the drug
One compartment model - Oral administration - one tablet
o Example of targeted therapy ( kinase inibitors) : Imatinib

o Chronic myelogenous leukemia or Gastro Intestinal Stromal

Tumors
D
dg,
lk“ E = _kaQay qa(tabs) =D
ve G Rl
lCl e vV At an’ ( abs)
C'I‘“ o D dose
7 o k, Absorption rate
CmT \ o V Specific volume
s o Cl = k1o Clearance
g
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Pharmacokinetics of a drug

How the organism affects the drug

Informations on Imatinib PK found in the Vidal

La pharmacocinétique de 'imatinib a été évaluée a des doses comprises
entre 25 et 1000 mg. Les profils pharmacocinétiques plasmatiques ont été
analysés a J1, puis & J7 ou J28, au moment ou les concentrations
plasmatiques ont atteint un état d’équilibre.

Absorption : La biodisponibilité absolue moyenne de I'imatinib est de 98 %.
Il existe une forte variabilité interpatient de I’ASC de I"imatinib plasmatique
aprés une prise orale. Lorsqu’il est pris au cours d’un repas riche en lipides,
le taux d’absorption de I'imatinib est peu réduit (diminution de 11 % de la
Cmax et prolongation de 1,5 h de Tmax), avec une légére diminution de
PASC (7.4 %) comparée a une prise a jeun. L’effet d’une chirurgie
gastro-intestinale antérieure sur ’absorption du produit n’a pas été étudiée.
Distribution : A des concentrations d’imatinib cliniquement significatives, la
fraction liée aux protéines plasmatiques est approximativement de 95 %,
sur la base des études in vitro; il s’agit principalement d’une liaison a
I’albumine et aux alphaglycoprotéines acides et, dans une faible mesure,
aux lipoprotéines.

% ]




Pharmacokinetics of a drug

How the organism affects the drug

Informations on Imatinib PK found in the Vidal

Elimination : Aprés administration d’une dose orale d’imatinib
marqué au "C, environ 81 % de la dose est éliminée au bout de 7
jours (68 % dans les féces et 13 % dans les urines). La forme
inchanggée représente 25 % de la dose (5 % dans les urines, 20 % dans
les féces), le reste étant composé de métabolites.

Pharmacocinétique plasmatique : Aprés administration par voie orale
chez le volontaire sain, la demi-vie, d’environ 18 h, est compatible
avec une prise quotidienne unique. L’augmentation de ’ASC moyenne
de I'imatinib est linéaire et proportionnelle & la dose administrée & des
doses orales allant de 25 a 1000 mg. Lors d’administrations répétées
en prise quotidienne unique, la cinétique de I'imatinib n’est pas
modifiée, mais son accumulation, a I'état d’équilibre, est augmentée
d’un facteur de 1,5 & 2,5.

% ]




Pharmacokinetics of a drug

How the organism affects the drug
One compartment model - Oral administration - one week of
treatment

o Example of targeted therapy ( kinase inibitors) : Imatinib

o Chronic myelogenous leukemia or Gastro Intestinal Stromal
Tumors

2000 -
1500 -

1000

Congentration plasmatique {mg/L)

@
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Pharmacokinetics of a drug

How the organism affects the drug
Two compartments model - injection
o Example of anti-angiogenic drug : Bevacizumab
o Lung cancer, kidney cancer, glioblastoma,...

u(t)

dCl Cll V2 U(t)
kiz, [V ] e =l Gl (714‘]?12) Cl+k21v102(t)+ ?1
L calt
[;,m(t) ]I;; 2, c2(t) dbihadie Vil CL B
1 Cls dt == 12V2 1 17 21 2

A(t) = e2(t)
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Pharmacokinetics of a drug

How the organism affects the drug
Three compartment model - injection

o Example of a chemotherapy agent : Doxetacel
o Breast cancer

Bl S o o
u(t) K S 71 12 1§y ) 1l 21‘7152
U(t)
k21 l k13 +k31 —ca(t) i
[V27C2] [V1761] [Vs,cs] 4
deg \1 Clqy
k12 ) P12 e Ci1 el | et 1 2 18] §C 0
lch dt Vo Vo

% des oo i (oz T )
= s e —a ===
@)= ci(t) 7 185 o1 Vs 313
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Pharmacokinetics of a drug

How the organism affects the drug
Compartment models

One ComeartMeEnT QPEn MaDEL

Twe [:unuume-w Oren HopeLs

Bl B

Theee CompartuenT Open MopeLs

"F1ast Pass Mooel” -
[ I m
v v vi




Pharmacokinetics of a drug

How the organism affects the drug
How to choose the best model ?
o Population studies using parameter estimation with non-linear
mixed effect models (SAEM, see eg Monolix software)

Mixed Effects Models for the Population Approach
Models, Tasks, Methods and Tools

f A IRV
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Al different, all equal
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Pharmacodynamics of the drug

How drug affects the organism
A non quantitative approach : the minimal concentration

o Imatinib - Gastro Intestinal Stromal Tumors

3000 -
2500

2000

\ N\
LY N NN NN

Concentration plasmatique (mg/L)

Efficiency is deeply patient dependant !
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Pharmacodynamics of the drug

How drug affects the organism
A non quantitative approach : the minimal concentration

o Imatinib - Gastro Intestinal Stromal Tumors

3000

N
G
=3
S
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1000

Concentration plasmatique (mg/L)
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2000

@

Efficiency threshold

AARRRE
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I
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The dose 600mg is classical administrated, it corresponds to the
minimal dose ensured the efficiency of the drug for a “mean”
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Pharmacodynamics of the drug

How drug affects the organism
A non quantitative approach : the minimal concentration

o Imatinib - Gastro Intestinal Stromal Tumors

3000

2500
2000
1500
| \]

entration plasmalique (mg/L)
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The efficiency is deeply related to the regularity of the uptake!
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Pharmacodynamics of a cytotoxic drug

How drug affects the organism
A quantitative approach. First models
Action proportional to
o The drug concentration in the plasma.
Example for a cytotoxic drug :

=Y (t)in (%

o The concentration above a threshold Cijyes

) —C)Y ()

YA = (YL

(o wd +
(t)) (C(H) = Cinres) Y (1)
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Pharmacodynamics of a cytotoxic drug

How drug affects the organism
A quantitative approach. Interface model Drug efficiency
is linked to its exposition c,

doc

= Aol (Cli— Gt

o Case A = 0. ¢, corresponds to fg(C(s) — Cihres) T ds : AUC

o General case. Model saturation effects in the effect compartment.

V(=Y () n <%) —c.(1)Y (t)

14




Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model

o The tumor size Y follows a Gompertz law.

o The maximal size 6 of the tumor changes
with its vascularization = the carrying
capacity .

ay
dt
dae
dt

6
aY In | —
&

ciYq —déy

~~ ey M. J. Folkmann (1933-2008)
(VEGF) Vasculature inhibition

2
3
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Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model

Effect of a combined anti-angiogenic therapy
dx ! 0
— axln | —
dt a5

Z—‘Z = Ro(Cangio(t))T — 033 —70R (Cangio(t))

o Antiangiogenic drugs acts on the carrying capacity :

o Reduction
o Possible stimulation at the beginning reflecting the normalization

of its vascularization.

5




Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model

Effect of a combined anti-angiogenic/chemotherapy

dx ¢

% =] axr ln <E> ——F(l’)Rl(CCtho(t))

do

E = R2 (Cangi,o (f))ﬂ? o dgx% 7,\//‘97?’(0(1”9"/0 (t))

o Chemotherapy acts on the tumor size.
o Antiangiogenic drugs acts on the carrying capacity.

o Reduction.
o Possible stimulation at the beginning reflecting the normalization

of its vascularization.

5




Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model

Feature :
o Chemotherapy is distributed through vessels.
o Antiangiogenic drugs on one hand destroy vessels, on the other
hand normalize vasculature.

= Take into account stable (functional, mature,...) endothelial cells
and unstable (non functional, new...) ones!

Biological assumptions :
@ Only stable ECs are able to distribute nutrients, drugs.... with a
rate depending on their quality.
o Only unstable ECs are perturbed by stimulation or inhibitor
growth factors.
o The quality of vasculature depends on the proportion of stable
ECs amount the global amount of ECs.

5




Pharmadynamics of an anti-angiogenic drug

Extension of the Gompertz model

Variables

Optimal delay between the two drugs

: tumor size

(t)

s(t) : density of stable ECs
(t)
(t)

. density of unstable ECs

: quality of the vasculature

Equations :

dy
dt

ds

dt
du

dt

: One week

5

o 1 1
Jay)

B

S
AY log (7) —kYcopemo(t)as
1177 51 LN el )
Chemo effect

Xu — Ts

2
—xu+ Y —8Y3u  —nucgngio(t)
A e ERH

AA effect
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Outline of the talk

A phase I/1I clinical trial driven by a mathematical model
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Clinical trial of phase I/II (2005-2009) : MODEL I

The group
Le groupe de chercheurs
o Hopitaux Lyon Sud (Group of Pr Freyer)
o Mathematicians and pharmacokinetician of Marseille (D.
Barbolosi and A. Iliadis)

Clin Pharmacokinet
DOI 10,1007/s40262-016-03747 CrossMark

ORIGINAL RESEARCH ARTICLE

isiting Dosing Regi Using Phar

1 Modeli

Phar Densification
and Intensification of Combination Cancer Therapy

Christophe Meille™ - Dominique Barbolosi' - Joseph Ciccolini" -
Gilles Freyer™* - Athanassios Diadis"

Breast Cancer Res Treat
DOI 10.1007/510549-016-3760-9 CrossMark

CLINICAL TRIAL

Revisiting dosing regimen using PK/PD modeling: the MODEL1
phase I/II trial of docetaxel plus epirubicin in metastatic breast
cancer patients

Emilie Hénin'? « Christophe Meille*® - Dominique Barbolosi® - Benoit You'* -
Jérdme Guitton** - Athanassios Nliadis® - Gilles Freyer'>*
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Clinical trial of phase I/II (2005-2009) : MODEL I

Densification of a chemotherapy driven by a mathematical model with
a control of hematological toxicity.
Clinical description

o 20 patients with a metastatic breast cancer (HER2-, hormon
resistant),

o Classical protocol in the 2000’s : 6 cycles of chemo for each
patients, cocktail of two chemotherapeutic agents DTX + EPI
with 21-days cycle

@ Question : is it possible to administrate such a cocktail on
15-days cycles, while controling toxicities ?

The chemotherapeutical drugs

o Kill indifferently all proliferating cells.

o Cause severe toxicities (hematologic, ...)

o Necessity to space treatments, to let patient recover their
immunity 21-days cycles

% 4




Clinical trial of phase I/II (2005-2009) : MODEL I

Mathematical description
o Tumor growth model

@ Gompertz model adapted to take into

account the treatment. Let

/
effyy.qi¢ (t, u) be death rate due to Oy = M5y, In

drugs evaluated through PK-PD model.

o Toxicities constraints - nematological constraints.
» Wp WBC should not fall down below a concentration Wp

» Wi The patient should not stay too long aplasia.

» W, WBC should recover a concentration W, before a r
new cycle. W,
sosare ||

—> Results : Modeling the hematoxicity model leads to

b
— Ty efftrait (tv ’LL)
Loy

Profil ’hématotoxicité

puTa—r—

actve
\ Recoery |

‘b — \k

AN

t — W (t; u), contraints becomes F(t,u) < W where

t — u(t) € R™ stands for doses of the drugs.

T (9]

% 4




Clinical trial of phase I/II (2005-2009) : MODEL I

Mathematical description
o Tumor growth
b
LL’; = ATy, In <> — Ty eﬁtreat(tv U)

Loy

with eff;,..q¢ (¢, u) obtained through an ODE system
o Toxicity constraints. ¢t — W (t) solves an ODE system involving
t0X¢reat (t, u). So that toxicities can be reduced into

K = {u/F(t,u) < C}

with F'(t,u) obtained through an ODE system.
o Optimisation of the protocol

min min_,(t)
u€K te[0,T]

Find an "admissible" protocol leading to the best tumoral
recession.

% 4




Clinical trial of phase I/II (2005-2009) : MODEL I

Mathematical results
o Existence of an optimal protocol requiring an injection of G-CSF.
Methodology

@ Protocol of the first cycle based on average parameters.

o Assay of ANC et wafer on 3 blood specimen during the first cycle.

o Estimation of individual PK/PD parameters thanks to Bayesian
methods.

o Optimisation of the protocol for the following cycles.

Conclusion

o Densification possible.

o Optimized protocols require injection of hematopoietic factors
G-csf. Necessity to reverse the order of administration of the two
drugs.

°

o Response rate lightly lower than in previous study (31.5% vs
49-88 %) .

o But Weeker progression ( 6% vs 5-18 %) and a better survival
median (54.6 vs 19.5-34 month) .

% 4




Outline of the talk

Low grade glioma : prolonged action of TMZ
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Low grade glioma

Prolonged action of TMZ

Published OnlineFirst on July 3, 2012; DOI:10.1158/1078-0432.CCR-12-0084

Cancer Therapy: Clinical

A Tumor Growth Inhibition Model for Low-Grade Glioma
Treated with Chemotherapy or Radiotherapy

Benjamin Ribba', Gentian Kaloshi®, Mathieu Peyre?, Damien Ricard’, Vincent Calvez', Michel Tod®*,
Branka Cajavec-Bernard', Ahmed Idbaih®, Dimitri Psimaras®, Linda Dainese®, Johan Pallud®,
Stéphanie Cartalat-Carel?, Jean-Yves Delattre®, Jérome Honnorat®*3, Emmanuel Grenier', and
Frangois Ducray?**

Citation: CPT Pharmacometics Syst Pharmacol (2015) 4, 728-737; 6a¢10.1002/psp4 54
O20ISASCPT Al rghts resenved

ORIGINAL ARTICLE

Prediction of Response to Temozolomide in Low-Grade
Glioma Patients Based on Tumor Size Dynamics and
Genetic Characteristics

P Mazzocco', C Barthélémy?, G Kaloshi®, M Lavielle?, D Ricard®, A Idbaih®, D Psimaras®, M-A Renard®, A Alentorn®,
J Honnorat®, J-Y Delattre®, F Ducray® and B Ribba'*
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Low grade glioma
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Low grade glioma

Model
d
—(C/ = —KDEC
dt
d ( P+Q+ Qp) Death
e R — S oy | P e B
dt K
+kQ,PQp — kpQP
—ye~TeStKDECP
d
— = k P—~yKDEC
e Q PQ & Q
d
;Ql,J =  —kQ,PQp — 5@, THKDECQ
Results
o Predition of the amplitude and the duration of the response to
TMZ.

@ A tool to optimize the drug scheduling leading optimise to the
best response.
More results
@ See also works of Victor M Pérez-Garcia group at Universidad de
Castilla-La Mancha, SPAIN
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Outline of the talk

One example of model of drug resistance

20




Drug resi

Tumor heterogeneity

o Only part of the cells are sensible to the drug.
o Sensible cells may control the resistant cells.

/MH\W"-/"\}c Azm

:::L{]:(W PRI e

Days
Without Treatment
0,5 nM
: DA
j . &%= 3 3
- 6 e S
+ -
Metronomic

Is it possible to control the tumor thank to a “good protocol” ?
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Drug resistance

Tumor heterogeneity
@ Only part of the cells are sensible to the drug.
o Sensible cells may control the resistant cells.

O el (1-@) —aC()S()
Drug effect
R(H) = pR() (1—@) _BR®)S(1)

Control by sensible cells

~~ Optimize protocoles studied by C. Carrére.

'3 §




Outline of the talk

One example of interaction with the immune system
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ion with the immune system

Example in the case of the pancreatic cancer

NIH Public Access
% Author Manuscript
Fyeps®

Published in final edite as:
J Theor Biol. 2014 June 21; 351: 74-82. doi: 10.1016/j jtbi.2014.02.028.

A ical model for p. ic cancer growth and
treatments

Yoram Louzoun?, Chuan Xue®, Gregory B. Lesinskic, and Avner Friedman®

(2]
Stelatte cells Q Lymphocites
L 9 Z
e ﬂ_ / AAP ,,,,, te B 5
A Inhibit B

e C PCC Pancreatic Cancer Cells
P PSC Pancreatic Stellate Cells

e R Fraction of pro-inflammatory macrophage amoung the macrophage
T CD8+ Tcells (immune cells cytotoxic)

23




Interaction with the immune system

Example in the case of the pancreatic cancer

(2]
Stelatte cells Q Lymphocites
£ ~9 Z
1 ﬂ. / AAP ,,,,,, te B =
A Inhibit B

@ PCC promote growth and activity of PSC through the secretion
of TGF B

@ PSC promote PCC growth and metastase

@ TCells are cytotoxic

@ R is the fraction of pro-inflammatory macrophage so promote
Teells

@ PSC and PCC inhibites pro-inflammatory macrophages
recruitment

23



ion with the immune system

Example in the case of the pancreatic cancer

(2]
Stelatte cells Q Lymphocites
£ ~9 Z
e i AAP xxxxxx te B e

The dynamical system

A ==
A Inhibit B

ac 3 N\ e
S S (I [ = [ o or
dat Co Bep de (@ = 15)
dpP (©}

Sl P kp 2 P( = —) — ApP

at Kp+C Py

dR

o = kr—QAr+vpP+7C)R

aT kiR

b PRI e BRRFE T 7

dt e )
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Interaction with the immune system

Action of a drug treatment

il
dac 3 © \7%; e
== = (kelsti e B) A B o= LR i D 5 T
dt Co R (@ 1)
dpP @ /2
e Py aL S0 P(l——)—)\pP
at C Py
dR
S = kr—Qr+pP+7C)R
4T kR
S e U
dt e )

o T'GFjp silencing : vc,Yp, tp reduced of 10%
o Immune activation - EGFR silencing : k; multiply by a factor 2

lambda_c=1e-09 lambda_c=1e-08

+— control

+— TGF silencing
a00000 || — immune activ
—— both

+— control

140|| ~— TGF silencing
~— immune activ
both

120

600000 100

o
pcC
g

400000

200000

100 200 300 400 500 100 200 300 200 500
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Outline of the talk

PDE system : meningioma
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Meningioma

Issues How to model an predict the tumour growth in such a complex
geometry ?

t; = 169 days t; = 330 days.

Properties. Slow and relatively homogeneous growth
Difficulty. The 3D geometry plays an important role

os Dure-Mére

T / J
/ 7
/W - vife
~ 1,

)\
yo A
e
\

/
i ( e VA~

\
( {\/, ervean

\
v

Tumeur
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leningioma

Group INRIA MONC CHU Bordeaux

A PDE model with 4 equations
o Tumor growth P(¢,x)

0P + div(vP) = MP
o Host system S(t,x)

OrS + div(vS) =0

e Vascularization M (¢, x)
oM = —aM https ://www.youtube.com/watch ?2v=16 XvWZXQNlg

@ Velocity induced by the
growth v (¢, z)

S+P =1= div(v) = MP with v = V7 and V7-n = 0 on arachnoid matter

Approach already used in
o Ribba et al JTB 2006
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Outline of the talk

Radiotherapy driven by imagery

> &




Radiotherapy driven by imag

Many works!

v

Simulation of Anisotropic Growth of Low-Grade Gliomas
Using Diffusion Tensor Imaging

Sadd Jbabdi," Emmanuel Mandonnet,>* Hugues Duffau,'? Laurent Capelle,'?
Kristin Rae Swanson,® Mélanie Pélégrini-Issac,' Rémy Guillevin,* and Habib Benali'*

Physics in Medicine and Biology

PAPER

Radiotherapy planning for
glioblastoma based on a tumor growth
model: improving target volume
delineation

Jan Unkelbach?, Bjoern H Menze?2, Ender Konukoglu®,

Florian Dittmann?, Matthieu Le™2, Nicholas Ayache? and Helen A Shih®
Published 20 January 2014 * 2014 Institute of Physics and Engineering in
Medicine

Physics in Medicine and Biology, Volume 59, Number 3

Magnatic Resonance in Medicine 54:616-624 [2005)

Physics in Medicine and Biology

PAPER

Radiotherapy planning for
glioblastoma based on a tumor growth
model: implications for spatial dose
redistribution

Jan Unkelbach, Bjoern H Menze?2, Ender Konukoglu®,

Florian Dittmann?, Nicholas Ayache? and Helen A Shih®
Published 20 January 2014 * 2014 Institute of Physics and Engineering in
Medicine
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Radiotherapy driven by imag

One issue :
o Irradiated zone not always covers the infiltrated zone
= How to optimize the radiated zone ?

Bl Tumeur ciblée
Infiltration invisible

Tumeur visible
[ Tissu sain ciblé
Marge constante (2cm)

I Tumeur non ciblée
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Radiotherapy driven by image

Tumor model
o The Fisher Kolmogorov equation :
Spatio-temporal evolution of the density of tumor cells

Ou = div(DVu) +pu(l — u)
——— N——

Anisotropic diffusion Logistic growth

Parameters
o Anisotropic diffusion D(z) in the white matter, but isotropic in
the grey matter.
o Growth rate p.
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Radiotherapy driven by imag

Towards personnalized therapy
Original studies

o Anisotropy in the white matter Dy (obtained with a diffusion

MRI)

o Infiltration index : d/p (obtained with one MRI T2 flair + MRI
T1 Gd)

e Propagation speed : 21/dp (obtained with two acquisitions of
MRI T1 Gd)

solated
Tumor Cells

net proliferation, p
T1-Gd MRI

threshald of
detection

\ cantral h
Thypodensity
\necrasis))
N

invesion, D |

cell density

distance
FIGURE 5. Schematic view of a typical glioblastoma as seen microscopically and by MRI in T1-Gd and T2 images.
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Radiotherapy driven by imagery

Towards personnalized therapy
A more complex strategy

o Radiotherapy optimization
~» Estimation for each voxels of the dose d; minimizing the
number of survival cells for a total dose imposed.

pin X (- (or gra) ) vt g S < Do,

ivoxels

tumor model
Radiotherapy effect
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Outline of the talk

Structured models
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First example : A population balance equation for mitosis

Perthame , 2007
To take into account that cell division may depend on their age
A tumor cell of size a can divide into two cells of age 0.

Otp + 0up = —B(a)p(t,a), z > 0,t >0

t0—2/ B(a)p(t,a)da, p(0,z) = po(z)

o p(t,a) density of tumor cells at time ¢ of age a.

o B(a) division rate

o —B(a)p(t,a)dadt number of cell of age between a and a + da
that divide between time ¢ and ¢ + dt.

McKendrick-vonFoerster equation or renewal equation
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To take intot account that cell division may depend on their size
A tumor cell of size x can divide into two cells of equal size z/2.

Oip + 0x(g(x)p) = —B(2)p(t, z) + 4B(2z)p(t, 22), © > 0,1 > 0

p(t,O) =0, p(0,z) = /00(33)

o p(t,z) density of tumor cells at time ¢ of size .
o B(x) division rate

o —B(z)p(t,z)dx dt number of cell of size between x and x + dz

that divide between time ¢ and ¢ + dt.
e 2B(2z)p(t,2x)d(2x) dt number of cell of size between 2z and
2(x + dz) that divide between time ¢ and ¢ + dt.

~» Extensions to bacteria proliferation (Doumic, Gabriel, Martin
2018).

~» Extensions to account the immune system (Atsou, Goudon 2018).

First example : A population balance equation for mitosis
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xample : metastase spreading

The original model of metastases

A tumor growth = ODE system : gompertz’s law

b
() = gup(e) = a2 2
a8 c T ‘ o1
Metastases = renewal equation 2 = @ (=
p(t, ) density of metastases at time ¢ of size x. = T P :o

metastasis metastasis

Otp + 0z (gap(z)p) =0, >0,z > 1

Emission of metastases = a boundary layer : 8(x) = ma®
gan(1p(t,1) = ) / Bla £>0
——

Emission by the primary tumor
emission by the metastases

~+ McKendrick-vonFoerster equation

i 4




xample : metastase spreading

The original model of metastases

A tumor growth = ODE system : gompertz’s law

S = g e (ﬁ) Al
x -

- o
T
Metastases = renewal equation 2 = @ e
p(t, ) density of metastases at time ¢ of size x. -
g N

Otp + 0z (gap(z)p) =0, >0,z > 1

x4 g(x)dt x4 0z + g(x + 0x)dt
o0t A e e
p(z + g(x)dt, t + 6t) (6z + (g9(z + dz) — g(x))dt)
A
p(z,t)ox
t f f

i 4



Second example : metastase spreading

The original model of metastases

A tumor growth = ODE system : gompertz’s law

b
() = gup(e) = a2
Metastases — renewal equation g @ g
p(t, ) density of metastases at time ¢ of size x. = ol om,??:
o 20>

Otp + 0z (gap(z)p) =0, >0,z > 1

thus
p(t+ ot,x + g(x)dt)(dz + (g(x + dx) — g(x))dot) = p(t, z)dx
and then
(p(t, z) + 6t(g(x)Oup(w,t) + Op(x,t)) + o(dz, 5t)) (6x+6tdzg (x)+0(6x)) = p(t, z)dx

i 4




Second example : metastase spreading

Calibration of Iwata & al. model

B3 Comer (1954, 48, 05315

Breast cancer: Relationship between the size of the primary
tumour and the of

. E
S, Kosciclny!, M. Tubiana’, M.G. L&%, A1 Valleron', H. Mouricsse?, -
G. Contesso? & D. Sarrazin®

St d st B

erst pari 72, Plce Jussten
o ey pthios md mebiet

5 R ot Do 8500

Tubbiana’s study
@ 2648 patients treated for breast cancer at Institut Gustave
Roussy, Paris between 1954 and 1972.
o Proportion of patients that present metastases at detection.
In silico study
o 800 virtual patients. Parameters a, b fixed. Parameters m and «
following a log-normal distribution.
Results

3
8

<
&g

251035

Metastases observed (%)
& 8

N
8

1t025cm

°

0

Predictiontd (%) 100
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Second example : metastase spreading

Identifiability of the parameters

b
9tp + 92 (94 b (x)p) =0, g(1)p(t, 1) = Bm,a(zp) + /1 Bm,a(@)p(t, z) dz

i 5}
a real patient. ‘ A set of parameter a,b, m, o, xg, - -

Parameters of the primary tumor spreading
o Parameters (a,b, zo) can be identify from 3 observations from the
primary tumor.
Parameters of the metastases spreading : link to Volterra equation

o Observables Fy(t) fl p(t,x) dt are solution of a Volterra
equation

Fy(t) = [f(2p) * B(xp)(t) + [Fy * B(2)](t)

~ if Fy € Cl,Ff(O) =0and Fy + f(zp) € Cl,Ff + f(zp)(0) #0,
B can be identified from Fy(t) and .
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Second example : metastase spreading

Preclinical validation

Animal experiments
o Animals : 16 Female NOD Scid mice (8 weeks old)
~ very immunodefficient.
o Graft : orthoptic xenograft (Mammary glands).
~» human tumor Luciferase transvected cells
Cells (human) MDA-MB-231-LUC (Caliper)
~ cells that emits photons in presence of Luciferin.
Injection at d=0 150 000 cells/50uL Matrigel
Follow up by bioluminescence twice a week.

©

e o

~ 3D reconstruction of the main tumor and the metastases (IVIS Sectrum. Living Image 4.2).
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Comparison with the model

o 16 mice with few data per mouse. Total amount of observations :
166.

Primary Tumor Metastases

H

w oo w oW
Days post-graft

Strategy to identify a, b, ¢, m, «

o Use of Stochastic algorithm of
Expectation-Maximization proposed Monolix tools
(SAEM algorithm).
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Second example : metastase spreading

Extension of the Iwata & al. model

atp(t x)+ aw[gm( )P( z)] =0, z€[L,b), >0
{ gr (il f1 p(t,z)dx + B(x,(t))
(0, a:) 0
with
ac;, = gp(Tp)

where g, and gy, are one of the classical growth speed :

Gompertz model (1825) g(z) = azln (2)
Logistic model (1838) g(x) =ax (1 - %)
Von Bertalanffy (1949) | g(z) = ax (m 5o c)

West& al (1997) g(x) = ax (x_Z —d
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Second example : metastase spreading

Conclusions
o The logical model is rejected by statistical tests.
o Overestimation the value of xy due to a poor estimate of the

initial growth speed.

=> An hybrid model is necessary !
o Gomp-exp model g,(z) = min (amm-tm, axIn (%))
A
o West-exp model g,(x) = min (ammm, ax ((%) 4 — 1))
» The parameter a;nqitro is evaluated in wvitro!

» The new estimated sizes ¢ correspond to a 40-50% loss of cells
after the graft that sounds reasonnable.

» In peritoneum, for most the mice, we observed two secondary
tumoral mass. We proved that their growth can not be explain by
the classical ODE models. That enforced the utility of such a

metastases model.
» The estimated growth rate a,, in metastases differs from a,.
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xample : metastase spreading

Metastases and chemotherapy

A tumor growth = ODE system : gompertz’s law extended

iR g <g> e

where Cipemo resumes the PK/PD of the chemotherapeutic agent.
Metastases = a new transport equation
p(t,x) density of metastases at time ¢ of size x.

Op+0: (Gt x)p) t >0,z > 1

Emission of metastases seen as a boundary layer : Birth law

b
G(1,t)p(t,1) = s () + / Mo (b)) dasat=20)
N—— 1

Emission by the primary tumor

emission by the metastases

~~ Individualization of protocoles, taking into account metastases
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xample : metastase spreading

Combined anti-angiogenesis/chemotherapy 1

Tumor growth :

dx
dt
de
dt

Hahnfeldt & al model
0
= azxln (;) —F(2)R1(Cehemo(t))

= Ro(Cangio(t))T — dOzZ —YOR (Cangio(t))

o Chemotherapy acts on the tumor size.
o Antiangiogenic drugs acts on the carrying capacity.
o Reduction of the growth velocity.
o Possible stimulation at the beginning reflecting the normalization

of the tumor.

Metastases growth = A transport equation
p(t, z,0) density of metastases at time ¢ with a feature X = («,0).

Byp +div (G(t, X)p), t >0, X € Q

1 4




Second example : metastase spreading

Extension to general emission

D 068) + ~lgm(@)olts )] = bz, 7,(0)
+oo 4
+/ k(x,y)p(t,y)dy—p(t,x)/o k(y, ) dy
p(t,1) = 0
p(0,z) = 0,
zp(t) = gp(ap(t))

» k(z,y) probability for a tumor of size z to emmit a metastase of
size y.
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Outline of the talk

M Microtubule targeting agent
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Microtubules targeting agent

A therapeutic target in oncology
o MTs play a crucial role in
o cell division
o cell migration
e intracellular transport

o MTs are a favorite target of Microtubule Targeting Agents
(MTASs)

o MTAs (taxanes, vinca alkaloids) are successfully used as
antimitotic and antiangiogenic agent in cancer treatments

but also in neurodegenerative diseases.
o MTs are highly dynamic.

o The dynamics is complex x A
o The dynamics is mandatory to cell division and |

cell migration.
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Microtubule targetting agent

MT in the cell

o MTs are part of the
cytosqueleton.

o MTs are caracterized
by their instabilities.

Protein structure
o Each MT is a long (up to 50pum) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
o Each protofilament is composed by an assembly of |8 tubulin
dimers.
o The assembly is polarized with different dynamics at the + end
or - end.

41




Microtubule targetting agent

MT structure
o Each MT is a long (up to 50pum) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
o Each protofilament is composed by an assembly of «
dimers.

o The assembly is polarized with different dynamics at the + end
or - end.
o + End (tubulin 8) : highly dynamic
o — End (tubulin «) : link to centrosome in cells

[ tubulin

Energetic structure of the dimers
o Dimers can be in two energy states :
e GTP : Guanosine triphosphate - active form
e GDP : Guanosine diphosphate - inactive form
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Microtubule targeting agent

Different state of the dimers

Polymerized Non polymerized
Active form GTP polymerized in MTs | Free GTP
Inactive form | GDP polymerized in MTs | Free GDP

Stabilizing GTP -cap
Thanks to EB-GFP fluorescent proteins that bind to GTP-tubulin,
are observed

o A GTP-stabilizing cap
o The disparition of the cap at the catastrophe
3
Main reactions

Recycling

Nucleation
—

GDP GTP

Depolymerization& / Polymerization
¢DP in MT aTP in MT
—

Hydrolysis Pt




Microtubule targeting agent

p <>Free-GTP

\Polymerization Ypol (P)
Nucleation

u <> MT-GDP-GTP

Catastrophe \/‘
Hydrolysis Yaydro(a)
Rescue

v ¢ MT-GDP

Recycling

X

q <> Free-GDP

Depolymerization

/
i

MTs in polymerization
Q u(t,a,z,x) density of MT in polymerization
o t time, a age, = length, z length of the cap.
@ v(t,a,x) density of the population of MT in depolymerization
o ¢ time, a age, = length.
@ p = p(t) Free GTP tubulin
~ t time.
@ ¢ = q(t) Free GDP tubulin

~» t time.
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tubule targeting agent

A. Barlukova PhD 2016

Balance equation for MT in Polymerization u

Opu + ( Vpol (ol ’Yhydm(a))azu +  Ypol (p(t)) OrutOau =0
NEE Y S N

Polymerization Hydrolysis Polymerization

M - N
Recycling
B T n LG n / Nuclum
oundary conditions for u el d oun
e Nucleation, e e

u(t,a,z,x) = Y(x)¥(a)N(p(t)).

e Rescue event, if
Yol (P(t)) — Ynyaro(a) > 0

v = u
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otubule targeting agent

A. Barlukova PhD 2016

Equation for MT in depolymerization v

at/U *Wdepola:cv +aau = Ll
—_———

Depolymerization

where s~ () \\pymt
Nucleation
I, : Rescue event |I] S (=
» Depolvmeruauon %ﬁue
I,_,, : Catastrophe event =)
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tubule targeting agent

A. Barlukova PhD 2016

Equation for free GTP p

d
—P = —Ypot(p / / / u(t,a,z,z)dadzdr + Kq —uN (p)
dt

Recycling  Nucleation

Polymerization

Equation for free GDP ¢

d 0o oo
—>4 = “YVdepol / / v(t, a,z) da dx —Kq
dt 0 0 ~~
Recycling

Depolymerization
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otubule targeting agent

Output of the model concerning MTA
o Small delay in the hydrolysis may explain the comportment at
low doses!
MTAs and migration

o MTAs reduce endothelial migration
even at non-cytotoxic concentration.

= Antiangiogenic effect at low dose.

Pourroy & al 2006

For more informations on MT and migration - see R.Tesson
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Conclusions

Winter 2020. Residential month on mathematical issues in biology
Coordinators : F.Hamel, F. Hubert, E. Pardoux, P. Pudlo (I2M)

Website : https ://mathsbiomonth.sciencesconf.org

Week 1 : February 3-7 Winter School PDE and probability for
biology

e OC. G. Chapuisat, B. Cloez C. Henderson, P. Pudlo, G. Raoul
Week 2 : February 10-14 Workshop on Mathematical issues of
evolutionary biology

o OC. N. Champagnat, J. Coville, R. Gomulkiewicz, F. Hamel, L.
Roques
Week 3 : February 17-21 Workshop on Mathematical modeling and
statistical analysis of infectious disease outbreaks
e OC. T. Britton, E. Pardoux
Week 4 : February 24-28 Workshop on Mathematical issues of
complex systems in biology and medecine

o OC. M. Cristofol, J.- M Freyermuth, C. Gomez, F. Hubert, S.
Ryan, M. Tournus
Week 5 : March 2-6 Winter school on Networks and molecular
biology

o OC. A. Baudot, B. Mossé, E. Remy, L. Tichit, M. Vignes
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Conclusions

Research Institutes &

Partners Find us online...

) c
IBDM;:: Giml cr CRm cF g

G inmes @ wsrur oE wATwEmATIOVES | § 5
s W Vo @i s

B ecenrurvarseile
D cenruriving systems

G+ CENTURI Living Systems

http://centuri-livingsystems.ora

Calls CENTURI Graduate School

@ Postdoc

* Interdisciplinary projects

@ PhD programme
>80 Fellowships (between 2017 and 2025)

*  20recruitments between 2017 and 2025 Students involved in interdisciplinary research

rojects
+ 1call everyyear prol

+ PhD students mentored by 2 supervisors coming
from a wet and a dry lab

Dedicated trainings (image analysis, statistics,
paper writing, etc.)
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Conclusions

Thank you for your attention !
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