Macroscopic and kinetic diffusion models for gaseous mixtures in the context of respiration

Bérénice Grec¹

Collaborations with A. Bondesan¹, L. Boudin^{2,3}, M. Briant¹,

C. Grandmont³, S. Martin¹, V. Pavan⁴, F. Salvarani⁵

¹MAP5 – Université Paris Descartes
 ²LJLL – Sorbonne Université
 ³EPI REO, INRIA
 ⁴IUSTI, Université de Provence
 ⁵Univ. Pavia, Italie & Univ. Paris Dauphine

CEMRACS – August 1st, 2018

MEMBRE DE

Université Sorbonne Paris Cité

Context : impact of oxygen-helium mixture for respiration

Oxhel: oxygen-helium mixture

Impact of inhaling Oxhel on the ventilation through the airways, blood oxygenation and aerosol deposition in the context of chronic obstructive lung diseases

- ▶ Modeling the air as a mixture of several gases: N₂, O₂, (H₂O)
- ▶ In the context of respiration (gaseous exchanges): CO₂
- Oxhel for healing purposes: $N_2 \longrightarrow$ He
- Expected improvements: respiration & oxygen transfer

First possible approach

- Segmenting medical images
- Meshing the upper airways
- Simulating 3D flows
- No description of the lower airways
- Problematic for aerosol deposition

Airways modelling

- Decomposition of the respiratory tree in 2 parts
- Bronchi and bronchioles (1st 16th gen.): convective regime
- Acini (17th 23rd gen.): mainly diffusive regime and gaseous exchanges
- Integrated model of the ventilation process coupled with O₂ transfer into the blood
 Martin, Maury (2013)]
- \blacktriangleright Taking into account the other gases: CO_2 and N_2/He

Airways modelling

- Decomposition of the respiratory tree in 2 parts
- Bronchi and bronchioles (1st 16th gen.): convective regime
- Acini (17th 23rd gen.): mainly diffusive regime and gaseous exchanges
- Integrated model of the ventilation process coupled with O₂ transfer into the blood
 [1] Martin, Maury (2013)]
- \blacktriangleright Taking into account the other gases: CO_2 and N_2/He

Diffusion models for gaseous mixtures

- Cross-diffusion model?
- Influence on oxygen transfer into the blood?

Scollaboration with L. Boudin, C. Grandmont, S. Martin

Integrated model of the respiratory system for a mixture of three gases $(O_2, CO_2, N_2/He)$

- A lumped 0D mechanical model gives the entrance flux
- ▶ The geometry is reduced to a 1D domain
- Only longitudinal velocity u

- Discontinuous equivalent section S, computed from morphometric data
- ▶ Distinction between bronchial and alveolar part: $S = S_b + S_a$
- Alveoli starting from the 17th generation

Notation, for each species $1 \le i \le 3$

 c_i concentration, M_i : molar mass, $\varrho_i = M_i c_i$: density

- Incompressibility: the total density $\rho^0 = \sum_i \rho_i$ is constant \implies relation between the c_i
- ► For two of the three species: mass conservation with simple diffusion

 $\partial_t(Sc_i) + \partial_x(S_bc_iu) + \partial_x(S_bN_i) = \mathcal{E}_i \text{ with } N_i = -D_i\partial_xc_i, \qquad i = 1, 2$

• Global mass conservation equation: coupling between u and the c_i

$$\varrho^{0}\partial_{t}S + \varrho^{0}\partial_{x}(S_{b}u) + \sum_{j}M_{j}\partial_{x}(S_{b}N_{j}) = \sum_{j}M_{j}\mathcal{E}_{j}$$

- Source term \mathcal{E}_i modelling the gaseous exchanges
 - Activated from the 17th generation
 - For oxygen and carbon dioxide
 - ▶ Basic principles of O_2/CO_2 uptake/release along the pulmonary capillary
- ▶ If cross-diffusion effects, Maxwell-Stefan's model for the fluxes *N_i*:

$$-\partial_x c_i \propto \sum_j rac{c_j N_i - c_i N_j}{D_{ij}} - \sum_j \partial_x c_j$$

Notation, for each species $1 \le i \le 3$

 c_i concentration, M_i : molar mass, $\varrho_i = M_i c_i$: density

- Incompressibility: the total density $\varrho^0 = \sum_i \varrho_i$ is constant \implies relation between the c_i
- ► For two of the three species: mass conservation with simple diffusion

 $\partial_t(Sc_i) + \partial_x(S_bc_iu) + \partial_x(S_bN_i) = \mathcal{E}_i \text{ with } N_i = -D_i\partial_xc_i, \quad i = 1, 2$

• Global mass conservation equation: coupling between u and the c_i

$$\varrho^{0}\partial_{t}S + \varrho^{0}\partial_{x}(S_{b}u) + \sum_{j}M_{j}\partial_{x}(S_{b}N_{j}) = \sum_{j}M_{j}\mathcal{E}_{j}$$

- Source term \mathcal{E}_i modelling the gaseous exchanges
 - Activated from the 17th generation
 - For oxygen and carbon dioxide
 - ▶ Basic principles of O₂/CO₂ uptake/release along the pulmonary capillary

▶ If cross-diffusion effects, Maxwell-Stefan's model for the fluxes *N_i*:

$$-\partial_x c_i \propto \sum_j rac{c_j N_i - c_i N_j}{D_{ij}} - \sum_j \partial_x c_j$$

Notation, for each species $1 \le i \le 3$

 c_i concentration, M_i : molar mass, $\varrho_i = M_i c_i$: density

- Incompressibility: the total density $\rho^0 = \sum_i \rho_i$ is constant \implies relation between the c_i
- ► For two of the three species: mass conservation with simple diffusion

 $\partial_t(Sc_i) + \partial_x(S_bc_iu) + \partial_x(S_bN_i) = \mathcal{E}_i \text{ with } N_i = -D_i\partial_xc_i, \qquad i = 1, 2$

• Global mass conservation equation: coupling between u and the c_i

$$\varrho^{0}\partial_{t}S + \varrho^{0}\partial_{x}(S_{b}u) + \sum_{j}M_{j}\partial_{x}(S_{b}N_{j}) = \sum_{j}M_{j}\mathcal{E}_{j}$$

- Source term \mathcal{E}_i modelling the gaseous exchanges
 - Activated from the 17th generation
 - For oxygen and carbon dioxide
 - Basic principles of O_2/CO_2 uptake/release along the pulmonary capillary
- ► If cross-diffusion effects, Maxwell-Stefan's model for the fluxes N_i:

$$-\partial_x c_i \propto \sum_j rac{c_j N_i - c_i N_j}{D_{ij}} - \sum_j \partial_x c_j$$

5/12

Preliminary results: ventilation for simple diffusion

Kinetic description and hydrodynamic limit

For mixtures

Obtain a macroscopic cross-diffusion model of Maxwell-Stefan's type as an hydrodynamic limit of kinetic models

- Kinetic description: $f_i(t, x, v)$ distribution fonction of species *i*
- Boltzmann equation for mixtures

$$\partial_t f_i + \mathbf{v} \cdot \nabla_x f_i = \frac{1}{\varepsilon} \sum_j Q_{ij}(f_i, f_j), \quad \forall i$$

- ► *Q_{ij}*: collision operators
- Elastic collisions: conservation of mass and momentum
- \blacktriangleright Fluid regime: Kn $\sim \varepsilon$ Equilibria of the collision operators: local Maxwellians

$$f_i(t, x, v) = c_i(t, x) \left(\frac{m_i}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m_i}{2kT}|v - \varepsilon u_i(t, x)|^2\right)$$

 \blacktriangleright Diffusion predominant over convection : Ma $\sim \varepsilon$

Kinetic description and hydrodynamic limit

For mixtures

Obtain a macroscopic cross-diffusion model of Maxwell-Stefan's type as an hydrodynamic limit of kinetic models

- Kinetic description: $f_i(t, x, v)$ distribution fonction of species *i*
- Boltzmann equation for mixtures

$$\varepsilon \partial_t f_i + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_i = \frac{1}{\varepsilon} \sum_j Q_{ij}(f_i, f_j), \qquad \forall i$$

- ► *Q_{ij}*: collision operators
- Elastic collisions: conservation of mass and momentum
- Fluid regime: Kn $\sim \varepsilon$

Equilibria of the collision operators: local Maxwellians

$$f_i(t,x,v) = c_i(t,x) \left(\frac{m_i}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m_i}{2kT}|v-\varepsilon u_i(t,x)|^2\right).$$

• Diffusion predominant over convection : Ma $\sim arepsilon$

Kinetic description and hydrodynamic limit

For mixtures

Obtain a macroscopic cross-diffusion model of Maxwell-Stefan's type as an hydrodynamic limit of kinetic models

- Kinetic description: $f_i(t, x, v)$ distribution fonction of species *i*
- Boltzmann equation for mixtures

$$\varepsilon \partial_t f_i + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_i = \frac{1}{\varepsilon} \sum_j Q_{ij}(f_i, f_j), \quad \forall i$$

- ► *Q_{ij}*: collision operators
- Elastic collisions: conservation of mass and momentum
- \blacktriangleright Fluid regime: Kn $\sim \varepsilon$ Equilibria of the collision operators: local Maxwellians

$$f_i(t,x,v) = c_i(t,x) \left(\frac{m_i}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m_i}{2kT}|v-\varepsilon u_i(t,x)|^2\right).$$

- Diffusion predominant over convection : Ma $\sim \varepsilon$

Diffusive asymptotics for multi-species Boltzmann eq.

Two possible approaches

 Perturbative method (leads the Fick's equations) Based on Chapman-Enskog expansion
 Bardos, Golse, Levermore], [Bisi, Desvillettes]

 Moment method (leads the Maxwell-Stefan's equations) Based on the assumption of a local equilibrium *s* [Levermore], [Müller, Ruggieri]

Ansatz

The distribution fonctions f_i^{ε} are local Maxwellians with velocities $\varepsilon u_i^{\varepsilon}$

- The macroscopic concentration c_i^{ε} is the moment of order 0 of f_i^{ε}
- The macroscopic flux $\varepsilon c_i^{\varepsilon} u_i^{\varepsilon}$ is the moment of order 1 in v of f_i^{ε}

$$\int_{\mathbb{R}^3} f_i^\varepsilon(v) dv = c_i^\varepsilon \qquad \text{and} \qquad \int_{\mathbb{R}^3} v f_i^\varepsilon(v) dv = \varepsilon c_i^\varepsilon u_i^\varepsilon = \varepsilon N_i^\varepsilon.$$

$$arepsilon \partial_t f_i^{arepsilon} + \mathbf{v} \cdot
abla_{\mathbf{x}} f_i^{arepsilon} = rac{1}{arepsilon} \sum_j Q_{ij}(f_i^{arepsilon}, f_j^{arepsilon}), \quad \forall i$$

► Conservation property:

$$\int_{\mathbb{R}^3} Q_{ij}(f,g)(v) \, dv = 0, \qquad \forall i,j$$

Mass conservation equation

$$\varepsilon \frac{\partial}{\partial t} \left(\int_{\mathbb{R}^3} f_i^{\varepsilon}(v) \, dv \right) + \nabla_x \cdot \left(\int_{\mathbb{R}^3} v \, f_i^{\varepsilon}(v) \, dv \right) = 0.$$

$$\partial_t c_i^{\varepsilon} + \nabla_x \cdot N_i^{\varepsilon} = 0.$$

Conservation property:

$$\int_{\mathbb{R}^3} Q_{ij}(f,g)(v) m_i v dv + \int_{\mathbb{R}^3} Q_{ji}(g,f)(v) m_j v dv = 0, \qquad \forall i,j$$

Momentum equation

$$\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^3} v f_i^{\varepsilon}(v) \, dv + \int_{\mathbb{R}^3} v \, \nabla_x \cdot (v \, f_i^{\varepsilon}(v)) \, dv = \frac{1}{\varepsilon} \sum_{j \neq i} \int_{\mathbb{R}^3} v \, Q_{ij}(f_i^{\varepsilon}, f_j^{\varepsilon})(v) \, dv.$$

Divergence term

► Use of the Ansatz, explicit computations of moments of Maxwellian terms

$$\int_{\mathbb{R}^3} v \, \nabla_x \cdot (v \, f_i^{\varepsilon}(v)) \, dv = \frac{kT}{m_i} \nabla_x c_i^{\varepsilon} + \varepsilon^2 \nabla_x \cdot \left(c_i^{\varepsilon} \, u_i^{\varepsilon} \otimes u_i^{\varepsilon} \right).$$

Collision term

- \blacktriangleright If restrictive assumptions on the cross section \Longrightarrow explicit computations
- ► In any case, Galilean invariance of the collision rules and use of Schur's lemma

$$\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\sum_{j\neq i}\int_{\mathbb{R}^3} v \ Q_{ij}(f_i^\varepsilon,f_j^\varepsilon)(v) \ dv = \frac{c_i c_j(u_i-u_j)}{D_{ij}}.$$

► Explicit form of the binary diffusion coefficients D_{ij}

At the limit $\varepsilon \rightarrow 0$

$$\partial_t c_i + \nabla \cdot N_i = 0,$$
 & $\nabla_x c_i = -\sum_{i \neq i} \frac{c_j N_i - c_i N_j}{D_{ij}}$

Scollaboration with L. Boudin, F. Salvarani, V. Pavan

Beyond the formal convergence

- Rigorous convergence
- Asymptotic-preserving numerical scheme
 - Based on the moment method as for the formal convergence
 - Asymptotic-preserving behavior
 - Existence & positivity of the solutions (concentrations)

🕏 Collaboration with A. Bondesan, L. Boudin, M. Briant

Conclusion and prospects

Hydrodynamic limit for mixtures

- Respiration
 - Influence of Oxhel?
 - Influence of the diffusion model?
 - Aerosol description and deposition?
 - Cemracs project: Size-varying respiratory aerosols modeling