Fluid-structure interaction in the cardiovascular system

Part 2 -Inverse problems

CEMRACS July 19-20, 2017

Jean-Frédéric Gerbeau

INRIA Paris & Laboratoire J.L. Lions France

Medical data assimilation

FSI simulation

CT scan

P Moireau, C Bertoglio, N Xiao, CA Figueroa, CA Taylor, D Chapelle, JF Gerbeau (2013). "Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data". Biomechanics and modeling in mechanobiology, 12(3), 475-496. 2

Medical data assimilation

Examples of data:

MRI: velocity field Data: I. Valverde, P. Beerbaum (KCL)

Ultrasound: velocity in the carotid **Data**: S. Verlhac (Créteil)

MRI: wall movement + velocity in a few planes Data: I. Valverde, P. Beerbaum (KCL)

Medical data assimilation

Measurements Models - medical imaging (CT, MRI, ...) Navier-Stokes equations blood flow (US, PC-MRI,...) Solid mechanics pressure (catheter) Access to **Improve measurements Estimate parameters** hidden quantities regularization artery wall stiffness pressure interpolation boundary condition wall stress

Outline

- Reminders on Data Assimilation
- Luenberger filters and FSI
- Applications to blood flow

• General dynamical system: $\begin{cases} \frac{dx}{dt} = A(x, \theta, t) \\ x(0) = x_0 \end{cases}$

– The operator A represents the physical model

- -x(t) denotes the state variable
- θ denotes the physical parameters

• Example in FSI:

- State variable: $x = [u, d, v^s]$ (fluid velocity, solid displacement and velocity)
- Parameters: $\theta = [\rho^{f}, \mu, E, ...]$ (density, viscosity, Young modulus, ...]

• General dynamical system:

$$\frac{dx}{dt} = A(x, \theta, t)$$
(1)
$$x(0) = x_0$$

Imperfect knowledge of x_0 and θ

• Decomposition into a known part $(x_{0,\diamond}, \theta_{\diamond})$ and an unknown part $(\zeta_x, \zeta_{\theta})$:

$$\begin{cases} x_0 = x_{0,\diamond} + \zeta_x \\ \theta_0 = \theta_{\diamond} + \zeta_{\theta} \end{cases}$$
(2)

with $(x_{0,\diamond}, \theta_{\diamond})$ is the *a priori* knowledge.

- Goal: estimate ζ_x and ζ_θ using measurements.
- Notation: $x_{[\zeta_x,\zeta_{\theta}]}$ denotes the solution to (1)-(2)
- State estimation: estimate ζ_x
- **Parameter identification:** estimate ζ_{θ}

• Assume we have measurements z^{\dagger} and an observation operator H:

$$z^{\dagger} = H(x^{\dagger}, t) + \xi$$

where x^{\dagger} denotes the "true" trajectory. and ξ denotes the measurement (observational) noise.

• A possible strategy in **data assimilation** is to minimize:

$$J(\zeta_x, \zeta_\theta) = \frac{1}{2} \int_0^T \|z^{\dagger} - H(x_{[\zeta_x, \zeta_\theta]}(t))\|_{W^{-1}}^2 dt + \frac{1}{2} \|\zeta_x\|_{P_{x,\diamond}^{-1}}^2 + \frac{1}{2} \|\zeta_\theta\|_{P_{\theta,\diamond}^{-1}}^2$$

data misfit discrepancy with the *a priori* knowledge

where $\|\cdot\|_{W^{-1}}, \|\cdot\|_{P^{-1}_{x,\diamond}}, \|\cdot\|_{P^{-1}_{\theta,\diamond}}$ are given norms.

• The norms weight differently the different terms, reflecting our confidence.

• For example $\|\theta\|_{P_{\theta,\diamond}^{-1}}^2 = \frac{1}{\sigma_{\theta}^2} |\theta|^2$, where σ_{θ} quantifies the lack of confidence in θ_{\diamond}

• Formally, state and parameter estimation can be reformulated as the state estimation of an **augmented system**:

• Minimize:

$$J(\tilde{\zeta}) = \frac{1}{2} \int_0^T \|z^{\dagger} - H(\tilde{x}_{[\tilde{\zeta}]}(t))\|_{W^{-1}}^2 dt + \frac{1}{2} \|\tilde{\zeta}\|_{P_{\diamond}^{-1}}^2$$

- The linear assumption is *really* too restrictive !
- Example:
 - the **linear** RCR equation:

$$C\frac{dp}{dt} + \frac{p}{R_d} = \left(1 + \frac{R_p}{R_d}\right)q + R_pC\frac{dq}{dt}$$

- becomes **nonlinear** when augmented to estimate the **parameters**:

$$\begin{cases} C\frac{dp}{dt} + \frac{p}{R_d} = \left(1 + \frac{R_p}{R_d}\right)q + R_pC\frac{dq}{dt} \\ \frac{dR_p}{dt} = 0 \\ \frac{dR_d}{dt} = 0 \\ \frac{dC}{dt} = 0 \end{cases}$$

$$p(0) = p_{0,\diamond}, R_p(0) = R_{p,\diamond}, R_d(0) = R_{d,\diamond}, C(0) = C_\diamond$$

Variational methods

Optimization algorithm to solve the (constrained) minimization problem

$$J(\tilde{\zeta}) = \frac{1}{2} \int_0^T \|z^{\dagger} - H(\tilde{x}_{[\tilde{\zeta}]}(t))\|_{W^{-1}}^2 dt + \frac{1}{2} \|\tilde{\zeta}\|_{P_{\diamond}^{-1}}^2$$

- Usually based on gradients (adjoint equations)
- Needs several direct and backward resolutions (the problem and its adjoint)

• Sequential methods (filtering)

Introduce an "observer", i.e. a modified dynamical system:

$$\frac{d\hat{x}}{dt} = A(\hat{x}, t) + G(z^{\dagger} - H(\hat{x}))$$

where G is an operator called the *observer gain* or *filter*.

 $x^{\dagger}(t)$: true trajectory $x^{(k)}(t)$: successive iterations

• Sequential methods:

 $x^{\dagger}(t)$: true trajectory $\hat{x}(t)$: filtered trajectory

• How to construct operator G in sequential methods ?

$$\frac{d\hat{x}}{dt} = A(\hat{x}, t) + G(z - H(\hat{x}))$$

• We will use :

- Nonlinear extension of Kalman filter
- Luenberger observers

• But we should ask before:

- Is it reasonable to perform the identification ? (identifiability...)

On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics, H Miao, X Xia, A Perelson, H Wu, SIAM Review, Vol. 53, num 1, p. 3-39

K Thomaseth, C Cobelli, Generalized sensitivity functions in physiological system identification. Annals of biomed engng 27.5 (1999): 607-616.

S Pant, B Fabrèges, JF Gerbeau, I Vignon-Clementel, A methodological paradigm for patientspecific multi-scale CFD simulations. *Int. J. Num. Meth. Biomed. Engng*, 30(12):1614–1648, 2014.

Extension of Kalman to nonlinear problems

Unscented Kalman Filter (UKF):

- In Kalman and EKF, the covariances were obtained by recursive formulas
- In UKF, they are obtained by empirical averaging

• Propagation of the
$$N_p$$
 particles: $x_{i,-}^{k+1} = F^{k+1}(x_{i,+}^k)$ and $z_{i,-}^{k+1} = H(x_{i,-}^k)$
Empirical means: $\bar{x} = \sum_{i=1}^{N_p} \omega_i x_i$, $\bar{z} = \sum_{i=1}^{N_p} \omega_i z_i$
Empirical covariances: $P_z = \sum_{i=1}^{N_p} \omega'_i (z_i - \bar{z}) (z_i - \bar{z})^T$, $P_{xz} = \sum_{i=1}^{N_p} \omega'_i (x_i - \bar{x}) (z_i - \bar{z})^T$
• UKF gain: $K = P_{xz} P_z^{-1}$

By analogy with the Kalman gain: $K = PH^T (R + HPH^T)^{-1}$ $\mathbb{E}[(x - x^{\dagger})(z - z^{\dagger})^T] \checkmark \mathbb{E}[(z - z^{\dagger})(z - z^{\dagger})^T]$

SJ Julier, JK Uhlmann, New extension of the Kalman filter to nonlinear systems, *AeroSense*'97, p. 182-193, 1997

Extension to nonlinear problems

Unscented Kalman Filter (UKF)

- Nonlinear propagation of a "particles"
- No tangent operator: Empirical mean and covariance
- **Embarrassingly parallel:** 1 particle = 1 run
- Rationale in 1D:
 - Let $\overline{X} = \mathbb{E}(X)$ and $\sigma^2 = \operatorname{Var}(X) = \mathbb{E}((X \overline{X})^2)$
 - Let be 3 "particles": $X_1 = \bar{X}$, $X_2 = \bar{X} + \sqrt{\frac{3}{2}}\sigma$, $X_3 = \bar{X} \sqrt{\frac{3}{2}}\sigma$
 - By construction: $\sum_{i=1}^{3} \frac{1}{3} F(X_i) = F(\bar{X}) + \frac{\sigma^2}{2} F''(\bar{X}) + \dots$

which is an approximation of $\mathbb{E}(F(X))$ better than $F(\overline{X})$.

- N dimensions: 2N+1 particles (but a strategy with only N particles exists)
- Cholesky factorisation to compute the square root of the covariance matrices

SJ Julier, JK Uhlmann, New extension of the Kalman filter to nonlinear systems, *AeroSense'97*, p. 182-193, 1997

covariance transport

mean trajectory

• Reminder: state-parameter augmented system:

$$\begin{cases} \frac{dx}{dt} = A(x, \theta, t) \\ x(0) = x_0 \end{cases} \longrightarrow \begin{cases} \frac{d\tilde{x}}{dt} = \tilde{A}(\tilde{x}, t) \\ \tilde{x}(0) = \tilde{x}_0 \end{cases}$$

- Example in **FSI**:
- State variable: $\mathbf{x} = [\mathbf{u}, \mathbf{d}, \mathbf{v}^{s}] \in \mathbb{R}^{n}$ (fluid velocity, solid disp. and velocity)
- Parameters: $\theta = [\rho^{f}, \mu, E, ...] \in \mathbb{R}^{p}$ (density, viscosity, Young modulus, ...]
- Measurements: $z \in \mathbb{R}^m$ (wall displacement, flow rate, velocity field, ...]
- Major concern: matrix K is full and its size is $(n + p) \times m$

Intractable for large systems (PDE) !

Remarks about implementation

• Strategy:

- UKF for the parameters: external minimally-intrusive algorithm
- Luenberger for the state: implemented in the finite element solvers

P Moireau, D Chapelle. Reduced-order "Unscented Kalman Filtering with application to parameter identification in large-dimensional systems", *ESAIM: Control, Optimisation and Calculus of Variations*, 17:2 (2011) p. 380-405.

Automatic control : Zhang-02 Oceanography: Pham-Verron-Roubeaud-97

• Remarks about implementation:

- Implementation much simpler than adjoint based algorithms
- Parallelism is trivial
- Very easy to estimate new parameters

Remarks about implementation

Outline

• Reminders on Data Assimilation

• Luenberger filters and FSI

Applications to blood flow

P Moireau, D Chapelle, P Le Tallec, Joint state and parameter estimation for distributed mechanical systems, *Comput. Methods Appl. Mech. Eng.* 197 (2008) p. 659–677.

C Bertoglio, D Chapelle, MA Fernández, JF Gerbeau, P Moireau, State observers of a vascular fluid–structure interaction model through measurements in the solid, *Comput. Methods Appl. Mech. Eng.* 256 (2013) (2011) 149–168

Luenberger observers in a nutshell

Luenberger filters: may look simple but...

- there are some pitfalls
- there is room for creativity!

The case of a linear dynamics:

- "Real" dynamics (without noise): $\frac{dx^{\dagger}}{dt} = Ax^{\dagger} + G(z^{\dagger} Hx^{\dagger})$ • Observer (*Luenberger*): $\frac{d\hat{x}}{dt} = A\hat{x} + G(z^{\dagger} - H\hat{x})$
- Dynamics of the error $e = x^{\dagger} \hat{x}$:

$$\frac{\mathrm{d}e}{\mathrm{d}t} = (A - GH)e$$

Luenberger observers in a nutshell

• Spectral properties of the error dynamics:

 $(A - GH)\Phi_k = \lambda_k \Phi_k$

 ≤ 0

Goal: Devise an operator G to reduce $\max(Re(\lambda_k))$

- **Remark**: In dissipative system, error in initial condition is "forgotten".... but, in view of **joint state-parameter** estimation, we want to forget it as quickly as possible !
- Typically, to decrease the initial error by a factor β in a time T_c :

$$\max\left(Re(\lambda_k)\right) \le \frac{\log\beta}{T_c}$$

• Ex: to have $\beta = 10$ in $T_c = 0.1s$, max $(Re(\lambda_k)) \approx -25$

- Elastodynamics equations x = [d, v]
- Velocity filtering: *Direct Velocity Feedback* (**DVF**)

$$\begin{cases} M_s \frac{\mathrm{d}\hat{\boldsymbol{v}}}{\mathrm{d}t} + K_s \hat{\boldsymbol{d}} &= R + \gamma_v H^T M_H (Z - H \hat{\boldsymbol{v}}) \\ \frac{\mathrm{d}\hat{\boldsymbol{d}}}{\mathrm{d}t} &= \hat{\boldsymbol{v}} \end{cases}$$

 $\int_{\Sigma_0} (oldsymbol{z} - oldsymbol{\hat{v}}) \cdot oldsymbol{\phi}_i$

• Equation of the error: $e_v = v - \hat{v}, e_d = d - \hat{d}$

$$M_s \frac{\mathrm{d}e_{\boldsymbol{v}}}{\mathrm{d}t} + K_s e_{\boldsymbol{d}} = -\gamma_v H^T M_H H e_{\boldsymbol{v}}$$

• Energy equation of the error: $e_v = v - \hat{v}, e_d = d - \hat{d}$

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left[\left(M_{s}e_{\boldsymbol{v}},e_{\boldsymbol{v}}\right)+\left(K_{s}e_{\boldsymbol{d}},e_{\boldsymbol{d}}\right)\right]=-\gamma_{v}\left(M_{H}He_{\boldsymbol{v}},He_{\boldsymbol{v}}\right)$$

P Moireau, D Chapelle, P Le Tallec, Joint state and parameter estimation for distributed mechanical systems, *Comput. Methods Appl. Mech. Eng.* 197 (2008) p. 659–677.

• A trivial example: linear oscillator

- In practice, it is often more convenient to work with **displacements**
- First option:

$$\begin{cases} M_s \frac{\mathrm{d}\hat{v}}{\mathrm{d}t} + K_s \hat{d} &= R + \gamma_d H^T M_H (Z - H \hat{d}) \\ \frac{\mathrm{d}\hat{d}}{\mathrm{d}t} &= \hat{v} \end{cases}$$

• Remarks:

- Related to the "Image Force Method" used in the medical imaging community
- Poor behavior (except maybe for systems with very large dissipation)

• Displacement filtering: Schur Displacement Feedback (SDF)

$$\begin{cases} M_s \frac{\mathrm{d}\hat{v}}{\mathrm{d}t} + K_s \hat{d} &= R \\ & \hat{d}\hat{d} \\ & \frac{\mathrm{d}\hat{d}}{\mathrm{d}t} &= \hat{v} + \gamma_d K_{\mu}^{-1} H^T M_H (Z - H(\hat{d})) \\ & \text{with } K_{\mu} = K_s + \mu H^T M_{\Gamma} H$$

• Remarks:

- Velocity is no longer the derivative of displacement

$$\frac{\partial \boldsymbol{d}}{\partial t} = \boldsymbol{v} + \gamma_d \operatorname{Ext}(\boldsymbol{z} - \boldsymbol{d})$$

- The norm matters!

P Moireau, D Chapelle, P Le Tallec, Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging, *Inverse Problems* 25 (3) (2009)

Velocity feedback

Displacement feedback

DVF and SDF have a similar behavior in elastodynamics

Luenberger observers in FSI

- We limit ourselves to *solid measurements*
- We are interested in:
 - The effect of the FSI coupling
 - The effect of boundary conditions
 - The effect of fluid dissipation

1st nonlinear test: stabilization to equilibrium

- Fluid initially at rest
- Initial perturbation in the solid

Surprisingly poor behavior of DVF !

2d nonlinear test: hemodynamics

$$p = \pi + R_p Q \text{ with } \begin{cases} C \frac{d\pi}{dt} + \frac{\pi}{R_d} = Q \\ \pi|_{t=0} = \pi_0 \end{cases} \text{ and } Q = \int_{\Gamma_{out}} u \cdot n \, dS$$

2d nonlinear test: hemodynamics

Why DVF behaves so poorly in FSI compared to elastodynamics ?

SDF and DVF in FSI Analysis of a toy model

• Toy model for the fluid:

- Let \mathcal{M}_A be the "Neumann-to-Dirichlet" operator: $p_{|\Sigma} = -\rho^f \mathcal{M}_A \ddot{d} \cdot n$
- Linear elasticity:

$$\begin{cases} \rho^{s} \ddot{\boldsymbol{d}} - \operatorname{div} \sigma(\boldsymbol{d}) = 0, \text{ in } \Omega^{s} \\ \sigma(\boldsymbol{d}) \cdot \boldsymbol{n} = \boldsymbol{p}|_{\Sigma} \boldsymbol{n} = -\rho^{f} \mathcal{M}_{A} \ddot{\boldsymbol{d}} \cdot \boldsymbol{n} \boldsymbol{n}, \text{ on } \Sigma \end{cases}$$

SDF and DVF in FSI

Analysis of a toy model

• Simplified FSI problem, with SDF or DVF Added mass (FSI) $\begin{cases}
(M_s + M_A) \frac{d\hat{v}}{dt} + K_s \hat{d} = R + \gamma_v H_v^T M_{\Gamma} (Z_v - H_v(\hat{v})) \\
K_{\mu} \frac{d\hat{d}}{dt} = K_{\mu} \hat{v} + \gamma_d H_d^T M_{\Gamma} (Z_d - H_d(\hat{d}))
\end{cases}$

• Evolution of λ for increasing γ :

SDF and DVF in FSI

Analysis of a toy model

Sensitivity

• Let $(\lambda(\gamma), \Phi(\gamma))$ an eigenmode. Assuming full observation:

- Velocity filter:
$$\frac{\partial \lambda}{\partial \gamma_v}\Big|_{\gamma_v=0} = -\frac{1 - \Phi^T M_A \Phi}{2}$$

- Displacement filter: $\frac{\partial \lambda}{\partial \gamma_d}\Big|_{\gamma_d=0} = -\frac{1}{2}$

Remark: In blood flows $\Phi^T M_A \Phi$ is close to 1

C Bertoglio, D Chapelle, MA Fernández, JF Gerbeau, P Moireau, State observers of a vascular fluid–structure interaction model through measurements in the solid, *Comput. Methods Appl. Mech. Eng.* 256 (2013) 149–168

How to improve DVF in FSI ?

Change norm used to measure the data misfit

"DVFam" filter for fluid structure problems

$$\begin{cases} M_s \frac{\mathrm{d}\hat{\boldsymbol{v}}}{\mathrm{d}t} + K_s \hat{\boldsymbol{d}} &= R + \gamma_v H^T M_{\Gamma} (Z - H \hat{\boldsymbol{v}}) \\ & \hat{\mathrm{d}}\hat{\boldsymbol{d}} \\ & \frac{\mathrm{d}\hat{\boldsymbol{d}}}{\mathrm{d}t} &= \hat{\boldsymbol{v}} \end{cases}$$

with $M_{\Gamma} = M_{s,\Gamma} + M_A$, where M_A is the added-mass operator.

Then we recover
$$\left. \frac{\partial \lambda}{\partial \gamma_v} \right|_{\gamma_v = 0} = -\frac{1}{2}$$

 \bigcirc

C Bertoglio, D Chapelle, MA Fernández, JF Gerbeau, P Moireau, State observers of a vascular fluid–structure interaction model through measurements in the solid, *Comput. Methods Appl. Mech. Eng.* 256 (2013) (2011) 149–168

Improved DVF in FSI

(norm including the added-mass)

Pitfall: coupling conditions

• Reminder SDF:
$$\frac{\partial d}{\partial t} = v + \gamma_d \operatorname{Ext}(z - d)$$

Thus $\frac{\partial d}{\partial t} \neq v$ in the solid

• At the fluid-structure interface, shall we use

$$\frac{\partial d}{\partial t} = u$$
 or $v = u$???

• The same analysis as before (nonlinear, spectral, sensitivity) shows that the right coupling condition is:

$$v = u$$

• Otherwise, it **kills** the efficiency of the SDF !

C Bertoglio, D Chapelle, MA Fernández, JF Gerbeau, P Moireau, State observers of a vascular fluid–structure interaction model through measurements in the solid, *Comput. Methods Appl. Mech. Eng.* 256 (2013) (2011) 149–168

Effect of boundary conditions

Toy FSI model with a Windkessel Boundary Condition

$$\begin{bmatrix} K_{\rm s} & 0 & 0\\ 0 & M_{\rm s} + M_A & 0\\ 0 & 0 & C \end{bmatrix} \begin{bmatrix} \dot{Y}_{\rm s}\\ \dot{U}_{\rm s}\\ \dot{\pi} \end{bmatrix} = \begin{bmatrix} 0 & K_{\rm s} & 0\\ -K_{\rm s} & -C_{\rm s} - R_p S \cdot S^{\mathsf{T}} & S\\ 0 & -S^{\mathsf{T}} & -\frac{1}{R_d} \end{bmatrix} \begin{bmatrix} Y_{\rm s}\\ U_{\rm s}\\ \pi \end{bmatrix}$$
$$C\frac{d\pi}{dt} + \frac{\pi}{R_d} = Q$$

- Analytical sensitivity analysis still possible
- It confirms the observations of the numerical spectral analysis

SDF reasonably good at improving the Windkessel pole

Effect of fluid dissipation

In the toy FSI model, replace the potential fluid by Stokes:

$$\begin{cases} \rho_{\rm f} \partial_t \boldsymbol{u}_{\rm f} - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}_{\rm f}(\boldsymbol{u}_{\rm f}, p) = \boldsymbol{0}, & \text{in } \Omega_0^{\rm f} \\ \boldsymbol{\nabla} \cdot \boldsymbol{u}_{\rm f} = 0, & \text{in } \Omega_0^{\rm f} \end{cases}$$

- First 100 smallest eigenvalues in module :
 - Real
 - Almost the same with Stokes or with Stokes + Structure
 - Almost unaffected by any filter

Summary for Luenberger observer in FSI

	-			
	SDF with $u=v$	SDF . with $u=d$	DVF	DVFam
Added-mass	<mark>(=</mark>			
Dissipative BC				
Fluid viscosity				

Possible remedies

• Add pressure measurements and consider Windkessel observer like:

$$R_{\rm d}C\dot{\pi} + \hat{\pi} = R_{\rm d}\hat{Q} + \gamma_{\pi}(z_{\pi} - \hat{\pi}),$$

• Add fluid measurements and devise a filter for the fluid

Outline

- Reminders on Data Assimilation
- Luenberger filters and FSI
- Applications to blood flow

C Bertoglio, P Moireau, JF Gerbeau. Sequential parameter estimation for fluid–structure problems: Application to hemodynamics. *International Journal for Numerical Methods in Biomedical Engineering* (2012), 28(4), 434-455.

P Moireau, C Bertoglio, N Xiao, CA Figueroa, CA Taylor, D Chapelle, JF Gerbeau. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. *Biomechanics and modeling in mechanobiology* (2013), 12(3), 475-496.

Parameter estimation

Stiffness estimation

- Parameter estimation: Young modulus $E_i = 2^{\theta_i}$ in 5 regions
- Observations: wall displacement on fluid-solid interface

Synthetic data

Stiffness estimation

• Synthetic data

• Gaussian noise (10%) and time resampling $\delta t_{obs} = 10\delta t$

• Two tuning coefficients:

- A priori covariance on parameters: $\alpha \mathbb{I}$
- Gain on the observations: β

Synthetic data

Stiffness estimation

Synthetic data

Stiffness estimation

- The filtering algorithm provides an *a posteriori covariance* P_n^{θ}
- We can plot $\hat{\theta}_n \pm \sqrt{\operatorname{diag}(P_n^{\theta})}$

Simulation : C.Bertoglio

FSI assimilation with real data

Data: Gaddum, Rutten, Beerbaum (KCL). **Segmentation and processing:** Hose, Barber (Sheffield)

FSI assimilation with real data

1st difficulty: the artery wall is pre-stressed

• solve an inverse problem to obtain the reference configuration

2d difficulty: the *displacement* is usually not available

- The pseudo-displacement of the registered surfaces cannot be used (*"image-driven FSI"*):
 - Normal displacement : OK
 - Tangential displacement : False !
- The discrepancy between the state and the measurements is evaluated through the signed distance:

$$\operatorname{dist}_{\mathcal{S}_{k}}: \left| \begin{array}{c} (L^{2}(\Sigma))^{3} \mapsto (L^{2}(\Sigma))^{3} \\ \mathrm{x}(\boldsymbol{\xi}) \to \operatorname{dist}_{\mathcal{S}_{k}}(\mathrm{x}(\boldsymbol{\xi}))\boldsymbol{n}_{\mathcal{S}_{k}}(\mathrm{x}(\boldsymbol{\xi})) \end{array} \right.$$

3rd difficulty: external tissues

• The artery *is not* isolated !

External tissues model

External tissue support

• Typical b.c. on the external part of the vessel : $\sigma_s n = p_0 n$

Abdominal aorta Courtesy of C. Taylor

• A simple and affordable way to model the external tissues :

$$\boldsymbol{\sigma}_{s}\boldsymbol{n} = -k_{s}\boldsymbol{d} - c_{s}\frac{\partial \boldsymbol{d}}{\partial t}$$

P Moireau, N Xiao, M Astorino, CA Figueroa, D Chapelle, CA Taylor, JF Gerbeau, (2012). "External tissue support and fluid–structure simulation in blood flows". *Biomechanics and modeling in mechanobiology*, 11(1-2), 1-18.

External tissue support

Simulation: M. Astorino

Estimation of the external tissues model

P Moireau, C Bertoglio, N Xiao, CA Figueroa, CA Taylor, D Chapelle, JF Gerbeau (2013). "Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data". Biomechanics and modeling in mechanobiology, 12(3), 475-496.

External tissues model

Estimation of the stiffness: experiment

- Silicon rubber aortic phantom
- Measurements: MRI (3T)
- Subdivision in 10 regions

Time = 0.210 s

0.2 0.4 0.6 0.8

120

90

60 30

• An elastic strap makes region 1 and 2 stiffer

Velocity [cm/s]

Time [s]

C Bertoglio, D Barber, N Gaddum, I Valverde, M Rutten, P Beerbaum, P Moireau, R Hose, JF Gerbeau. "Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model". *Journal of biomechanics (2014)*, 47(5), pp.1027-1034.

90 60

0

0.2 0.4 0.6 0.8

Estimation of the stiffness: clinical data

• MRI data:

• Stiffness estimation

C Bertoglio, D Barber, N Gaddum, I Valverde, M Rutten, P Beerbaum, P Moireau, R Hose, JF Gerbeau. "Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model". *Journal of biomechanics (2014)*, 47(5), pp.1027-1034.

A validation example

- Stacom/Miccai 2013 Challenge:
 - Predict the pressures the pressure drop due to a coarctation while matching given features of experimentally measured data.
- Measured data in the patient (rest and stress cases)
 - Flow waveform in ascending aorta (PL-1)
 - Flow waveform in descending aorta (PL-1)
 - Mean flow rates in the supra aortic vessels: innominate artery (PL-3), left carotid artery (PL-4), and left subclavian artery (PL-5)
 - Pressure waveform in the ascending aorta (Proximal plane).

A validation example

• Method

OD abstraction of 3D model
14 parameters estimated with UKF (4 RCR + time shift + one capacitance to mimic FSI)
Observation: pressure in the ascending aorta, flow at the outlets (flow split)

S Pant, B Fabrèges, JF Gerbeau, I Vignon-Clementel, A methodological paradigm for patientspecific multi-scale CFD simulations. *Int. J. Num. Meth. Biomed. Engng*, 30(12):1614–1648, 2014.

Concluding remarks

- Data assimilation allows us to
 - reduce the uncertainties of the models
 - enrich the data with physical-based models
- Two families of methods
 - variational: based on gradient, and adjoint equations
 - sequential: modified dynamics accounting for the measurements
- Benefits of sequential algorithms
 - simplicity of implementation, efficiency, versatility
 - but intractable for large systems...
- Possible strategies for large systems, as in FSI:
 - Luenberger observers (nudging) for the state
 - nonlinear Kalman filter for the parameters
- Research topics:
 - adapt the assimilation algorithms to the new kinds of medical data
 - leverage the information of multi-physics systems