GEOMETRY DESCRIPTION AND MESH CONSTRUCTION FROM MEDICAL IMAGING

M.G. Carlino, M. Phan, P. Ricka, S. Bertoluzza, M. Pennachio, G. Patanè, M. Spagnuolo

Cemracs 2018 - Marseille

August 23, 2018

Motivation

- Simulation of patient-specific biophysical phenomena.
- Requiring efficient algorithms for defining and meshing a patient specific domain in which the simulation will take place.

Our project aims at providing a geometry description and a good quality mesh of the patient specific domain.

Image segmentation

From *Quo vadis*, Atlas-based segmentation ? of T. Rohlfing, R. Brandt, R. Menzel, D.B. Russakoff, and C.R. Maurer, Jr. 2007.

Segment an image = tag each pixel/voxel with a semantic label.

Atlas image. Atlas mesh

- Image = map from a domain Ω ⊂ ℝ^N to ℝ⁺,
 i.e. A : Ω → ℝ⁺,
- label set $L = \{e_1, e_2, ..., e_K\}$,
- assigning label map $\mathcal{A}: \Omega \to L$.

A is segmented by superposing A, then (A, A) is called **atlas image**.

 \rightsquigarrow An atlas image is an image consisting of geometry, topology descriptions of specific interested domains.

 \rightsquigarrow Meshes are constructed on (A, \mathcal{A}) and naturally inherit the geometry description from (A, \mathcal{A}) .

Mesh construction. Geometry description

- (1) Create an atlas.
- (2) Define contours of the atlas.
- (3) Extract sample points on the contours without compromising the geometry of the atlas.
- (4) Generate triangle mesh by Delaunay's algorithm.

L={Calcaneus, Cuboid, Navicular, Talus}

Image co-registration - Transformation

- Grey scale images ↔ real valued functions. We denote by Im the space of grey images.
- Given grey images $A : \Omega_A \to \mathbb{R}^+$, $P : \Omega_P \to \mathbb{R}^+$.

Co-registration of A and P reduces to finding a mapping $\theta : \Omega_A \rightarrow \Omega_P$ such that $P \circ \theta$ and A are as "close" as possible.

- A parametric transformation is denoted by $\theta_{\alpha}(x) := \Theta(x; \alpha)$, e.g. $\theta_{\alpha}(x) = \sum_{i=1}^{N} \alpha_i e_i$ in \mathbb{R}^N .
- The closeness between the two images is evaluated by the so-called distance $d : \mathbf{Im} \times \mathbf{Im} \to \mathbb{R}$, hence, $d(P \circ \theta_{\alpha}, A)$.

Let
$$c(\alpha) := d(P \circ \theta_{\alpha}, A).$$

Optimization problem

 $\text{Minimize } \alpha \mapsto c(\alpha) = \delta(P \circ \theta_{\alpha}) := d(P \circ \theta_{\alpha}, A) \text{ among } \alpha \in \mathbb{R}^{N}.$

- Unconstrained optimization problem.
- There are several available algorithms (a good choice may depend on the characteristics of the transformation θ_{α} and the cost function $c(\alpha)$).

Gradient of $c(\alpha)$ is computed as

$$\nabla c(\alpha) = \int_{\Omega} D\delta(P \circ \theta_{\alpha}; x) \left[\nabla P(\theta_{\alpha}(x)) J_{\alpha} \Theta(x; \alpha) \right] dx$$

which is given by the three following modules:

distance module + image module + transformation module.

Each module is independent \rightsquigarrow This facilitates the construction of a toolbox code.

Matlab code [Bertoluzza, Maggi]

- Several choices of image distances.
- Interpolating wavelet transformation.
- Several ways to compute image gradient.
- Registration algorithms for medical images, S. Bertoluzza, G. Maggi, 2013.
- [2] A New Class of Wavelet-Based Metrics for Image Similarity Assessment, M.G. Albanesi, R. Amadeo, S. Bertoluzza, G. Maggi, 2018.

Our project points at exploiting the image registration technique in [1] for constructing high quality mesh of patient specific domain from medical images.

2D medical images

Femur

Tibia & Fibula

Atlas

Patient

2D meshes

Ulna & Radius

Femur

Tibia & Fibula

Atlas mesh

Deformed (patient) mesh

Iterate:

- (1) Get a solution in a starting mesh.
- (2) Use the just computed solution for an error indicator and build an adapted mesh.

AD = Adapted-Deformed mesh, DA = Deformed-Adapted mesh

Tibia and fibula

Non optimized meshes

Atlas

Poisson equation

Optimized meshes on patient image

$$\begin{cases} -\Delta u = 10^{-2} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Poisson equation

Solutions on optimized (patient) meshes

$$\begin{cases} -\Delta u = 10^{-2} & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

ADR equation

Optimized meshes on patient image

ADR equation

Solutions on optimized (patient) meshes

Elastic equation

Optimized meshes on patient image

Elastic equation

Solutions on optimized (patient) meshes

Comparison results

Relative error =
$$\frac{\|u - u^*\|_2}{\|u^*\|_2}$$

where u^* is either the exact solution or the best solution we have.

Equation	AD	DA
Poisson	1.95 E-3	1.91 E-3
ADR	4.09 E-4	2.69 E-4
Elastic	2.44 E-3	2.48 E-3

Distances

We consider the two following cost functionals

$$\begin{split} \delta_0(P \circ \theta_\alpha) &:= \frac{1}{2} \|P \circ \theta_\alpha - A\|_2^2 \\ \delta_\lambda(P \circ \theta_\alpha) &:= \frac{1}{2} \left(\|P \circ \theta_\alpha - A\|_2^2 + \lambda \|\nabla(P \circ \theta_\alpha - A)\|_2^2 \right) \end{split}$$

whose Frechet derivatives are:

$$egin{aligned} D\delta_0(P\circ heta_lpha)[h]&=\langle P\circ heta_lpha-A,h
angle\ D\delta_\lambda(P\circ heta_lpha)[h]&=\langle P\circ heta_lpha-A,h
angle+\lambda\langle
abla(P\circ heta_lpha-A),
abla h
angle \end{aligned}$$
 for any $h\in H^1(\Omega).$

Distances

L2

H1

A practical experiment

What if we don't get a good transformation ?

Atlas

Atlas vs Transformed Patient

We speed up the co-registration procedure by using multiscale approach:

- First co-register two images with low resolution.
- Then repeat the co-registration with the real resolution of the two images while the starting point of this step is set up with the output of the first step.

Multiscale approach. 1st step: 128x128 resolution

Multiscale approach. 2nd step: 512x512 resolution

Singlescale vs Multiscale

Atlas mesh

Singlescale vs Multiscale

Further works

• Control the distortion of the transformation by adding some regularization term to the cost functional:

$$\tilde{c}(\alpha) = d(P \circ \theta_{\alpha}, A) + E(\theta_{\alpha})$$

where $E(\cdot)$ is some measure of distortion.

- Develop the Bertoluzza-Maggi's code to register 3D medical images.
- Create 3D meshes for 3D atlas images.
- Transform and adapt these atlas meshes to the patient images.

This 3D extension is currently being implemented. BUT: ~> Limitation: memory requirement and computational time. ~> Need high performance computational platform. THANK YOU FOR YOUR ATTENTION !