Estimation of liver conductivities for irreversible electroporation

Gaspard Jankowiak Thi Ngoc Thuy Phan Cécile Taing with

Annabelle Collin Olivier Gallinato Sébastien Impériale Philippe Moireau Clair Poignard Olivier Séror

22nd August 2018

Mathematical models

Estimation methods 00000000

Outline

Electroporation for cancer treatment What is it? Why at Cemracs ?

Mathematical models Static models Dynamic models

Estimation methods The problem of parameter estimation Monte Carlo method Filtering methods

Numerical results Kalman filter

Mathematical models

Estimation methods

IRREVERSIBLE ELECTROPORATION (IRE)

- Electric field creates pores opening on the cell membrane
- Leads to imbalances in/out of the cell
- Can be temporary or permanent depending on strength and duration of exposure

Applications:

- Biology: introduction of DNA (cell modification), of drugs (enhanced chemotherapy)
- Agroindustry: sterilizing and cut french fries
- Medicine: ablation of tumors by destruction of tumoral cells (aka NanoKnife)

MATHEMATICAL MODELS

Estimation methods 00000000

IRE in the hospital

Issues:

- Electrode location
- Pulse profile/duration
- WTF are we doing, *i.e.* what area is affected by IRE ?? Without imaging (long, costly, does not allow immediate corrective treatment).

Electroporation for cancer treatment $OO \oplus O$

MATHEMATICAL MODELS

Estimation methods

Numerical results

EFFECTS AT THE CELL LEVEL (MICROSCOPIC SCALE)

- At rest, the cell membrane is made of two layers of lipids (lipid bilayer).
- When a strong electric field is applied, pores open on the membrane (typically 1µs). This greatly increases the conductivity of the membrane.
- ► Later (10 100µs) the lipids will be altered be the electric field, increasing the conductivity a bit more

Figure: Side cut of the cell membrane

The (evolution of) electrical properties of the body can be used to define the eletroporated area.

Mathematical models

Estimation methods

Numerical results

Objectives of our Cemracs project

General goal, for clinicians:

 Using only available measurements (intensities for different applied voltages) to determine the conducting properties of the medium (body), thus deducting the treated area.

Tools:

- Different models for electroporation, depending on a number of physical properties. Most parameters are not available in the litterature and cannot be directly measured.
- Several automated parameter estimation methods

Our goal this summer:

- Compare the estimation methods
- Provide model parameters to fit real data
- Possibly help validate new models

MATHEMATICAL MODELS

Estimation methods

Numerical results

Modelling elements

- Electrostatic type phenomenon
- Starting point: classical electrostatic equation:

$$\begin{cases} \nabla \cdot (\sigma(x) \nabla V(x)) = 0 & x \in \Omega \\ \nabla V \cdot \mathbf{n} = 0 & x \in \Gamma_{\text{out}} \\ V = g^{\pm} & x \in \mathcal{E}^{\pm} \end{cases}$$

- V: electric potential (∇V electric field)
- σ : conductivity

•
$$I^{\pm} = \int_{\mathcal{E}^{\pm}} \sigma \nabla V \cdot \mathbf{n} \, \mathrm{d}s$$
: intensity

MATHEMATICAL MODELS

Estimation methods 00000000 Numerical results

THE BIPHASE MODEL, VOYER AND AL. 2018 Half phenomenological - half physiological

- Model the tissue like an electric circuit
- Three conducting regions: the intra-/extracellular media, and the cell membrane.

MATHEMATICAL MODELS

Estimation methods

Numerical results

THE BIPHASE MODEL, VOYER AND AL. 2018 Half phenomenological - half physiological

- Model the tissue like an electric circuit
- Three conducting regions: the intra-/extracellular media, and the cell membrane.

Static biphase model

 $\begin{aligned} \nabla \cdot (\sigma_e \nabla \phi_e + \mathbf{J}_c) &= 0, \\ (\sigma_c + \sigma_m(|\mathbf{E}_m|)) \mathbf{J}_c &= \sigma_c \sigma_m(|\mathbf{E}_m|) \nabla \phi_e, \\ \mathbf{n} \cdot \nabla \phi_e|_{\Gamma_{\text{out}}} &= 0, \quad \phi_e|_{\mathcal{E}^{\pm}} &= g^{\pm}, \end{aligned}$

where $\mathbf{E}_m = -\nabla \phi_e + \sigma_c^{-1} \mathbf{J}_c$ is the *trans-membrane* electric field.

From the biphase model to the standard model

MONODOMAIN LIMIT AND STANDARD MODEL

This can be rewritten in terms of \mathbf{E}_m only:

$$\nabla \cdot \left(\left(\sigma_e + \frac{\sigma_c \sigma_m(|\mathbf{E}_m|)}{\sigma_c + \sigma_m(|\mathbf{E}_m|)} \right) \nabla \phi_e \right) = 0.$$

It is a generalized form of the electrostatic equation:

Standard model

$$\begin{split} &-\nabla\cdot(\sigma(||\nabla V||)\nabla V)=0,\quad \text{in}\,\Omega,\\ &\mathbf{n}\cdot\nabla V|_{\Gamma_{\text{out}}}=0,\quad V|_{\mathcal{E}^{\pm}}=g^{\pm}, \end{split}$$

BIDOMAIN MODEL

A physiological model

$\Omega(\sigma_e)$	$\Omega_c(\sigma_c)$
	\square
$\sigma_m(?)$	\square

MATHEMATICAL MODELS	
0000000	

Estimation methods

Numerical results

The microscopic model:

$\sigma_e \Delta u_e = 0$	$x \in \Omega \setminus \Omega_c$
$\sigma_c \Delta u_c = 0$	$x \in \Omega_c$
$\int \sigma_e \nabla u_e \cdot \mathbf{n} = \sigma_c \nabla u_c \cdot \mathbf{n}$	$x \in \Gamma_e$
$\left((\sigma_m[?]) \left(u_e - u_c \right) = \sigma_c \nabla u_c \cdot \right)$	n $x \in \Gamma_e$

Homogenization limit \Downarrow Manon Deville's thesis

Static bidomain model

$$\begin{cases} \nabla \cdot (\sigma_e \nabla u_e + \sigma_c \nabla u_c) = 0 & x \in \Omega \\ \alpha (\sigma_m[?]) (u_e - u_c) - \nabla \cdot (\sigma_c \nabla u_c) = 0 & x \in \Omega \end{cases}$$

?	Good	Bad		
$u_e - u_c$ rigorous derivation		no electroporation at the center [*]		
∇u_e matches experiments		purely phenomenological		

Boundary conditions:

$$u_e|_{\mathcal{E}^{\pm}} = g^{\pm}$$
, $\mathbf{n} \cdot \nabla u_e|_{\Gamma_{\text{out}}} = 0$, $\mathbf{n} \cdot \nabla (u_e - u_c)|_{\Gamma_{\text{out}} \cup \mathcal{E}^{\pm}} = 0$.

MATHEMATICAL MODELS

Estimation methods

Numerical results

Dynamical models

In the previous derivation from the electric circuit equilavence, we can keep $\partial_t J_c \neq 0$ and get

Dynamic biphase model

$$\begin{aligned} \nabla \cdot (\sigma_e \nabla \phi_e + \mathbf{J}_c) &= 0, \\ \varepsilon_0 \varepsilon_m \partial_t \mathbf{J}_c + (\sigma_c + \sigma_m(t, |\mathbf{E}_m|)) \mathbf{J}_c &= \sigma_c \sigma_m(t, |\mathbf{E}_m|) \nabla \phi_e, \\ \mathbf{n} \cdot \nabla \phi_e|_{\Gamma_{\text{out}}} &= 0, \quad \phi_e|_{\mathcal{E}^{\pm}} &= g^{\pm}, \end{aligned}$$

Still reasoning with a membrane capacity, we also derive

Dynamic bidomain model

$$\begin{aligned} \nabla \cdot (\sigma_e \nabla u_e + \sigma_c \nabla u_c) &= 0 \\ C_m \partial_t (u_e - u_c) + \alpha \left(\sigma_m (t, \nabla u_e) \right) (u_e - u_c) - \sigma_c \Delta u_c &= 0 \\ u_e |_{\mathcal{E}^{\pm}} &= g^{\pm} , \quad \mathbf{n} \cdot \nabla u_e |_{\Gamma_{\text{out}}} = 0 , \\ \mathbf{n} \cdot \nabla (u_e - u_c) |_{\Gamma_{\text{out}} \cup \mathcal{E}^{\pm}} &= 0 . \end{aligned}$$

11/38

MATHEMATICAL MODELS

Estimation methods

Numerical results

DYNAMICAL MODELS MEMBRANE CONDUCTIVITY DYNAMICS

The conductivity can be considered time-dependent:

Phenomenon	Symbol	Evolution	Dynamics
Poration	X_1	$\dot{X}_1 = \left(\frac{\beta_1(\mathbf{E}) - X_1}{\tau_1}\right)_+$	fast ($\tau_1 \simeq 1 \mu s$)
Permeabilisation	X_2	$\dot{X}_2 = \left(\frac{\beta_2(X_1) - X_2}{\tau_2}\right)_+$	slow ($\tau_2 \simeq 100 \mu s$)

 $\sigma_m(t, \mathbf{E}) = \sigma_0^m + \sigma_1^m X_1(t, \mathbf{E}) + \sigma_e^m X_2(t, \mathbf{E}).$

MATHEMATICAL MODELS

Estimation methods

Model parameters and available data

Parameters:

Model	Class	Parameters	Symbols
standard	static	4	E_{th} , k_{ep} , σ_0 , σ_1
bidomain	static	4	$E_{th}, k_{ep}, \sigma_0, \sigma_1, \sigma_e, \sigma_c$
bidomain	dynamic	12	$\sigma_e, \sigma_c, C_m, \sigma_{0,1,2}, \tau_{1,2}, k_{1,2}, Th_{1,2}$
biphase	static	6	$E_{th}, k_{ep}, \sigma_0, \sigma_1, \sigma_e, \sigma_c$
biphase	dynamic	12	$\sigma_e, \sigma_c, \epsilon_m, \sigma_{0,1,2}, \tau_{1,2}, k_{1,2}, Th_{1,2}$

Data:

- ► 3 different electrode sizes
- ► 5 different voltages (200V to 1000V)
- 19 samples, from $0.07 \mu s$ to $97 \mu s$

MATHEMATICAL MODELS

Estimation methods

The problem of parameter estimation (static case)

Consider

- $\theta \in (\Theta, \|\cdot\|_{P_{\wedge}^{-1}})$, a fixed vector of parameter values
- $y \in \mathcal{Y}$ the solution to the *forward* problem (\mathcal{A} : model operator):

$$y = \{y : \mathcal{A}(y, \theta) = 0\} =: \mathcal{L}(\theta)$$

• $(\mathcal{Z}, \|\cdot\|_R)$ the space of observations or measurements we have access to. We can map \mathcal{Y} to \mathcal{Z} , *i.e* make a measurement on our solution:

$$z = \mathcal{C}(y)$$

Our goal is to "invert" the operator $\Psi = C \circ L$. This could be done by minimizing the following functional:

$$\mathcal{J}(\theta) = \frac{1}{2} \|\theta - \theta_{\diamond}\|_{P_{\diamond}^{-1}}^2 + \frac{1}{2} \|z^* - \Psi(\theta)\|_R^2.$$

 θ_{\diamond} a priori estimate, P_{\diamond} : uncertainty on the parameters, R: measurement noise

MATHEMATICAL MODELS

Estimation methods

The problem of parameter estimation (static case)

Consider

- $\theta \in (\Theta, \|\cdot\|_{P^{-1}_{\diamond}})$, a fixed vector of parameter values
- $y \in \mathcal{Y}$ the solution to the *forward* problem (\mathcal{A} : model operator):

$$y = \{ \mathbf{y} : \mathcal{A}(\mathbf{y}, \theta) = 0 \} =: \mathcal{L}(\theta)$$

• $(\mathcal{Z}, \|\cdot\|_R)$ the space of observations or measurements we have access to. We can map \mathcal{Y} to \mathcal{Z} , *i.e* make a measurement on our solution:

 $z=\mathcal{C}(y)$

Our goal is to "invert" the operator $\Psi = C \circ L$. This could be done by minimizing the following functional:

$$\mathcal{J}(\theta) = \frac{1}{2} \|\theta - \theta_{\diamond}\|_{P_{\diamond}^{-1}}^{2} + \frac{1}{2} \sum_{k} \|z_{k}^{*} - \Psi(\theta)\|_{R}^{2},$$

 θ_{\circ} a priori estimate, P_{\circ} : uncertainty on the parameters, R: measurement noise

Mathematical models

Estimation methods

Numerical results

ESTIMATION METHODS

Method	Good	Bad
Gradient descent	Can be fast	Needs Jacobian
		local minima, tuning
Monte-Carlo / Metropolis	easy	slow
Fitering methods	easy	not cheap, tuning

MATHEMATICAL MODELS

Estimation methods

Numerical results

Monte Carlo method

Introduction

- Computing experiment: Computational physics, computational chemistry, computational biology,...

- What is Monte Carlo method?

Lets you see all the possible outputs of your inputs.

Mathematical models

Estimation methods

Numerical results

► How does Monte Carlo method work?

Applying the Monte Carlo method to the standard static model

- Step 1: Generate randomly a set of parameters {θ_i}_i (i = 1, ..., N) of the form uniform distribution from a priori value of θ₀.
 Where: θ_i = (Eth(i), kep(i), σ₀(i), σ₁(i)) (i = 1, ..., N)
- ► Step 2: Compute the corresponding outputs (set of model intensities $\{\Psi(\theta_i)\}_i$ (i = 1, ..., N) with 3 different electrode diameters $d \in \{0.3, 0.7, 1.1\}$ and 2 different voltages $V \in \{600, 800\}$.
- Step 3: Use the Least-Squares Error Minimization to find the best matching set of parameters.

Mathematical models

Estimation methods

Numerical results

Least-Squares Error

- ► The residual measures the difference between a observed data and the corresponding model estimate: z Ψ(θ_i)
- Since the residuals can be positive or negative, we can not assess a sum of residuals as a good measure of overall error in the fit.
- A better way is to take the sum of squared residuals, *J*(θ_i), which is only zero if every residual is zero.

$$\mathcal{J}(\theta_i) = \sum_{d, V} (z - \Psi(\theta_i))^2, \quad (i = 1, ..., N)$$

• Estimated parameter is taken as $\theta^* = \operatorname{argmin}_i(\mathcal{J}(\theta_i))$

MATHEMATICAL MODELS

Estimation methods

FILTERING METHODS Kalman filter

Assuming a fully linear system

Estimated state: $\hat{X}_{k|.}$ Estimated uncertainty: $P_{k|.} = \text{cov}(X_k - \hat{X}_{k|k})$

Prediction

$$\blacktriangleright \hat{X}_{k|k-1} = \mathcal{L}\hat{X}_{k-1|k-1}$$

$$\blacktriangleright P_{k|k-1} = \mathcal{L}P_{k-1|k-1}\mathcal{L}^T + Q$$

Update

- $\blacktriangleright \hat{y}_{k|k-1} = z_k C\hat{X}_{k|k-1}$
- $\blacktriangleright S_k = R + CP_{k|k-1}C^T$
- $\blacktriangleright \quad K = P_{k|k-1} \mathcal{C}^T S^{-1}$
- $\blacktriangleright \ \hat{x}_{k|k} = \hat{X}_{k|k-1} + K\hat{y}_k$

 $P_{k|k} =$ $(I - KC)P_{k|k-1}(I - KC)^T + KRK^T$

Mathematical models

Estimation methods

FILTERING METHODS Kalman filter

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

- 1. The state space is small, otherwise $P_{k|k}$ is too big to work with
- 2. The model \mathcal{L} is linear
- 3. The model \mathcal{L} depend linearly in the parameters
- 4. The observation operator \mathcal{C} is linear

Mathematical models

Estimation methods

FILTERING METHODS Kalman filter

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

- \mathcal{X} The state space is small, otherwise $P_{k|k}$ is too big to work with
- 2. The model \mathcal{L} is linear
- 3. The model \mathcal{L} depend linearly in the parameters
- 4. The observation operator \mathcal{C} is linear

Mathematical models 0000000 Estimation methods

FILTERING METHODS Kalman filter

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

- \mathcal{X} The state space is small, otherwise $P_{k|k}$ is too big to work with
- \mathcal{X} The model \mathcal{L} is linear
- 3. The model \mathcal{L} depend linearly in the parameters
- 4. The observation operator \mathcal{C} is linear

Mathematical models

Estimation methods

Numerical results

FILTERING METHODS Kalman filter

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

- \mathcal{X} The state space is small, otherwise $P_{k|k}$ is too big to work with
- \mathcal{X} The model \mathcal{L} is linear
- ${\mathcal X}$ The model ${\mathcal L}$ depend linearly in the parameters
- 4. The observation operator C is linear

Mathematical models

Estimation methods

FILTERING METHODS Kalman filter

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

- \mathcal{X} The state space is small, otherwise $P_{k|k}$ is too big to work with
- \mathcal{X} The model \mathcal{L} is linear
- ${\mathcal X}$ The model ${\mathcal L}$ depends linearly on the parameters
- $\checkmark~$ The observation operator ${\cal C}$ is linear

Mathematical models

Estimation methods

Numerical results

FILTERING METHODS KALMAN FILTER

What about parameter estimation?

One can simply consider the joint parameter-state space as the new state space, with $\theta_{k|k-1} = \theta_{k-1|k-1}$.

This works if:

- \mathcal{X} The state space is small, otherwise $P_{k|k}$ is too big to work with
- \mathcal{X} The model \mathcal{L} is linear
- ${\mathcal X}$ The model ${\mathcal L}$ depends linearly on the parameters
- \checkmark The observation operator $\mathcal C$ is linear

Solutions:

- 2. & 3. Nonlinear extensions: Extended KF (EKF) and Unscented KF (UKF)
 - 1. Reduced-order Unscented KF (RoUKF)

Mathematical models

Estimation methods

Numerical results

NUMERICAL RESULTS Software

Tools/libraries:

- ► python
- numpy (general scientific computing)
- ► fenics (FEM)
- ► filterpy (Kalman related utilities)

Software written:

- ► Solvers for the static problems: standard and bidomain (Gaspard)
- ► Solvers for the dynamic problems: work in progress
- Monte Carlo estimator (Thuy and al.)
- General Kalman filter library: static, dynamic and with state estimator (Cécile and Gaspard)
- ► Glue code for Kalman estimation for the static case (Cécile)

Mathematical models

Estimation methods

QUALITATIVE RESULTS STANDARD MODEL

Figure: Standard static model typical solution

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS BIDOMAIN MODEL

Figure: Bidomain static model typical solution

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 0, I(0.03mus) = 0.000662733202065317

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 10, I(0.33mus) = 0.10731788490339066

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 20, I(0.63mus) = 0.7165425924869854

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 30, I(0.93mus) = 1.4146002605659211

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 40, I(1.23mus) = 1.6294353938981339

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 50, I(1.53mus) = 1.6814100803422494

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 60, I(1.83mus) = 1.7066476938468846

Mathematical models

Estimation methods

Numerical results

QUALITATIVE RESULTS Dynamic biphase model

i = 70, I(2.13mus) = 1.7208963972857538

Mathematical models

Estimation methods

Numerical results

NUMERICAL RESULTS Monte Carlo

Paramater	E_{th}	k_{ep}	σ_0	σ_1
Init. value	5.75×10^4	5×10^{-3}	6.5×10^{-2}	1.483×10^{-1}
Variance	25	2×10^{-3}	2.5×10^{-2}	0.9×10^{-1}
Size of param	set Estima	ated param	Min of sq	uared residuals
30	$Eth = k_{ep} = 1$ $\sigma_0 = 8$ $\sigma_1 = 4$	5.750×10^{4} 1.848×10^{-2} 3.412×10^{-2} 3.256×10^{-1}		0.357
100	$Eth = k_{ep} = 8$ $\sigma_0 = 6$ $\sigma_1 = 4$	5.750×10^4 3.528×10^{-3} 8.871×10^{-2} 8.444×10^{-1}		0.345
500	$Eth = k_{ep} = 1$ $\sigma_0 = 4$ $\sigma_1 = 4$	5.750×10^{4} 1.442×10^{-2} 1.674×10^{-3} 1.165×10^{-1}		0.312

Mathematical models

Estimation methods

Numerical results

NUMERICAL RESULTS

Kalman filtering on synthetic data:

Figure: Independent estimation of the 4 parameters

Mathematical models

Estimation methods

Numerical results

NUMERICAL RESULTS

Figure: Simultaneous estimation of E_{th} and σ_1

Mathematical models

Estimation methods

Numerical results

NUMERICAL RESULTS

Figure: Simultaneous estimation of E_{th} , σ_0 and σ_1

Work to be done, future work and open questions

Work done

- Implementation of the (nonlinear) direct solvers with a common interface
- ► Implementation of several parameter estimation methods
- Qualitative comparison with clinical data

Work to be done

- Quantitative comparison with clinical data (in progress)
- ► Parameter estimation in the dynamical case (soon)
- ► Fix the direct bidomain and dynamic model solvers (very soon)

Future work and open questions

- ► Theory
 - Well-posedness of the inverse problems
 - Write a good state estimator for the dynamical problems
- ► Modelling
 - Physiological evolution equation for $\sigma_m(t)$
 - Correct derivation of the $\sigma_m(|\nabla u_e|)$

Thank you for your attention!