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Irreversible electroporation (IRE)

I Electric field creates pores
opening on the cell membrane

I Leads to imbalances in/out of the
cell

I Can be temporary or permanent
depending on strength and
duration of exposure

Applications:
I Biology: introduction of DNA (cell modification), of drugs

(enhanced chemotherapy)
I Agroindustry: sterilizing and cut french fries
I Medicine: ablation of tumors by destruction of tumoral cells

(aka NanoKnife)
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IRE in the hospital
Issues:

I Electrode location
I Pulse profile/duration
I WTF are we doing, i.e. what

area is affected by IRE ??
Without imaging (long,
costly, does not allow
immediate corrective
treatment).
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Effects at the cell level (microscopic scale)

I At rest, the cell membrane is made of two
layers of lipids (lipid bilayer).

I When a strong electric field is applied, pores
open on the membrane (typically 1µs). This
greatly increases the conductivity of the
membrane.

I Later (10− 100µs) the lipids will be altered be
the electric field, increasing the conductivity
a bit more

Figure: Side cut of the cell
membrane

The (evolution of)
electrical properties
of the body can be
used to define the
eletroporated area. 5/38
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Objectives of our Cemracs project

General goal, for clinicians:
I Using only available measurements (intensities for different

applied voltages) to determine the conducting properties of the
medium (body), thus deducting the treated area.

Tools:
I Different models for electroporation, depending on a number of

physical properties. Most parameters are not available in the
litterature and cannot be directly measured.

I Several automated parameter estimation methods
Our goal this summer:

I Compare the estimation methods
I Provide model parameters to fit real data
I Possibly help validate new models
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Modelling elements

Ω

E+E−

Γ|out
I Electrostatic type

phenomenon
I Starting point: classical

electrostatic equation:
∇ · (σ(x)∇V(x)) = 0 x ∈ Ω
∇V · n = 0 x ∈ Γout

V = g± x ∈ E±

I V: electric potential (∇V electric field)
I σ: conductivity
I I± =

∫
E± σ∇V · nds: intensity

7/38



Electroporation for cancer treatment Mathematical models Estimation methods Numerical results

The biphase model, Voyer and al. 2018
Half phenomenological - half physiological

I Model the tissue like an electric circuit
I Three conducting regions: the intra-/extracellular media, and

the cell membrane.

i = ie + icell

icell = 2
(
umR−1

m + Cm
d
dt

um

)
= (v − 2um)R−1

c

ie = vR−1
e

d
dt

ie = 0⇒
(
R−1

c + R−1
m

)
icell + Cm

d
dt

icell =
Re

RcRm
ie
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The biphase model, Voyer and al. 2018
Half phenomenological - half physiological

I Model the tissue like an electric circuit
I Three conducting regions: the intra-/extracellular media, and

the cell membrane.

i = ie + icell

icell = 2
(
umR−1

m + Cm
d
dt

um

)
= (v − 2um)R−1

c

ie = vR−1
e

Static biphase model

∇ · (σe∇φe + Jc) = 0,
(σc + σm(|Em|))Jc = σcσm(|Em|)∇φe,

n · ∇φe|Γout = 0, φe|E± = g±,

where Em = −∇φe + σ−1
c Jc is the trans-membrane electric field. 8/38
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From the biphase model to the standard model
Monodomain limit and standard model

This can be rewritten in terms of Em only:

∇ ·

((
σe +

σcσm(|Em|)
σc + σm(|Em|)

)
∇φe

)
= 0.

It is a generalized form of the electrostatic equation:

Standard model

− ∇ · (σ(‖∇V‖)∇V) = 0, inΩ,
n · ∇V|Γout = 0, V|E± = g±,

Eth |∇V|

σ0

σ1

σ(|∇V|)
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Bidomain model
A physiological model

The microscopic model:

σm(|?|)

Ω(σe) Ωc(σc)

σe∆ue = 0 x ∈ Ω \Ωc

σc∆uc = 0 x ∈ Ωc

σe∇ue · n = σc∇uc · n x ∈ Γe

(σm[?]) (ue − uc) = σc∇uc · n x ∈ Γe

Homogenization limit ⇓ Manon Deville’s thesis

Static bidomain model∇ · (σe∇ue + σc∇uc) = 0 x ∈ Ω
α (σm[?]) (ue − uc) − ∇ · (σc∇uc) = 0 x ∈ Ω

? Good Bad

ue − uc rigorous derivation no electroporation at the center*
∇ue matches experiments purely phenomenological

Boundary conditions:
ue|E± = g± , n · ∇ue|Γout = 0 , n · ∇(ue − uc)|Γout∪E± = 0 .
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Dynamical models
In the previous derivation from the electric circuit equilavence, we
can keep ∂tJc 6= 0 and get

Dynamic biphase model
∇ · (σe∇φe + Jc) = 0,
ε0εm∂tJc + (σc + σm(t, |Em|)) Jc = σcσm(t, |Em|)∇φe,

n · ∇φe|Γout = 0, φe|E± = g±,

Still reasoning with a membrane capacity, we also derive

Dynamic bidomain model
∇ · (σe∇ue + σc∇uc) = 0
Cm∂t(ue − uc) + α (σm(t,∇ue)) (ue − uc) − σc∆uc = 0
ue|E± = g± , n · ∇ue|Γout = 0 ,
n · ∇(ue − uc)|Γout∪E± = 0 .

Where Cm has the unit of capacitance per unit volume.
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Dynamical models
Membrane conductivity dynamics

The conductivity can be considered time-dependent:

σm(t,E) = σm
0 + σ

m
1 X1(t,E) + σm

e X2(t,E).

Phenomenon Symbol Evolution Dynamics

Poration X1 Ẋ1 =
(
β1(E)−X1

τ1

)
+

fast (τ1 ' 1µs)
Permeabilisation X2 Ẋ2 =

(
β2(X1)−X2

τ2

)
+

slow (τ2 ' 100µs)
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Model parameters and available data

Parameters:

Model Class Parameters Symbols
standard static 4 Eth, kep, σ0, σ1
bidomain static 4 Eth, kep, σ0, σ1, σe, σc
bidomain dynamic 12 σe, σc, Cm, σ0,1,2, τ1,2, k1,2, Th1,2
biphase static 6 Eth, kep, σ0, σ1, σe, σc
biphase dynamic 12 σe, σc, εm, σ0,1,2, τ1,2, k1,2, Th1,2

Data:
I 3 different electrode sizes
I 5 different voltages (200V to 1000V)
I 19 samples, from 0.07µs to 97µs
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The problem of parameter estimation (static case)

Consider
I θ ∈ (Θ, ‖ · ‖P−1

�
), a fixed vector of parameter values

I y ∈ Y the solution to the forward problem (A: model operator):

y =
{
y : A(y, θ) = 0

}
=: L(θ)

I (Z , ‖ · ‖R) the space of observations or measurements we have access to.
We can map Y to Z , i.e make a measurement on our solution:

z = C(y)

Our goal is to "invert" the operator Ψ = C ◦ L. This could be done by
minimizing the following functional:

J (θ) = 1
2 ‖θ − θ�‖

2
P−1
�

+
1
2 ‖z

∗
− Ψ(θ)‖2R.

θ� a priori estimate,P�: uncertainty on the parameters,R: measurement noise
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Estimation methods

Method Good Bad

Gradient descent Can be fast Needs Jacobian
local minima, tuning

Monte-Carlo / Metropolis easy slow
Fitering methods easy not cheap, tuning
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Monte Carlo method

I Introduction
- Computing experiment: Computational physics, computational
chemistry, computational biology,...
- What is Monte Carlo method?
Lets you see all the possible outputs of your inputs.
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I How does Monte Carlo method work?
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Applying the Monte Carlo method to the standard
static model

I Step 1: Generate randomly a set of parameters {θi}i (i = 1, ...,N)
of the form uniform distribution from a priori value of θ0.
Where: θi = (Eth(i), kep(i), σ0(i), σ1(i)) (i = 1, ...,N)

I Step 2: Compute the corresponding outputs (set of model
intensities {Ψ(θi)}i (i = 1, ...,N) with 3 different electrode
diameters d ∈ {0.3, 0.7, 1.1} and 2 different voltages
V ∈ {600, 800}.

I Step 3: Use the Least-Squares Error Minimization to find the best
matching set of parameters.
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Least-Squares Error

I The residual measures the difference between a observed data
and the corresponding model estimate: z − Ψ(θi)

I Since the residuals can be positive or negative, we can not assess
a sum of residuals as a good measure of overall error in the fit.

I A better way is to take the sum of squared residuals, J (θi),
which is only zero if every residual is zero.

J (θi) =
∑
d, V

(z − Ψ(θi))2 , (i = 1, ...,N)

I Estimated parameter is taken as θ∗ = argmini(J (θi))
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Filtering methods
Kalman filter

Assuming a fully linear system

Estimated state: X̂k|·
Estimated uncertainty:
Pk|· = cov(Xk − X̂k|k)

Prediction
I X̂k|k−1 = LX̂k−1|k−1

I Pk|k−1 = LPk−1|k−1LT +Q

Update
I ŷk|k−1 = zk − CX̂k|k−1

I Sk = R + CPk|k−1CT

I K = Pk|k−1CTS−1

I x̂k|k = X̂k|k−1 + Kŷk

I Pk|k =
(I − KC)Pk|k−1(I − KC)T + KRKT

Xk = L(Xk−1) + wk

X̂k =?

state space

observation space

C

zk = C(Xk) + vk ẑk = C(X̂k)
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Filtering methods
Kalman filter

What about parameter estimation?
One can simply consider the joint parameter-state space as the new
state space, with θk|k−1 = θk−1|k−1.

This works if:

1. The state space is small, otherwise Pk|k is too big to work with
2. The model L is linear
3. The model L depend linearly in the parameters
4. The observation operator C is linear
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Filtering methods
Kalman filter

What about parameter estimation?
One can simply consider the joint parameter-state space as the new
state space, with θk|k−1 = θk−1|k−1.

This works if:

X The state space is small, otherwise Pk|k is too big to work with
X The model L is linear
X The model L depends linearly on the parameters
X The observation operator C is linear

Solutions:

2. & 3. Nonlinear extensions: Extended KF (EKF) and Unscented KF
(UKF)

1. Reduced-order Unscented KF (RoUKF)
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Numerical results
Software

Tools/libraries:
I python
I numpy (general scientific computing)
I fenics (FEM)
I filterpy (Kalman related utilities)

Software written:
I Solvers for the static problems: standard and bidomain (Gaspard)
I Solvers for the dynamic problems: work in progress
I Monte Carlo estimator (Thuy and al.)
I General Kalman filter library: static, dynamic and with state

estimator (Cécile and Gaspard)
I Glue code for Kalman estimation for the static case (Cécile)
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Qualitative results
Standard model
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Figure: Standard static model typical solution
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Qualitative results
Bidomain model
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Figure: Bidomain static model typical solution
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Qualitative results
Dynamic biphase model
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Numerical results
Monte Carlo

Paramater Eth kep σ0 σ1

Init. value 5.75 × 104 5 × 10−3 6.5 × 10−2 1.483 × 10−1

Variance 25 2 × 10−3 2.5 × 10−2 0.9 × 10−1

Size of param set Estimated param Min of squared residuals

Eth = 5.750 × 104

30 kep = 1.848 × 10−2 0.357
σ0 = 8.412 × 10−2

σ1 = 4.256 × 10−1

Eth = 5.750 × 104

100 kep = 8.528 × 10−3 0.345
σ0 = 6.871 × 10−2

σ1 = 4.444 × 10−1

Eth = 5.750 × 104

500 kep = 1.442 × 10−2 0.312
σ0 = 4.674 × 10−3

σ1 = 4.165 × 10−1
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Numerical results
Kalman filtering on synthetic data:
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Figure: Independent estimation of the 4 parameters
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Numerical results
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Figure: Simultaneous estimation of Eth and σ1
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Numerical results
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Figure: Simultaneous estimation of Eth, σ0 and σ1
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Work to be done, future work and open questions
Work done

I Implementation of the (nonlinear) direct solvers with a common
interface

I Implementation of several parameter estimation methods
I Qualitative comparison with clinical data

Work to be done
I Quantitative comparison with clinical data (in progress)
I Parameter estimation in the dynamical case (soon)
I Fix the direct bidomain and dynamic model solvers (very soon)

Future work and open questions
I Theory

I Well-posedness of the inverse problems
I Write a good state estimator for the dynamical problems

I Modelling
I Physiological evolution equation for σm(t)
I Correct derivation of the σm(|∇ue |)
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Thank you for your attention!
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