Models of emergent networks

P. Degond

Department of Mathematics Imperial College London United Kingdom

pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

- 1. Introduction
- 2. Ant trail networks
- 3. Blood capillary network
- 4. Fiber networks in tissues
- 5. Conclusion

1. Introduction

Complex network features

Large size

Plasticity

Goal: model evolving networks ex: ant trails, sheep trails, ...

2. Ant trail networks

with E. Boissard, S. Motsch (ASU)

Boissard, D., Motsch, J. Math. Biol., 66 (2013), pp. 1267-1301.

Motion on a pre-existing trail

Cellular automata

[John et al, JTB 04; Nishinari etal, Physica A 06]

Decision-making between trails ODE's [Reid et al, J. Exp. Biol 11]

Zero-dimensional models

Trail density [Edelstein-Keshet, JMB 94]

Lattice or cellular automata models

[Watmough & EK, JTB 95; Rauch et al Phys. Lett. A 95;

Schweitzer et al, Biosystems 97; Vincent etal JMB 04]

Emergent networks

6

Trail-laying

Main model assumptions

Pheromones are directed quantities

Segment connecting two consecutive phero deposits

- Two-particle species: ants and trails
- ants move at constant speed
- ants subject to random direction changes
- ants interact with neigboring trails through alignment
- ants deposit trails at a constant rate
- trails evaporate at a constant rate

Goal:

Individual-Based model \rightarrow observe emergence of trails kinetic and hydrodynamic models

↑ Pierre Degond

Trail statistics

Trails defined by clustering relation

 $P_i \sim P_j \iff |X_i - X_j| \le r \text{ and } |\sin(\omega_i, \omega_j)| \le s$

r and s ad-hoc parameters; P_i refers to ants or trail elements closed into equivalence relation by transitivity trail = equivalence class of this relation

Trails size statistics

 $p_t(S) =$ proba that a particle P_i belongs to a cluster of size S

Two trails at $t = 2000 \, s$ 40 100 60 х

Emergence of trails: phase transition

Mean trail size $\langle S \rangle = \sum_{S} S p_t(S)$

Abrupt increase when trail recruitment freq. increases

phase transition

1 ()

Trail width

From lateral decay of two-point correlation f_2

trails are thinner with more trail recruitment

less random jumps

λ_p	$r_0 (\mathrm{cm})$	λ_r	r_0 (cm)
3	2.796	0	2.532
2	3.181	1	2.964
1	4.350	2	3.181
		3	3.345

3. Blood capillary network

with P. Aceves-Sanchez, B. Aymard (Nice), D. Peurichard (INRIA Paris), L. Casteilla & A. Lorsignol (Stromalab, Toulouse), P. Kennel & F. Plouraboué (Fluid Mech. Toulouse) in preparation

Context

Goal:

Explore possible mechanisms of vascular and capilary networks self-organization in tissues

Motivations:

Tissue regeneration

Tissue engineering

Tumors

Diseases

Related problem: tumor angiogenesis

Mechanism:

13

Models of vasculo/angio-genesis

Cell-based models Capilary = sequence of endothelial cells Model endothelial cell migration

Cell-based models with blood flow coupling Chaplain & coworkers, Maini & coworkers Travasso et al, PlosOne 2011 Tang et al, Plos One 2014

14

Cell-based models with ECM (cellular Potts model) Bauer et al, PlosCB 2009 Daub & Merks, Bull. Math. Biol. 2013

Models of vasculo/angio-genesis (II)

Network-based models Schneider et al, Medical Image Analysis 2012 Secomb et al, PlosCB 2013

Macroscopic models

Orme & Chaplain, Math. Comput. Mod. 96 Billy et al, JTB 2009

Hu & Cai, PRL 2013

Haskovec et al, Nonlinear Anal 2016

15

↑ Pierre Degond

Observations

Very detailed modelling of the background biology
Pro: good quantitative agreement
Con: difficult to disentangle influences of ≠ phenomena

Cell-based approaches suffer from directional bias unless very fine grid is used

Network-based approaches are complex to implement need to keep track of the connectivity

Our approach

Look for "minimal model" with as few agents and phenomena as possible blood / interstitial fluid oxygen (as a surrogate for any kind of nutrient) capillaries No growth factor included

Capillaries ≡ discrete directional entities ~ network-based models √ without connectivity constraint "Fuzzy" connectivity by averaging

Inspired from ant-trail formation model [Boissard, D., Motsch, JMB 13]

Model features

Two-dimensional No obstruction to extend it to 3D

One discrete agent type: capillary segments Fixed length ${\cal L}$

Two continuum fields Blood/interstitial fluid pressure p(x,t)Oxygen / nutrient concentration $\rho(x,t)$

 \downarrow

18

Equations: continuum fields

Blood/interstitial fluid satisfies Darcy's law

$$u = -K\nabla p, \qquad \nabla \cdot u = 0$$

u(x,t): fluid velocity K = K(x,t): hydraulic conductivity matrix Bndry cond: Dirichlet, Neumann, periodic ...

Oxygen concentration: convection diffusion eq.

$$\partial_t \rho + \nabla \cdot (\rho u) - \nabla \cdot (D \frac{\rho}{\rho + \rho^*} \nabla \rho) = -\beta(\rho)\rho$$

Convection by fluid velocity uDiffusion with diffusivity tensor $D(x,t)\frac{\rho}{\rho+\rho^*}$ Consumption by tissue at rate $\beta(\rho)$ (e.g. Menten-Michaelis)

 \downarrow

19

Capillary dynamics

20

Capillary = discrete segment represented by Position $X_i \in \mathbb{R}^2$, Direction $\omega_i \in \mathbb{S}^1$

Capillary creation: of capillary (X, ω) : Poisson process branching in direction of O_2 -gradient $\omega = \nabla \rho / |\nabla \rho|(X)$ at X where O_2 concentration gradient $\nabla_x \rho(X)$ large but O_2 concentration $\rho(X)$ not too large

reinforcement with flow direction $\omega = u/|u|(X)$

at X where flow $(\rho u)(X)$ neither too small nor too large

branching off in direction \perp to flow $\omega = u^{\perp}/|u|(X)$

at X where maximal wall shear stress i.e. leading eigenvalue of $(\nabla_x u + (\nabla_x u)^T)(X)$ is large

Capillary destruction: increases with square of hydraulic conductivity $K(X) \Rightarrow$ large capillary density penalized

Pierre Degond

Emergent networks

Capillary / blood - O_2 coupling

Capillary / Blood coupling Through hydraulic conductivity matrix

$$K(x,t) = k_h \mathsf{Id} + \sum_{j \text{ s.t. } |X_j - x| \le L} \kappa \ \omega_j \otimes \omega_j$$

Capillary / Oxygen coupling Through diffusivity matrix

$$D(x,t) = \Delta_h \mathsf{Id} + \sum_{j \text{ s.t. } |X_j - x| \leq L} \Delta \ \omega_j \otimes \omega_j$$

 \downarrow

2-

Some remarks

Presence of a capilary segment at a point enhances hydraulic conductivity in its direction favors flow in its direction is reinforced by new capillary creation

Leads to larger vessels:

Formed of several nearby parallel capilaries but size limited by capillary removal at high capillary density

Large blood flow in vessels:

induces Oxygen gradients across vessels

increases wall shear stress

both trigger splitting / sprouting

The topology at junctions:

becomes an emergent property, not hardwired in the model

Numerical methods

Blood flow (Darcy's eq.)

 Q^1 -conforming finite element on square mesh

Oxygen concentration (convection-diffusion eq.) Particle method

Diffusion velocity method [D. Mustieles, SISC 1990]

$$\rho(x,t) \approx \rho^N(x,t) = \sum_{i=1}^N m_i \delta(x - Y_i(t)),$$

 $m_i = \mathsf{Const}$

$$\dot{Y}_i(t) = \left(u - D\frac{\nabla\rho_h^N}{\rho_h^N + \rho^*}\right)(Y_i(t), t)$$

 ρ_h^N is a smoothing of ρ^N using a kernel $W_h(x)$:

$$\rho_h^N(x,t) = \sum_{i=1}^N m_i W_h(x - Y_i(t))$$

Pierre Degond

Oxygen particle & capillary management 24

Oxygen particles

Introduced through artery wall with constant uniform weight Removed randomly according to consumption rate β Removed when reaching the vein wall

Capillary creation during time step Δt Fix a maximal number N_c of new capillaries to create pick creation location X randomly with uniform proba Compute creation rate $\nu_c(X)$ at location X Create capillary at X with proba $1 - e^{-S\nu_c\Delta t}$ with $S = \text{Surface(Domain)}/N_c$

Capillary removal

Remove randomly with proba $1 - e^{\nu_d \Delta t}$

Simulation conditions

$$\begin{array}{ll} p_A = 37.7 \ {\rm mmHg}; & p_V = 14.6 \ {\rm mmHg} \\ \beta = {\rm Hill \ function \ with \ } \beta_{{\rm sat}} = 0.01 \ {\rm mn}^{-1} \ \mu {\rm m}^{-2} \\ k_h = 400 \ \mu {\rm m}^2 {\rm mn}^{-1} {\rm mmHg}^{-1}; & \Delta_h = 10 \ \mu {\rm m}^2 {\rm mn}^{-1} \end{array}$$

Parameters: estimated

 $\begin{array}{ll} \rho_0 \mbox{ reference value; } & \rho_s = \rho_0; & \rho^* = \rho_0/10 \\ \kappa = 200 \, k_h; & \Delta = 20 \Delta_h \\ \mbox{ capillary length} = 15 \, \mu \mbox{m; width} = 4 \, \mu \mbox{m; } N_c = 2 \, 10^5 / \Delta t \\ \nu_c^* = 0.05 \, \mu \mbox{m}^{-2} \mbox{mn}^{-1}; & \nu_f^* = 0.01 \, \mu \mbox{m}^{-2} \mbox{mn}^{-1} \\ \nu_d^* = 0.3 \ \mbox{mn}^{-1} \end{array}$

Results

Salient features:

Emergent vessel formation Sponteneous sprouting & branching

Statistics

Branching angle / Segment length statistics

1

4. Fiber networks in tissues

Go to next file

4. Conclusion

Conclusion

New "fuzzy network" technique

Discrete items carry directional information

Connectivity recovered by local averaging

Suitable for

Dynamic topology

Evolving networks

Emergent networks

Simple modelling allows for

Coarse-graining into macroscopic model

Macro models for cross-linking fibers [M3AS 2015]