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1. Introduction
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4Complex network features

Large size

Fuzzyness

Plasticity

Goal: model evolving networks
ex: ant trails, sheep trails, . . .
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2. Ant trail networks

with E. Boissard, S. Motsch (ASU)

Boissard, D., Motsch, J. Math. Biol., 66 (2013), pp. 1267-1301.
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6Ant-trail models: literature

Motion on a pre-existing trail

Cellular automata

[John et al, JTB 04; Nishinari etal, Physica A 06]

Decision-making between trails

ODE’s [Reid et al, J. Exp. Biol 11]

Zero-dimensional models

Trail density [Edelstein-Keshet, JMB 94]

Lattice or cellular automata models

[Watmough & EK, JTB 95; Rauch et al Phys. Lett. A 95;

Schweitzer et al, Biosystems 97; Vincent etal JMB 04]
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7Trail-laying

Ants lay pheromones with sting

continuous or discrete streaks

Diffusion

connects neighboring streaks

Pheromone density → mountain ridge

pheromone density
gradient sensing

with antennas

orients towards pheromone gradient

undulatory motion about ridge crest

Pheromone at t = 0.50 s
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Pheromone at t = 1.00 s
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Pheromone at t = 3.00 s
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8Main model assumptions

Pheromones are directed quantities

Segment connecting two consecutive phero deposits

Two-particle species: ants and trails

➟ ants move at constant speed

➟ ants subject to random direction changes

➟ ants interact with neigboring trails through alignment

➟ ants deposit trails at a constant rate

➟ trails evaporate at a constant rate

Goal:

Individual-Based model → observe emergence of trails

kinetic and hydrodynamic models

(xi, ωi)

R

(xp, ωp)
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9Trail statistics

Trails defined by clustering relation

Pi ∼ Pj ⇐⇒ |Xi −Xj | ≤ r and | sin ̂(ωi, ωj)| ≤ s

r and s ad-hoc parameters; Pi refers to ants or trail elements

closed into equivalence relation by transitivity

trail = equivalence class of this relation

Trails size statistics
pt(S) = proba that a particle Pi

belongs to a cluster of size S
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10Emergence of trails: phase transition

Mean trail size 〈S〉 =
∑

S S pt(S)

Abrupt increase when trail recruitment freq. increases

phase transition

Trail width

From lateral decay of two-point correlation f2

trails are thinner with

more trail recruitment

less random jumps
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3. Blood capillary network

with P. Aceves-Sanchez, B. Aymard (Nice), D. Peurichard (INRIA Paris),

L. Casteilla & A. Lorsignol (Stromalab, Toulouse),

P. Kennel & F. Plouraboué (Fluid Mech. Toulouse)

in preparation
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12Context

Goal:

Explore possible mechanisms of vascular and capilary

networks self-organization in tissues

Motivations:

Tissue regeneration

Tissue engineering

Tumors

Diseases
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13Related problem: tumor angiogenesis

Mechanism:

gradients of GF

Hypoxia

Growth
factors

Blood
vessel

Formation of new
blood vessels in the
direction of increasing
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14Models of vasculo/angio-genesis

Cell-based models
Capilary = sequence of endothelial cells

Model endothelial cell migration

Cell-based models with blood flow coupling
Chaplain & coworkers, Maini & coworkers

Travasso et al, PlosOne 2011

Tang et al, Plos One 2014

Cell-based models with ECM (cellular Potts model)
Bauer et al, PlosCB 2009

Daub & Merks, Bull. Math. Biol. 2013
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15Models of vasculo/angio-genesis (II)

Network-based models
Schneider et al, Medical Image Analysis 2012

Secomb et al, PlosCB 2013

Macroscopic models
Orme & Chaplain, Math. Comput. Mod. 96

Billy et al, JTB 2009

Hu & Cai, PRL 2013

Haskovec et al, Nonlinear Anal 2016
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16Observations

Very detailed modelling of the background biology
Pro: good quantitative agreement

Con: difficult to disentangle influences of 6= phenomena

Cell-based approaches suffer from directional bias
unless very fine grid is used

Network-based approaches are complex to implement
need to keep track of the connectivity
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17Our approach

Look for “minimal model”
with as few agents and phenomena as possible

blood / interstitial fluid

oxygen (as a surrogate for any kind of nutrient)

capillaries

No growth factor included

Capillaries ≡ discrete directional entities
∼ network-based models

6∼ without connectivity constraint

“Fuzzy” connectivity by averaging

Inspired from ant-trail formation model
[Boissard, D., Motsch, JMB 13]
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18Model features

Two-dimensional
No obstruction to extend it to 3D

One discrete agent type: capillary segments
Fixed length L

Two continuum fields
Blood/interstitial fluid pressure p(x, t)

Oxygen / nutrient concentration ρ(x, t)
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19Equations: continuum fields

Blood/interstitial fluid satisfies Darcy’s law

u = −K∇p, ∇ · u = 0

u(x, t): fluid velocity

K = K(x, t): hydraulic conductivity matrix

Bndry cond: Dirichlet, Neumann, periodic . . .

Oxygen concentration: convection diffusion eq.

∂tρ+∇ · (ρu)−∇ · (D
ρ

ρ+ ρ∗
∇ρ) = −β(ρ)ρ

Convection by fluid velocity u

Diffusion with diffusivity tensor D(x, t) ρ
ρ+ρ∗

Consumption by tissue at rate β(ρ) (e.g. Menten-Michaelis)
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20Capillary dynamics

Capillary = discrete segment represented by
Position Xi ∈ R2, Direction ωi ∈ S1

Capillary creation: of capillary (X,ω): Poisson process

branching in direction of O2-gradient ω = ∇ρ/|∇ρ|(X)

at X where O2 concentration gradient ∇xρ(X) large

but O2 concentration ρ(X) not too large

reinforcement with flow direction ω = u/|u|(X)
at X where flow (ρu)(X) neither too small nor too large

branching off in direction ⊥ to flow ω = u⊥/|u|(X)
at X where maximal wall shear stress i.e. leading eigenvalue

of (∇xu+ (∇xu)
T )(X) is large

Capillary destruction: increases with square of hydraulic
conductivity K(X) ⇒ large capillary density penalized
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21Capillary / blood - O2 coupling

Capillary / Blood coupling
Through hydraulic conductivity matrix

K(x, t) = khId+
∑

j s.t. |Xj−x|≤L

κ ωj ⊗ ωj

Capillary / Oxygen coupling
Through diffusivity matrix

D(x, t) = ∆hId+
∑

j s.t. |Xj−x|≤L

∆ ωj ⊗ ωj
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22Some remarks

Presence of a capilary segment at a point
enhances hydraulic conductivity in its direction

favors flow in its direction

is reinforced by new capillary creation

Leads to larger vessels:
Formed of several nearby parallel capilaries

but size limited by capillary removal at high capillary density

Large blood flow in vessels:
induces Oxygen gradients across vessels

increases wall shear stress

both trigger splitting / sprouting

The topology at junctions:
becomes an emergent property, not hardwired in the model
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23Numerical methods

Blood flow (Darcy’s eq.)
Q1-conforming finite element on square mesh

Oxygen concentration (convection-diffusion eq.)
Particle method

Diffusion velocity method [D. Mustieles, SISC 1990]

ρ(x, t) ≈ ρN (x, t) =
N
∑

i=1

miδ
(

x− Yi(t)
)

,

mi = Const

Ẏi(t) =
(

u−D
∇ρNh

ρNh + ρ∗

)

(Yi(t), t)

ρNh is a smoothing of ρN using a kernel Wh(x):

ρNh (x, t) =

N
∑

i=1

miWh(x− Yi(t))
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24Oxygen particle & capillary management

Oxygen particles
Introduced through artery wall with constant uniform weight

Removed randomly according to consumption rate β

Removed when reaching the vein wall

Capillary creation during time step ∆t

Fix a maximal number Nc of new capillaries to create

pick creation location X randomly with uniform proba

Compute creation rate νc(X) at location X

Create capillary at X with proba 1− e−Sνc∆t

with S = Surface(Domain)/Nc

Capillary removal
Remove randomly with proba 1− eνd∆t
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25Simulation conditions

Domain geometry

Periodic

Periodic

2 mm

1 mm

Artery Vein

p = pA

∂nρ = 0

∂nρ = 0

∂nρ = 0p = pVρ = ρ0

Parameters: measured
pA = 37.7 mmHg; pV = 14.6 mmHg
β = Hill function with βsat = 0.01 mn−1 µm−2

kh = 400µm2mn−1mmHg−1; ∆h = 10µm2mn−1

Parameters: estimated
ρ0 reference value; ρs = ρ0; ρ∗ = ρ0/10
κ = 200 kh; ∆ = 20∆h

capillary length = 15µm; width = 4µm; Nc = 2105/∆t
ν∗c = 0.05µm−2mn−1; ν∗f = 0.01µm−2mn−1

ν∗d = 0.3 mn−1
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26Results

Salient features:
Emergent vessel formation

Sponteneous sprouting & branching
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27Statistics

Skeletonization

Branching angle / Segment length statistics
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4. Fiber networks in tissues

Go to next file
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4. Conclusion
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30Conclusion

New ”fuzzy network” technique

Discrete items carry directional information

Connectivity recovered by local averaging

Suitable for

Dynamic topology

Evolving networks

Emergent networks

Simple modelling allows for

Coarse-graining into macroscopic model

Macro models for cross-linking fibers [M3AS 2015]
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