Construction of a Machine Learning tool based on Differential Equations integrated into a dynamic tree allowing biological data assimilation

Harold Moundoyi, Marouan Handa, Thi Vo Nicolas Bloyet, Hélène Flourent, Emmanuel Frénod

CEMRACS 2018

23 August 2018

• • • • •

- Modeling of the digestive behaviour
- The goal: build Machine Learning algorithms based on the discretization of Differential Equations in order to predict biological responses and assimilate biological data.

Graph-oriented Model

• The main idea: Assimilate an animal to a graph in which nodes are virtual organs and edges represent fluxes within the organism.

Construction of a Machine Learning tool based on Different

Graph-oriented Model

• Each virtual organ carry a biological function, which aimed to reproduce at best its actual behaviour.

Construction of a Machine Learning tool based on Different

Graph-oriented Model

• Each link is weighted with a parameter γ_i , on which indicates how inputs and outputs are actually dispatched, and to give more or less significance on links between organs.

Construction of a Machine Learning tool based on Different

Graph-oriented Model

• Each node (organ) is given some memory, which are states. They can thus store and use several values, which can be part of their function definition.

Construction of a Machine Learning tool based on Differen

э

Graph-oriented Model

The process of such function is as follows:

- 1) Aggregate all the ingoing fluxes coming from other functions
- 2) Given those inputs, compute the function output for this time step.
- 3) Propagate the computed output to all outgoing edges.

Construction of a Machine Learning tool based on Differen

Global Optimization

Optimize the whole animal in order to find the parameters values that would make it fit at best the real data.

2 approaches:

1) Analytic approach: Analytically resolve the functions, by fixing some parameters each by each.

Global Optimization

Optimize the whole animal in order to find the parameters values that would make it fit at best the real data.

2 approaches:

- 1) Analytic approach: Analytically resolve the functions, by fixing some parameters each by each.
- 2) Machine Learning approach: Optimization (Genetic optimization methods, Least square method...)
 ⇒ Fast to implement.

Applied case: Ross Chicken growth

ROSS 708

http://en.aviagen.com/brands/ross/products/ross-708

Construction of a Machine Learning tool based on Differen

Applied case: Ross Chicken growth

Some information on those animals are available, for each sex of the strains:

- -Daily consumption of food.
- -Daily growth (Weight).

ROSS 708

http://en.aviagen.com/brands/ross/products/ross-708

http://en.aviagen.com/brands/ross/products/ross-708

- At first, we consider the growth(mass gained each day) .
- Flux to consider is the food consumption which becomes later a nutrients flux.

Recall of some growth functions

• Logistic:
$$W' = \mu_0 W \left(1 - \frac{W}{W_f} \right)$$

• Gompertz:
$$W' = DW \ln\left(\frac{W_f}{W}\right)$$

• Richards:
$$W' = DW\left(\frac{W_f^n - W^n}{nW_f^n}\right)$$

Assumptions

A1 Ingested food is stored in the crop before moving into the stomach.

> Construction of a Machine Learning tool based on Differen

э

Assumptions

- A1 Ingested food is stored in the crop before moving into the stomach.
- A2 Some fluxes rates are constant between compartements.

Assumptions

A3 Existence of transmission delays in some compartments.

イロト イポト イヨト イヨト Construction of a Machine Learning tool based on Differen

э

Assumptions

- A3 Existence of transmission delays in some compartments.
- A4 There exists a time τ for which the SI empting dynamic starts.

Equations

Crop

$$egin{aligned} Q_{cp,d}' &= -\gamma_{cp} Q_{cp,d} \ Q_{cd,d}(0) &= S_d \end{aligned}$$

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < ⊃ < ○
 Construction of a Machine Learning tool based on Differen

Equations

Stomach

$$egin{aligned} Q_{st,d}' &= \gamma_{cp} \left(1 - \exp(-eta_1 t)
ight) Q_{cp,d} - \gamma_{st} Q_{st,d} \ Q_{st,d}(0) &= 0. \end{aligned}$$

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < ⊃ < ○
 Construction of a Machine Learning tool based on Differen

Equations

Small intestine

$$\begin{aligned} Q_{si,d}' &= \begin{cases} \gamma_{st} Q_{st,d}, \ t \leq \tau \\ \gamma_{st} Q_{st,d} - (\gamma_{abs} + \gamma_{si}) Q_{si,d}, \ t > \tau \\ Q_{si,d}(0) &= 0. \end{aligned}$$

Construction of a Machine Learning tool based on Differen

Equations

Large intestine

$$Q'_{Li,d} = \gamma_{si}Q_{Li,d} - \gamma_{Li}Q_{Li,d}$$
$$Q_{Li,d}(0) = 0.$$

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < ⊃ < ○
 Construction of a Machine Learning tool based on Differen

Storage and usage of nutrients

$$\begin{aligned} Q'_{w,d} &= \gamma_{abs} Q_{si,d} - \alpha Q_{w,d} \\ Q_{w,d}(0) &= Q_{w,d-1} \end{aligned}$$

э

< A

Storage and usage of nutrients

$$egin{aligned} & \mathcal{Q}_{w,d}' = \gamma_{abs} \mathcal{Q}_{si,d} - lpha \mathcal{Q}_{w,d} \ & \mathcal{Q}_{w,d}(0) = \mathcal{Q}_{w,d-1} \end{aligned}$$

A6 Anabolism prevailing over catabolism (Pütter 1920).

Storage and usage of nutrients

$$egin{aligned} & \mathcal{Q}_{w,d}' = \gamma_{abs} \mathcal{Q}_{si,d} - lpha \mathcal{Q}_{w,d} \ & \mathcal{Q}_{w,d}(0) = \mathcal{Q}_{w,d-1} \end{aligned}$$

A6 Anabolism prevailing over catabolism (Pütter 1920).

Formation of the daily weight

$$W'_d = \kappa(t)Q_{w,d} - \left(V_{max}rac{Q_{w,d}}{K+Q_{w,d}}
ight)rac{1}{K}W_d$$

 $W_d(0) = 0.$

A

Storage and usage of nutrients

$$egin{aligned} & \mathcal{Q}_{w,d}' = \gamma_{abs} \mathcal{Q}_{si,d} - lpha \mathcal{Q}_{w,d} \ & \mathcal{Q}_{w,d}(0) = \mathcal{Q}_{w,d-1} \end{aligned}$$

A6 Anabolism prevailing over catabolism (Pütter 1920).

Formation of the daily weight

$$W'_{d} = \kappa(t)Q_{w,d} - \left(V_{max}\frac{Q_{w,d}}{K+Q_{w,d}}\right)\frac{1}{K}W_{d}$$
$$W_{d}(0) = 0.$$

$$A7 \begin{cases} \kappa' = -\mu\kappa\\ \mu' = \beta_{2}(\mu_{max} - \mu) \end{cases}$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Formation of the daily weight

$$W'_{d} = \kappa(t)Q_{w,d} - \left(V_{max}\frac{Q_{w,d}}{K+Q_{w,d}}\right)\frac{1}{K}W_{d}$$
$$W_{d}(0) = 0.$$

A7
$$\begin{cases} \kappa' = -\mu\kappa \\ \mu' = \beta_2(\mu_{max} - \mu) \\ \Longrightarrow \kappa(t) = \kappa_0 \exp\left[-\mu_{max}\left(t - \frac{1 - \exp(-\beta_2 t)}{\beta_2}\right)\right] \end{cases}$$

Formation of the daily weight

$$W'_{d} = \kappa(t)Q_{w,d} - \left(V_{max}\frac{Q_{w,d}}{K+Q_{w,d}}\right)\frac{1}{K}W_{d}$$
$$W_{d}(0) = 0.$$

A7
$$\begin{cases} \kappa' = -\mu\kappa \\ \mu' = \beta_2(\mu_{max} - \mu) \\ \implies \kappa(t) = \kappa_0 \exp\left[-\mu_{max}\left(t - \frac{1 - \exp(-\beta_2 t)}{\beta_2}\right)\right] \end{cases}$$

Final weight $W_f = W_0 + \sum_{d=1}^{N_d} W_d(t_f)$

 N_d : number of days.

- Observed data
 - Daily feed intake.
 - Daily weight measurement.
- Discretization: FDM(Forwards Euler method);
- fitting: γ_{cp} and τ fixed.

Estimate $\beta_1, \gamma_{st}, \gamma_{abs}, \gamma_{si}, \gamma_{Li}, \kappa_0, \mu_{max}, \beta_2, V_{max}, K$

Simulations

Figure: One day dynamic, $\beta_1 = 0.4, \gamma_{st} = 0.6, \gamma_{abs} = 0.6, \gamma_{si} = 0.023, \kappa_0 = 0.9, \mu_{max} = 0.01, \beta_2 = 0.01, V_{max} = 0.07, K = 26.8$

Figure: 2 days dynamic, $\beta_1 = 0.4, \gamma_{st} = 0.6, \gamma_{abs} = 0.6, \gamma_{si} = 0.023, \kappa_0 = 0.9, \mu_{max} = 0.01, \beta_2 = 0.01, V_{max} = 0.07, K = 26.8$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Figure: $\beta_1 = 0.4$, $\gamma_{st} = 0.6$, $\gamma_{abs} = 0.6$, $\gamma_{si} = 0.023$, $\kappa_0 = 0.9$, $\mu_{max} = 0.01$, $\beta_2 = 0.01$, $V_{max} = 0.07$, K = 26.8

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Figure: $\beta_1 = 0.4$, $\gamma_{st} = 0.6$, $\gamma_{abs} = 0.6$, $\gamma_{si} = 0.023$, $\kappa_0 = 0.9$, $\mu_{max} = 0.01$, $\beta_2 = 0.01$, $V_{max} = 0.07$, K = 26.8

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Python code: Virtual chicken.

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < ⊃ < ⊙
 Construction of a Machine Learning tool based on Differen

Python code: Virtual chicken.

• Daily food consumption and it composition.

э

Python code: Virtual chicken.

- Daily food consumption and it composition.
- Mathematical description of biological functions.

э

Python code: Virtual chicken.

- Daily food consumption and it composition.
- Mathematical description of biological functions.
- Optimize different parameters.

Python code: Virtual chicken.

- Daily food consumption and it composition.
- Mathematical description of biological functions.
- Optimize different parameters.
- Predicts the daily growth.

Challenges and perspectives

• Challenges:

<**₽** > < **₽** > Construction of a Machine Learning tool based on Differen

э

Challenges and perspectives

- Challenges:
 - 1. No experience on Maching Learning.

-

Challenges and perspectives

- Challenges:
 - 1. No experience on Maching Learning.
 - 2. Not enough documentation.

-

Challenges and perspectives

- Challenges:
 - 1. No experience on Maching Learning.
 - 2. Not enough documentation.
 - Lack of data concerning: Food composition (Nutrients). Absorbtion mecanism (active transport, passive diffusion).

• • • • •

Challenges and perspectives

• Challenges:

- 1. No experience on Maching Learning.
- 2. Not enough documentation.
- Lack of data concerning: Food composition (Nutrients). Absorbtion mecanism (active transport, passive diffusion).
- Behaviour of a digestive track: Estimation of different fluxes rates. Important biological processes happening in different compartments.

Challenges and perspectives

• Challenges:

- 1. No experience on Maching Learning.
- 2. Not enough documentation.
- Lack of data concerning: Food composition (Nutrients). Absorbtion mecanism (active transport, passive diffusion).
- Behaviour of a digestive track: Estimation of different fluxes rates. Important biological processes happening in different compartments.
- Perspectives:
 - 1. Find needed DATA in order to build a better descriptive model.

Challenges and perspectives

• Challenges:

- 1. No experience on Maching Learning.
- 2. Not enough documentation.
- Lack of data concerning: Food composition (Nutrients). Absorbtion mecanism (active transport, passive diffusion).
- Behaviour of a digestive track: Estimation of different fluxes rates. Important biological processes happening in different compartments.
- Perspectives:
 - 1. Find needed DATA in order to build a better descriptive model.
 - 2. Build a virtual chicken that allows fitting parameters using Machine Learning approach.

Références

- Sunil S. Jambhekar, Philip J.Breen, Basic pharmacokinetics, second edition, Royal Pharmaceutical Society of Great Britain 2012.
- G.C.Perry. Avian gut function in health and disease, poultry science symposium series volume twenty eight.
- Peter L.Bonate, Pharmacokinetic-Pharmacodynamic modeling and simulation, second edition, Springer science+Business Media, LLC 2011.
- Lawrence X. Yu, Gordon L.Amidon, Compartmental absorbtion and transit model for estimating oral drug absorbtion. International journal of Pharmaceutics 186(1999) 119-125.
 - D. Bastianelli, D.Sauvant and A.Rerat, mathematical modeling of digestion and nutrient absorbtion in pigs, journal of animal science, 2011.

THANK YOU

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ <
 Construction of a Machine Learning tool based on Differen