
1/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Modeling adipocytes dynamic

Hugo Martin, Pascal Millet, Cristina Vaghi,
Thierry Goudon, Frédéric Lagoutière, Benjamin Mauroy, Magali Ribot

CEMRACS 2018

August 22, 2018



2/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

1 Motivation

2 0D model

3 Spatial model

4 Comparison with experimental data

5 Conclusions



3/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Figure: Evolution of the prevalence of overweight in different countries.
Source: http://www.downeyobesityreport.com
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Figure: Causes of death in the United States in 2009.. Source: M.
Bertucci, A. Miller, S. Jaggi, S. Wilding, Cutting the Fat on Healthcare:
An Investigation of Preventive Healthcare and the Fight on Obesity,
Undergraduate Research Journal for the Human Sciences.
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https://www.youtube.com/watch?v=W4ax_3qFsuc

https://www.youtube.com/watch?v=W4ax_3qFsuc
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Figure: Development of the mesenchymal cells. Source:
https://www.ahajournals.org/journal/res
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The interactions between the three populations

mesenchymal
proliferating rate: α
dying rate: γ

pre-adipocytes
proliferating rate: α′

dying rate: γ′

adipocytes
proliferating rate: 0
dying rate: γ′′

structured in radius
grow at speed V (t, r)

differentiation

differentiation

Retro-control
through the
mean radius

Figure: Schematic representation of the three populations.
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A coupled system of ODEs and a PDE



dm
dt = −γm(t)+αm(t)−β(r̄(t))m(t), t > 0,
dp
dt = −γ′p(t)+α′p(t)−β′(r̄(t))p(t) + β(r̄(t))m(t), t > 0,
∂a
∂t (t, r)+∂r (Va)(t, r) = −γ′′a(t, r), t > 0, r > r∗,

Va(t, r∗) = β′(r̄(t))p(t), t > 0,

m(0) = minit > 0, p(0) = pinit > 0, a(0, r) = ainit(r) > 0.

r∗ : minimal radius of the adipocytes (experimentally)

r̄(t) =

∫∞
r∗

ra(t, r) dr∫∞
r∗

a(t, r) dr
mean radius
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Modeling of the velocity/growth rate and the retro-control

k(t) : (excess of) available lipid droplets at time t

S(t) =

∫ ∞
r∗

4πr2a(t, r) dr total surface

No adipocytes smaller than r∗ nor larger than rc
(experimentally)

Velocity: V (t, r) = k(t)
S(t)1[r∗,rc )(r)> 0

Figure: Typical shape for the
retro-control functions β and β′.

Sigmoid:

β(r̄) = βm +
βM − βm

1 + e
−

r̄−rβ
Rβ

,

0 < βm < βM

0 < rβ,Rβ
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Mathematical framework

a is a measure
V is discontinuous

}
Va is not defined as a distribution.

V is one-sided Lipschitz:

(V (t, r1)− V (t, r2)) (r1 − r2) 6 C |r1 − r2|2

Characteristics can be defined forward in time thanks to Filippov
theory. In one dimension:

dXt(r , s)

dt
∈

⋂
h>0

N⊂R:|N|=0

Conv(V (t, (Xt(r , s)− h,Xt(r , s) + h)\N)) a.e.

Xs(r , s) = r (1)

↪→ Unique Lipschitz solution defined on [s,+∞)
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Example

Figure: Velocity Figure: corresponding characteristics

In our case Xt(r , s) = min(r +
∫ t
s

k(u)
S(u) du, rc)
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Notion of solution

Solution in Poupaud and Rascle sense. In our case :
a ∈ C 0([0,+∞),M− w∗) is a solution of

∂ta + ∂r (Va) = −γ′′a (2)
Va(t, r∗) = f (t) (3)

if the Duhamel formula holds. ∀φ ∈ C 0
b ([r∗,+∞)),∫ +∞

r∗

φ(r) dat(r) =

∫ +∞

r∗

φ(Xt(0, r))e−γ
′′t da0(r)

+

∫ t

0
φ(Xt(s, r∗))e−γ

′′(t−s)f (s) ds
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Theoretical results

Existence and uniqueness result based on a fixed-point method
Necessary and sufficient condition for the existence of
stationary solution(s) and (in case of existence) explicit
expression
Asymptotic behavior in some simple cases
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Stationary solutions

Case γ′′ = 0, α′ − γ′ − β′(r∗) < 0, α− γ − β(r∗) < 0:

at
∗
⇀

(∫ +∞

r∗

da0(r) +

∫ +∞

0
β′(r̄(s))p(s) ds

)
δrc

Case γ′′ > 0 and α′ − γ′ ∈ β′([r∗, rc ]) or α− γ ∈ β([r∗, rc ]), form
of the stationary distributions:

ā = λ

e−
γ′′
v

(r−r∗) dr +
ve−

γ′′
v

(rc−r∗)

γ′′
δrc


where λ and v depend on the parameters in an explicit way.
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Stability of stationary solutions
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Discretisation of the ODEs, explicit scheme

Explicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk

⇒ mk+1 = (1 + ∆t (α− γ − β(rk)))mk

In the same spirit:

pk+1 =
(
1 + ∆t

(
α′ − γ′ − β′(rk)

))
pk + ∆tβ(rk)mk

Conditionally stable!
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Discretisation of the ODEs, semi-implicit scheme

Semi-implicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk+1

⇒ mk+1=
1 + ∆t(α− γ)

1 + ∆tβ(rk)
mk

In the same spirit:

pk+1 =
1 + ∆t(α′ − γ′)
1 + ∆tβ′(rk)

pk +
∆tβ(rk)

1 + ∆tβ′(rk)
mk+1

Unconditionally stable!



21/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Discretisation of the ODEs, semi-implicit scheme

Semi-implicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk+1

⇒ mk+1=
1 + ∆t(α− γ)

1 + ∆tβ(rk)
mk

In the same spirit:

pk+1 =
1 + ∆t(α′ − γ′)
1 + ∆tβ′(rk)

pk +
∆tβ(rk)

1 + ∆tβ′(rk)
mk+1

Unconditionally stable!



21/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Discretisation of the ODEs, semi-implicit scheme

Semi-implicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk+1

⇒ mk+1=
1 + ∆t(α− γ)

1 + ∆tβ(rk)
mk

In the same spirit:

pk+1 =
1 + ∆t(α′ − γ′)
1 + ∆tβ′(rk)

pk +
∆tβ(rk)

1 + ∆tβ′(rk)
mk+1

Unconditionally stable!



22/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Discretisation of the PDE, upwind scheme

Classical upwind, but for measures:
discretisation of [r∗, rc ] : (rj)06j6J , rj = r∗ + j∆r

time discretisation tk = k∆t

V k
j = V (tk , rj)

at each point rj , the measure atk has approximately weight akj

atk ≈
J∑

j=0

akj δrj

 ak+1
j = akj −

∆t
∆r

(
V k
j a

k
j − V k

j−1a
k
j−1

)
−∆tγ′′akj , 1 < j < J,

V k
0 a

k
0 = β′(rk)pk
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Parameters setting

α− γ − β(r) < 0 ∀r ∈ [r∗, rc ]

α
′ − γ′ − β′(r) < 0 ∀r ∈ [r∗, rc ]

t ∈ (0, 350) [days]

10 20 30 40 50
r [ m]

0.12

0.14

0.16

0.18

0.20

(r)
 [1

/d
ay

s]

10 20 30 40 50
r [ m]

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

′ (r
) [

1/
da

ys
]



25/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Population dynamic

0 50 100 150 200 250 300 350
t [days]

0

50000

100000

150000

200000

250000

m
(t)

 [#
]

0 50 100 150 200 250 300 350
t [days]

0

50000

100000

150000

200000

250000

300000

350000

400000

p(
t) 

[#
]

0 50 100 150 200 250 300 350
t [days]

400000

600000

800000

1000000

1200000

1400000

1600000

a 
dr

 [#
]

0 50 100 150 200 250 300 350
t [days]

10

20

30

40

50

r(t
) [

 m
]



26/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Adipocytes distribution and growth rate
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Spatial model

s(t, x): volume fraction of the surronding material at time t
and at point x .
u(t, x): spatial velocity of the species at time t and at point x

∂m

∂t
+∇x · (um) = (α− γ − β(r̄))m (4)

∂p

∂t
+∇x · (up) =

(
α′ − γ′ − β′(r̄)

)
p + β(r̄)m (5)

∂s

∂t
+∇x · (us) = 0 (6)

∂ta +∇x · (ua) + ∂r (Va) = −γ′′a (7)
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Closure condition

Constraint on the volume fractions:

s(t, x) +
4π
3

(
r3
∗m(t, x) + r3

∗p(t, x) +

∫ rc

r∗

r3a(t, x , r) dr
)

= 1

Constraint on u:

∇x · u =
4π
3

(
r3
∗ (α− γ)m + r3

∗ (α′ − γ′)p + 3
∫ rc

r∗

r2Va dr
)
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Choice of spatial velocity u

q(t, x): pressure at time t in x

Assumption: u derives from q through a Darcy’s law:

u(t, x) = −∇q(t, x)

Thus:
∆q = −∇ · u

Boundary conditions

q = 0 on ∂Ω

Non incoming flux for m,p and a.
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Numerical scheme: finite volume method

Darcy’s law: Laplace problem

Ω =
⋃

i=1,...N
Ki

−∆q = divu in Ω

q = 0 on ∂Ω

u = ∇q

−
∫
Ki

∆qdx =

∫
Ki

div(u)dx ⇒ −[∇q·n]∂Ki
=

∫
Ki

div(u)dx

Transport system: explicit upwind scheme
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1D simulations

x ∈ (0, 0.01) J = 100
r ∈ (0, 9e-5) K = 300
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1D simulations
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1D simulations
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Comparison with experimental data

0 50 100 150 200 250 300 350
t [days]

0

10

20

30

40

50

r(t
) [

m
]

data
0D
1D
2D

0 50 100 150 200 250 300 350
t [days]

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

A
(t)

 [#
]

data
0D
1D
2D



38/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

1 Motivation

2 0D model

3 Spatial model

4 Comparison with experimental data

5 Conclusions



39/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Conclusions

Observations from the theoretical and numerical study:
With the current configuration of parameters, the surface has
the strongest influence on the dynamic of adipocytes.
With the current parameters of the spatial model, we have two
different timescales: one for the spatial displacement and one
for the growth of adipocytes.

Encountered difficulties:
The 0D and spatial models are highly sensitive to a change of
initial conditions.
Few experimental data with respect to the parameters.
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Perspectives

Data calibration of the model.
Set boundary conditions in the spatial model with a biological
meaning.
Stability of stationary solutions of the 0D model (both
theoretically and numerically for a wider range of parameters).
Adaptation of the numerical scheme to deal with discontinuous
velocity.
Adaptation of the numerical scheme for the spatial model to
deal with two times scales.
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Thank you!!
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