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Figure: Evolution of the prevalence of overweight in different countries.
Source: http://www.downeyobesityreport.com
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Figure: Causes of death in the United States in 2009.. Source: M.
Bertucci, A. Miller, S. Jaggi, S. Wilding, Cutting the Fat on Healthcare:
An Investigation of Preventive Healthcare and the Fight on Obesity,
Undergraduate Research Journal for the Human Sciences.
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https://www.youtube.com/watch?v=W4ax_3qFsuc

https://www.youtube.com/watch?v=W4ax_3qFsuc
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Figure: Development of the mesenchymal cells. Source:
https://www.ahajournals.org/journal/res
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The interactions between the three populations

mesenchymal
proliferating rate: α
dying rate: γ

pre-adipocytes
proliferating rate: α′

dying rate: γ′

adipocytes
proliferating rate: 0
dying rate: γ′′

structured in radius
grow at speed V (t, r)

differentiation

differentiation

Retro-control
through the
mean radius

Figure: Schematic representation of the three populations.
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A coupled system of ODEs and a PDE



dm
dt = −γm(t)+αm(t)−β(r̄(t))m(t), t > 0,
dp
dt = −γ′p(t)+α′p(t)−β′(r̄(t))p(t) + β(r̄(t))m(t), t > 0,
∂a
∂t (t, r)+∂r (Va)(t, r) = −γ′′a(t, r), t > 0, r > r∗,

Va(t, r∗) = β′(r̄(t))p(t), t > 0,

m(0) = minit > 0, p(0) = pinit > 0, a(0, r) = ainit(r) > 0.

r∗ : minimal radius of the adipocytes (experimentally)

r̄(t) =

∫∞
r∗

ra(t, r) dr∫∞
r∗

a(t, r) dr
mean radius
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Modeling of the velocity/growth rate and the retro-control

k(t) : (excess of) available lipid droplets at time t

S(t) =

∫ ∞
r∗

4πr2a(t, r) dr total surface

No adipocytes smaller than r∗ nor larger than rc
(experimentally)

Velocity: V (t, r) = k(t)
S(t)1[r∗,rc )(r)> 0

Figure: Typical shape for the
retro-control functions β and β′.

Sigmoid:

β(r̄) = βm +
βM − βm

1 + e
−

r̄−rβ
Rβ

,

0 < βm < βM

0 < rβ,Rβ
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Mathematical framework

a is a measure
V is discontinuous

}
Va is not defined as a distribution.

V is one-sided Lipschitz:

(V (t, r1)− V (t, r2)) (r1 − r2) 6 C |r1 − r2|2

Characteristics can be defined forward in time thanks to Filippov
theory. In one dimension:

dXt(r , s)

dt
∈

⋂
h>0

N⊂R:|N|=0

Conv(V (t, (Xt(r , s)− h,Xt(r , s) + h)\N)) a.e.

Xs(r , s) = r (1)

↪→ Unique Lipschitz solution defined on [s,+∞)
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Example

Figure: Velocity Figure: corresponding characteristics

In our case Xt(r , s) = min(r +
∫ t
s

k(u)
S(u) du, rc)
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Notion of solution

Solution in Poupaud and Rascle sense. In our case :
a ∈ C 0([0,+∞),M− w∗) is a solution of

∂ta + ∂r (Va) = −γ′′a (2)
Va(t, r∗) = f (t) (3)

if the Duhamel formula holds. ∀φ ∈ C 0
b ([r∗,+∞)),∫ +∞

r∗

φ(r) dat(r) =

∫ +∞

r∗

φ(Xt(0, r))e−γ
′′t da0(r)

+

∫ t

0
φ(Xt(s, r∗))e−γ

′′(t−s)f (s) ds
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Theoretical results

Existence and uniqueness result based on a fixed-point method
Necessary and sufficient condition for the existence of
stationary solution(s) and (in case of existence) explicit
expression
Asymptotic behavior in some simple cases
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Stationary solutions

Case γ′′ = 0, α′ − γ′ − β′(r∗) < 0, α− γ − β(r∗) < 0:

at
∗
⇀

(∫ +∞

r∗

da0(r) +

∫ +∞

0
β′(r̄(s))p(s) ds

)
δrc

Case γ′′ > 0 and α′ − γ′ ∈ β′([r∗, rc ]) or α− γ ∈ β([r∗, rc ]), form
of the stationary distributions:

ā = λ

e−
γ′′
v

(r−r∗) dr +
ve−

γ′′
v

(rc−r∗)

γ′′
δrc


where λ and v depend on the parameters in an explicit way.
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Stability of stationary solutions
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Discretisation of the ODEs, explicit scheme

Explicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk

⇒ mk+1 = (1 + ∆t (α− γ − β(rk)))mk

In the same spirit:

pk+1 =
(
1 + ∆t

(
α′ − γ′ − β′(rk)

))
pk + ∆tβ(rk)mk

Conditionally stable!
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Discretisation of the ODEs, semi-implicit scheme

Semi-implicit Euler:

dm
dt

= (α− γ)m(t)− β(r̄(t))m(t)

mk+1 −mk

∆t
= (α− γ)mk − β(rk)mk+1

⇒ mk+1=
1 + ∆t(α− γ)

1 + ∆tβ(rk)
mk

In the same spirit:

pk+1 =
1 + ∆t(α′ − γ′)
1 + ∆tβ′(rk)

pk +
∆tβ(rk)

1 + ∆tβ′(rk)
mk+1

Unconditionally stable!
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Discretisation of the PDE, upwind scheme

Classical upwind, but for measures:
discretisation of [r∗, rc ] : (rj)06j6J , rj = r∗ + j∆r

time discretisation tk = k∆t

V k
j = V (tk , rj)

at each point rj , the measure atk has approximately weight akj

atk ≈
J∑

j=0

akj δrj

 ak+1
j = akj −

∆t
∆r

(
V k
j a

k
j − V k

j−1a
k
j−1

)
−∆tγ′′akj , 1 < j < J,

V k
0 a

k
0 = β′(rk)pk
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Parameters setting

α− γ − β(r) < 0 ∀r ∈ [r∗, rc ]
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Population dynamic
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Adipocytes distribution and growth rate
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Spatial model

s(t, x): volume fraction of the surronding material at time t
and at point x .
u(t, x): spatial velocity of the species at time t and at point x

∂m

∂t
+∇x · (um) = (α− γ − β(r̄))m (4)

∂p

∂t
+∇x · (up) =

(
α′ − γ′ − β′(r̄)

)
p + β(r̄)m (5)

∂s

∂t
+∇x · (us) = 0 (6)

∂ta +∇x · (ua) + ∂r (Va) = −γ′′a (7)
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Closure condition

Constraint on the volume fractions:

s(t, x) +
4π
3

(
r3
∗m(t, x) + r3

∗p(t, x) +

∫ rc

r∗

r3a(t, x , r) dr
)

= 1

Constraint on u:

∇x · u =
4π
3

(
r3
∗ (α− γ)m + r3

∗ (α′ − γ′)p + 3
∫ rc

r∗

r2Va dr
)
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Choice of spatial velocity u

q(t, x): pressure at time t in x

Assumption: u derives from q through a Darcy’s law:

u(t, x) = −∇q(t, x)

Thus:
∆q = −∇ · u

Boundary conditions

q = 0 on ∂Ω

Non incoming flux for m,p and a.
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Numerical scheme: finite volume method

Darcy’s law: Laplace problem

Ω =
⋃

i=1,...N
Ki

−∆q = divu in Ω

q = 0 on ∂Ω

u = ∇q

−
∫
Ki

∆qdx =

∫
Ki

div(u)dx ⇒ −[∇q·n]∂Ki
=

∫
Ki

div(u)dx

Transport system: explicit upwind scheme



33/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

1D simulations

x ∈ (0, 0.01) J = 100
r ∈ (0, 9e-5) K = 300
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1D simulations
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1D simulations
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Comparison with experimental data
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Conclusions

Observations from the theoretical and numerical study:
With the current configuration of parameters, the surface has
the strongest influence on the dynamic of adipocytes.
With the current parameters of the spatial model, we have two
different timescales: one for the spatial displacement and one
for the growth of adipocytes.

Encountered difficulties:
The 0D and spatial models are highly sensitive to a change of
initial conditions.
Few experimental data with respect to the parameters.
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Perspectives

Data calibration of the model.
Set boundary conditions in the spatial model with a biological
meaning.
Stability of stationary solutions of the 0D model (both
theoretically and numerically for a wider range of parameters).
Adaptation of the numerical scheme to deal with discontinuous
velocity.
Adaptation of the numerical scheme for the spatial model to
deal with two times scales.



41/41

Motivation 0D model Spatial model Comparison with experimental data Conclusions

Thank you!!
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