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Triangulated Surfaces

A bordered surface is a pair (S ,M) where:

S is a compact orientable surface,
M ⊆ S is a finite set of marked points such that every ∂-component
of S has at least one marked point.

Definition

An arc is a curve γ in S whose endpoints are marked points and
int(γ) ⊆ int(S).

Jon Wilson (Universidad Nacional Autónoma de México (UNAM))Cluster structures on laminated surfaces November 8, 2018 3 / 26



Triangulated Surfaces

A bordered surface is a pair (S ,M) where:

S is a compact orientable surface,
M ⊆ S is a finite set of marked points such that every ∂-component
of S has at least one marked point.

Definition

An arc is a curve γ in S whose endpoints are marked points and
int(γ) ⊆ int(S).
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Triangulated Surfaces

Definition

A triangulation of (S ,M) is a maximal collection of pairwise
non-intersecting arcs.

Flips:

Proposition (Harer(’85) + Fomin, Shapiro, Thurston (’08))

Let T be a triangulation of an unpunctured (S ,M) and let γ ∈ T . Then
there exists a unique γ′ 6= γ, such that µγ(T ) := T \ {γ} ∪ {γ′} is a
triangulation.

γ γ′

Figure: Local configuration of a flip.
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Flip graph

Definition

The flip graph has vertices corresponding to triangulations and edges
corresponding to flips.

Figure: The shape of the flip graph.

Proposition (Harer)

Any two triangulations are related by a sequence of flips.
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Cluster algebras (Fomin and Zelevinsky)

Define an initial seed Σ := (x,Q) where:

x = {x1, ..., xn} algebraically independent variables.
Q is a quiver (an oriented multi-graph on n vertices without loops or
2-cycles).

Figure: non-example and example of quivers.

x̃ = {x1, ..., xn, xn+1, ..., xm} is the extended cluster if we add extra
frozen vertices to the quiver Q.
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Mutations

(Quiver mutation) Let k ∈ [1, n]. We get a new quiver µk(Q) by:

For each path i → k → j in Q add an arrow i → j .
Remove any 2-cycles.
Reverse arrows incident to k .

Q µ2(Q)

Step 1 Step 2 Step 3

1

2

3

(Variable mutation)

µk(x) := {x ′1, ..., x ′n} where x ′i = xi when i 6= k and

x ′k =
1

xk

( ∏
i→k in Q

xi +
∏

i←k in Q

xi
)
.

Note: µ2
k(x,Q) = (x,Q).
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Linking the two constructions

Given a triangulation T we define a quiver QT where:

Vertices in QT correspond to arcs (and boundary components).

Arrows are determined by inscribing a 3-cycle in each triangle of T .

Note: µγ(QT ) = Qµγ(T ).
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How do the variables enter into the picture?

For each arc γ define the lambda length λ(γ):

Choose a metric σ and a collection of horocycles at each marked
point.

λσ̃(γ) ∈ R>0

Figure: Definition of the lambda length.

xγ := λ(γ)

Associate the seed ΣT := (x = {xγ |γ ∈ T},QT ) to T .
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Cluster algebras from orientable surfaces.

Proposition [Penner (’87)]

The lambda lengths are related by the Ptolemy relation.

Theorem [Fomin-Shapiro-Thurston]

In the cluster algebra A(ΣT ) generated by the seed ΣT we have the
following:

A(ΣT) (S,M)

Cluster variables ←→ Arcs

Clusters ←→ Triangulations

Mutation ←→ Flips
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Jon Wilson (Universidad Nacional Autónoma de México (UNAM))Cluster structures on laminated surfaces November 8, 2018 10 / 26



Extending to non-orientable surfaces (Dupont and Palesi)

For S non-orientable we define the bordered surafce (S ,M) in the same
way.

Definition

A simple closed curve is said to be one-sided if it has no orientable
neighbourhood.

Definition

A quasi-arc of (S ,M) is an arc (excluding arcs bounding M1) or a
one-sided closed curve.
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Extending to non-orientable surfaces (Dupont and Palesi)

Definition

Two quasi-arcs α and β of (S ,M) are compatible if they don’t intersect
or are both contained in a Möbius strip with one marked point on the
boundary.

β
α

Figure: Example of compatibility.

Definition

A quasi-triangulation of (S ,M) is a maximal collection of pairwise
compatible quasi-arcs.
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Jon Wilson (Universidad Nacional Autónoma de México (UNAM))Cluster structures on laminated surfaces November 8, 2018 12 / 26



Flips

Proposition [Dupont, Palesi (’15)]

Let T be a quasi-triangulation of (S ,M). Then for any γ ∈ T there exists
a unique quasi-arc γ′ such that γ′ 6= γ and µγ(T ) := T \ {γ} ∪ γ′ is a
quasi-triangulation.
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Exchange relations.

We describe the new exchange relations in order to obtain the cluster
structure.

γ γ′

b

c

d

a

b

c

d

a

xγxγ′ = xaxc + xbxd
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Exchange relations.

xγxγ′ = xa+xb

γ′
ba

c

ba γ

c
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Exchange relations.

γ

ba
c γ′

ba

c

xγxγ′ =
(xa+xb)

2+x2cxaxb
x2c
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Example: (S ,M) =M3.
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Back to cluster algebras

Theorem [Fomin-Zelevinsky (’02)]

For a cluster algebra A(x,Q) then every cluster variable is a laurent
polynomial in the initial cluster variables.
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Laurent Phenomenon algebras

Lam & Pylyavskyy (’12) cooked up a new type of cluster structure
designed to produce the Laurent Phenomenon.

Cluster Algebras

(x,Q) = (x, {F1, . . . ,Fn})
where Fi is binomial.

xix
′
i = Fi .

LP Algebras

(x, {F1, . . . ,Fn})
where Fi is irreducible in Z[x].

xix
′
i = Fi

M

M a monomial in the variables
x \ {xi} .
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Linking quasi-cluster algebras and Laurent phenomenon
algebras

For a quasi-triangulation T define a (candidate) LP seed
ΣT := (x, {F1, . . . ,Fn}) such that the F ′i s are the numerators of the
exchange relations of the quasi-arcs in T .

Hence, for the two constructions to match we need that:

ΣT is a valid LP seed.
Normalisation recovers the denominator.
LP mutation of these polynomials coincides with flips.
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The LP structure of (unpunctured) quasi-cluster algebras.

Theorem [W]

Let T be a quasi-triangulation of an unpunctured(!) (S ,M) and ΣT its
associated LP seed. Then in the LP algebra ALP(ΣT ) generated by this
seed we have the following:

ALP(ΣQ) (S,M)

Cluster variables ←→ Lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips
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Adding coefficients via laminations

Definition

A lamination L is a curve in (S ,M) whose endpoints are on ∂S \M or
spiral infinitely around punctures (with some other mild conditions).

Definition

A multi-lamination L = {L1, . . . , Lk} is a finite collection of laminations
of (S ,M).

Analogous to Fomin and Thurston, for any quasi-arc γ we can define
the laminated lambda length xL(γ) := λ(γ)

cL(γ) ; a notion of length
depending on the laminations as well as the underlying geometry.
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The LP structure of quasi-cluster algebras.

Theorem [W]

Let T be a quasi-triangulation of (S ,M). Then there exists a
multi-lamination L = {L1, . . . , Lk}, with associated LP seed ΣT ,L, such
that in the LP algebra ALP(ΣT ,L) we have the following:

ALP(ΣT,L) (S,M)

Cluster variables ←→ Laminated lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips
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Summary

{Surface cluster algebras} {Cluster algebras}

{Quasi-cluster algebras} {Laurent phenomenon algebras}

Fomin, Shapiro, Thurston

Dupont, Palesi Lam, Pylyavskyy

[W]
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Known facts about quasi-cluster algebras

The finite type arc complexes are spherical [W].

The denominator vectors can be read off using intersection numbers
[W].

There exists a Zn-grading of A(S ,M,L) in which the quasi-cluster
variables are homogenous [W].

For finite type quasi-cluster algebras the cluster monomials form a
(linear) basis for A(S ,M) [Dupont and Palesi].
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Future directions

Finding ‘good’ bases for A(S ,M,L).

Studying the connection between indecomposible quiver
representations of ’double’ quivers (S ,M) and the corresponding
quasi-cluster variables.
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