Cluster structures on laminated surfaces

Jon Wilson

Universidad Nacional Autónoma de México (UNAM)

November 8, 2018

Jon Wilson (Universidad Nacional Autónom Cluster structures on laminated surfaces

• Triangulated orientable surfaces and their link to cluster algebras.

- Triangulated orientable surfaces and their link to cluster algebras.
- Generalisations of the construction.

- Triangulated orientable surfaces and their link to cluster algebras.
- Generalisations of the construction.
- Work in progress and future directions.

- A bordered surface is a pair (S, M) where:
 - S is a compact orientable surface,
 - *M* ⊆ *S* is a finite set of marked points such that every ∂-component of *S* has at least one marked point.

- A bordered surface is a pair (S, M) where:
 - S is a compact orientable surface,
 - *M* ⊆ *S* is a finite set of marked points such that every ∂-component of *S* has at least one marked point.

Definition

An **arc** is a curve γ in S whose endpoints are marked points and $int(\gamma) \subseteq int(S)$.

3 / 26

Definition

A triangulation of (S, M) is a maximal collection of pairwise non-intersecting arcs.

Definition

A triangulation of (S, M) is a maximal collection of pairwise non-intersecting arcs.

• Flips:

Proposition (Harer('85) + Fomin, Shapiro, Thurston ('08))

Let T be a triangulation of an unpunctured (S, M) and let $\gamma \in T$. Then there exists a unique $\gamma' \neq \gamma$, such that $\mu_{\gamma}(T) := T \setminus \{\gamma\} \cup \{\gamma'\}$ is a triangulation.

Figure: Local configuration of a flip.

Flip graph

Definition

The flip graph has vertices corresponding to triangulations and edges corresponding to flips.

Figure: The shape of the flip graph.

Flip graph

Definition

The flip graph has vertices corresponding to triangulations and edges corresponding to flips.

Figure: The shape of the flip graph.

Cluster algebras (Fomin and Zelevinsky)

- Define an initial seed $\Sigma := (\mathbf{x}, Q)$ where:
 - $\mathbf{x} = \{x_1, ..., x_n\}$ algebraically independent variables.
 - *Q* is a quiver (an oriented multi-graph on *n* vertices without loops or 2-cycles).

Figure: non-example and example of quivers.

Cluster algebras (Fomin and Zelevinsky)

- Define an initial seed $\Sigma := (\mathbf{x}, Q)$ where:
 - $\mathbf{x} = \{x_1, ..., x_n\}$ algebraically independent variables.
 - *Q* is a quiver (an oriented multi-graph on *n* vertices without loops or 2-cycles).

Figure: non-example and example of quivers.

• $\tilde{x} = \{x_1, ..., x_n, x_{n+1}, ..., x_m\}$ is the **extended cluster** if we add extra **frozen vertices** to the quiver Q.

Mutations

- (Quiver mutation) Let $k \in [1, n]$. We get a new quiver $\mu_k(Q)$ by:
 - For each path $i \to k \to j$ in Q add an arrow $i \to j$.
 - Remove any 2-cycles.
 - Reverse arrows incident to k.

Mutations

- (Quiver mutation) Let $k \in [1, n]$. We get a new quiver $\mu_k(Q)$ by:
 - For each path $i \to k \to j$ in Q add an arrow $i \to j$.
 - Remove any 2-cycles.
 - Reverse arrows incident to k.

• (Variable mutation)

 $\mu_k(\mathbf{x}) := \{x'_1, ..., x'_n\} \text{ where } x'_i = x_i \text{ when } i \neq k \text{ and}$ $x'_k = \frac{1}{x_k} \big(\prod_{i \to k \text{ in } Q} x_i + \prod_{i \leftarrow k \text{ in } Q} x_i\big).$

Mutations

- (Quiver mutation) Let $k \in [1, n]$. We get a new quiver $\mu_k(Q)$ by:
 - For each path $i \to k \to j$ in Q add an arrow $i \to j$.
 - Remove any 2-cycles.
 - Reverse arrows incident to k.

(Variable mutation)

 $\mu_k(\mathbf{x}) := \{x_1', ..., x_n'\}$ where $x_i' = x_i$ when $i \neq k$ and

$$x'_{k} = \frac{1}{x_{k}} \left(\prod_{i \to k \text{ in } Q} x_{i} + \prod_{i \leftarrow k \text{ in } Q} x_{i} \right).$$

• Note:
$$\mu_k^2(\mathbf{x}, Q) = (\mathbf{x}, Q)$$
.

7 / 26

Given a triangulation T we define a quiver Q_T where:

• Vertices in Q_T correspond to arcs (and boundary components).

Given a triangulation T we define a quiver Q_T where:

- Vertices in Q_T correspond to arcs (and boundary components).
- Arrows are determined by inscribing a 3-cycle in each triangle of T.

Given a triangulation T we define a quiver Q_T where:

- Vertices in Q_T correspond to arcs (and boundary components).
- Arrows are determined by inscribing a 3-cycle in each triangle of T.

• Note: $\mu_{\gamma}(Q_T) = Q_{\mu_{\gamma}(T)}$.

For each arc γ define the **lambda length** $\lambda(\gamma)$:

 $\bullet\,$ Choose a metric σ and a collection of horocycles at each marked point.

Figure: Definition of the lambda length.

For each arc γ define the **lambda length** $\lambda(\gamma)$:

 $\bullet\,$ Choose a metric σ and a collection of horocycles at each marked point.

Figure: Definition of the lambda length.

For each arc γ define the **lambda length** $\lambda(\gamma)$:

 $\bullet\,$ Choose a metric σ and a collection of horocycles at each marked point.

Figure: Definition of the lambda length.

•
$$x_{\gamma} := \lambda(\gamma)$$

For each arc γ define the **lambda length** $\lambda(\gamma)$:

• Choose a metric σ and a collection of horocycles at each marked point.

Figure: Definition of the lambda length.

• $x_{\gamma} := \lambda(\gamma)$

• Associate the seed $\Sigma_{\mathcal{T}} := (\mathbf{x} = \{x_{\gamma} | \gamma \in \mathcal{T}\}, Q_{\mathcal{T}})$ to \mathcal{T} .

Cluster algebras from orientable surfaces.

Proposition [Penner ('87)]

The lambda lengths are related by the Ptolemy relation.

Cluster algebras from orientable surfaces.

Proposition [Penner ('87)]

The lambda lengths are related by the Ptolemy relation.

Theorem [Fomin-Shapiro-Thurston]

In the cluster algebra $\mathcal{A}(\Sigma_{\mathcal{T}})$ generated by the seed $\Sigma_{\mathcal{T}}$ we have the following:

$\mathcal{A}(\mathbf{\Sigma}_{T})$		(S, M)
Cluster variables	\longleftrightarrow	Arcs
Clusters	\longleftrightarrow	Triangulations
Mutation	\longleftrightarrow	Flips

For S non-orientable we define the bordered surafce (S, M) in the same way.

Definition

A simple closed curve is said to be **one-sided** if it has no orientable neighbourhood.

For S non-orientable we define the bordered surafce (S, M) in the same way.

Definition

A simple closed curve is said to be **one-sided** if it has no orientable neighbourhood.

Definition

A **quasi-arc** of (S, M) is an arc (excluding arcs bounding \mathcal{M}_1) or a one-sided closed curve.

Definition

Two quasi-arcs α and β of (S, M) are **compatible** if they don't intersect or are both contained in a Möbius strip with one marked point on the boundary.

Figure: Example of compatibility.

Definition

Two quasi-arcs α and β of (S, M) are **compatible** if they don't intersect or are both contained in a Möbius strip with one marked point on the boundary.

Figure: Example of compatibility.

Definition

A quasi-triangulation of (S, M) is a maximal collection of pairwise compatible quasi-arcs.

Jon Wilson (Universidad Nacional Autónom Cluster structures on laminated surfaces

November 8, 2018 12 / 26

Proposition [Dupont, Palesi ('15)]

Let T be a quasi-triangulation of (S, M). Then for any $\gamma \in T$ there exists a unique quasi-arc γ' such that $\gamma' \neq \gamma$ and $\mu_{\gamma}(T) := T \setminus \{\gamma\} \cup \gamma'$ is a quasi-triangulation. We describe the new exchange relations in order to obtain the cluster structure.

 $x_{\gamma}x_{\gamma'} = x_a x_c + x_b x_d$

Exchange relations.

 $x_{\gamma}x_{\gamma'} = x_a + x_b$

э

Exchange relations.

November 8, 2018

э

Example: $(S, M) = \mathcal{M}_3$.

3. 3

17 / 26

Theorem [Fomin-Zelevinsky ('02)]

For a cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ then every cluster variable is a laurent polynomial in the initial cluster variables.

• Lam & Pylyavskyy ('12) cooked up a new type of cluster structure designed to produce the Laurent Phenomenon.

Cluster Algebras

LP Algebras

• Lam & Pylyavskyy ('12) cooked up a new type of cluster structure designed to produce the Laurent Phenomenon.

Cluster Algebras $(\mathbf{x}, Q) = (\mathbf{x}, \{F_1, \dots, F_n\})$ where F_i is binomial. LP Algebras $(\mathbf{x}, \{F_1, \dots, F_n\})$ where F_i is irreducible in $\mathbb{Z}[\mathbf{x}]$. • Lam & Pylyavskyy ('12) cooked up a new type of cluster structure designed to produce the Laurent Phenomenon.

Cluster Algebras $(\mathbf{x}, Q) = (\mathbf{x}, \{F_1, \dots, F_n\})$ where F_i is binomial.

$$x_i x_i' = F_i.$$

LP Algebras

 $(\mathbf{x}, \{F_1, \dots, F_n\})$ where F_i is irreducible in $\mathbb{Z}[\mathbf{x}]$.

$$x_i x_i' = \frac{F_i}{M}$$

M a monomial in the variables $\mathbf{x} \setminus \{x_i\}$.

For a quasi-triangulation T define a (candidate) LP seed
 Σ_T := (x, {F₁,..., F_n}) such that the F_i's are the numerators of the exchange relations of the quasi-arcs in T.

- For a quasi-triangulation T define a (candidate) LP seed
 Σ_T := (x, {F₁,..., F_n}) such that the F_i's are the numerators of the exchange relations of the quasi-arcs in T.
- Hence, for the two constructions to match we need that:

- For a quasi-triangulation T define a (candidate) LP seed
 Σ_T := (x, {F₁,..., F_n}) such that the F_i's are the numerators of the exchange relations of the quasi-arcs in T.
- Hence, for the two constructions to match we need that:
 - Σ_T is a valid LP seed.

- For a quasi-triangulation T define a (candidate) LP seed
 Σ_T := (x, {F₁,..., F_n}) such that the F_i's are the numerators of the exchange relations of the quasi-arcs in T.
- Hence, for the two constructions to match we need that:
 - Σ_T is a valid LP seed.
 - Normalisation recovers the denominator.

20 / 26

- For a quasi-triangulation T define a (candidate) LP seed
 Σ_T := (x, {F₁,..., F_n}) such that the F_i's are the numerators of the exchange relations of the quasi-arcs in T.
- Hence, for the two constructions to match we need that:
 - Σ_T is a valid LP seed.
 - Normalisation recovers the denominator.
 - LP mutation of these polynomials coincides with flips.

Theorem [W]

Let T be a quasi-triangulation of an **unpunctured(!)** (S, M) and Σ_T its associated LP seed. Then in the LP algebra $\mathcal{A}_{LP}(\Sigma_T)$ generated by this seed we have the following:

$\mathcal{A}_{LP}(\mathbf{\Sigma}_{Q})$		(S, M)
Cluster variables	\longleftrightarrow	Lambda lengths of quasi-arcs
Clusters	\longleftrightarrow	Quasi-triangulations
LP mutation	\longleftrightarrow	Flips

Definition

A **lamination** *L* is a curve in (S, M) whose endpoints are on $\partial S \setminus M$ or spiral infinitely around punctures (with some other mild conditions).

Definition

A **lamination** *L* is a curve in (S, M) whose endpoints are on $\partial S \setminus M$ or spiral infinitely around punctures (with some other mild conditions).

Definition

A multi-lamination $L = \{L_1, ..., L_k\}$ is a finite collection of laminations of (S, M).

Definition

A **lamination** *L* is a curve in (S, M) whose endpoints are on $\partial S \setminus M$ or spiral infinitely around punctures (with some other mild conditions).

Definition

A multi-lamination $L = \{L_1, ..., L_k\}$ is a finite collection of laminations of (S, M).

• Analogous to Fomin and Thurston, for any quasi-arc γ we can define the **laminated lambda length** $x_{\mathsf{L}}(\gamma) := \frac{\lambda(\gamma)}{c_{\mathsf{L}}(\gamma)}$; a notion of length depending on the laminations as well as the underlying geometry.

Theorem [W]

Let T be a quasi-triangulation of (S, M). Then there exists a multi-lamination $\mathbf{L} = \{L_1, \ldots, L_k\}$, with associated LP seed $\Sigma_{T, \mathbf{L}}$, such that in the LP algebra $\mathcal{A}_{LP}(\Sigma_{T, \mathbf{L}})$ we have the following:

$\mathcal{A}_{LP}(\mathbf{\Sigma}_{T,L})$		(S, M)	
Cluster variables	\longleftrightarrow	Laminated lambda lengths of quasi-arcs	
Clusters	\longleftrightarrow	Quasi-triangulations	
LP mutation	\longleftrightarrow	Flips	

• The finite type arc complexes are spherical [W].

25 / 26

- The finite type arc complexes are spherical [W].
- The denominator vectors can be read off using intersection numbers [W].

- The finite type arc complexes are spherical [W].
- The denominator vectors can be read off using intersection numbers [W].
- There exists a Zⁿ-grading of A_(S,M,L) in which the quasi-cluster variables are homogenous [W].

- The finite type arc complexes are spherical [W].
- The denominator vectors can be read off using intersection numbers [W].
- There exists a Zⁿ-grading of A_(S,M,L) in which the quasi-cluster variables are homogenous [W].
- For finite type quasi-cluster algebras the cluster monomials form a (linear) basis for A_(S,M) [Dupont and Palesi].

• Finding 'good' bases for $\mathcal{A}_{(S,M,L)}$.

э

26 / 26

- Finding 'good' bases for $\mathcal{A}_{(S,M,L)}$.
- Studying the connection between indecomposible quiver representations of 'double' quivers (S, M) and the corresponding quasi-cluster variables.