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From weight multiplicities...

Let g be a complex, simple Lie algebra and V(λ) be a
finite-dimensional, irreducible representation.

Then

V(λ) ∼=
⊕
µ≤λ

V(λ)µ, and if Kλ,µ = dim(V(λ)µ),

Kλ,µ =
∑

w∈W
(−1)l(w)P(w(λ+ ρ)− (µ+ ρ)),

where: ∏
α positive root

1
1− xα =

∑
β

P(β)xβ,

and the sum runs over all positive integral combinations of positive
roots.
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... to their q-analogues

Lusztig’s q-analogues of weight multiplicities are given by:

Kλ,µ(q) =
∑

w∈W
(−1)l(w)Pq(w(λ+ ρ)− (µ+ ρ))

where Pq is a q-analoque satisfying:

∏
α positive root

1
1− qxα =

∑
β

Pq(β)xβ.

In particular, Kλ,µ(1) = Kλ,µ.



Properties

It was shown by Kato that the polynomials Kλ,µ(q) are
Kostka-Foulkes polynomials defined by:

sλ =
∑

µ dominant
Kλ,µ(q)Pµ(x ; q)

where sλ is a Weyl character and pµ a Hall-Littlewood
polynomial (a.k.a. Macdonald spherical function).
They are affine Kazhdan-Lusztig polynomials, so their
coefficients are positive, but in general, there is no positive,
closed, combinatorial formula to describe them...



...except in type An−1, that is when g = sl(n,C):

In this case Lascoux-Schutzenberger found a statistic

ch : SSYTn → Z≥0

on semistandard Young tableaux called charge which gives the
following formula:

Kλ,µ(q) =
∑

T∈SSYTn(λ,µ)
qch(T).



The charge of a semistandard Young tableau

Define a graph structure on SSYTn by setting T→ T′
whenever there exists a word u and a letter x 6= 1 such that

word(T) ≡ xu and word(T′) ≡ ux .

where ≡ denotes plactic equivalence on words.

If the shape of T′ is a row, it cannot be obtained from some
T in this way.
Fix a weight µ, and let Tµ be the unique tableau with row
shape and content/weight µ. Then, all paths joining a tableau
T of weight µ to Tµ have the same length (and there exists at
least one) nT. Then

ch(T) :=
∑

i
(i − 1)µi − nT.
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Type Cn

From now on, g = sp(2n,C). Semistandard Young tableaux are
replaced by Kashiwara-Nakashima tableaux KNn, which are
semistandard Young tableaux on the ordered alphabet

Cn =
{

n̄ < · · · < 1̄ < 1 < ... < n
}

satisfying certain conditions.



Lecouvey has defined a cyclage algorithm and with it a
directed graph structure on the set

KN =
⋃
n>0

KNn

in such a way that all sinks are columns of weight zero, and
such that, for every T ∈ KN, there always exists a finite path
to a unique sink CT, and all paths from T to CT have the
same length nT.

Let C be a column of weight zero. Define

chn(C) := 2
∑

i∈EC

(n − i),

where
EC = {i ≥ 1|i ∈ C, i + 1 /∈ C} .

Let T ∈ KNn. Then

chn(T) := chn(CT) + nT.
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Conjecture (Lecouvey)
Let KNn(λ, µ) denote the set of Kashiwara-Nakashima tableaux of
shape λ and weight µ. The following formula holds:

Kλ,µ(q) =
∑

T∈KNn(λ,µ)
qchn(T).

In recent work, Lecouvey-Lenart have proven this conjecture for
columns of weight zero.



Theorem (Gerber-T.)
Lecouvey’s conjecture is true for rows of weight zero. Moreover, for
T ∈ KNn((2r), 0), given by

T = īr ... ī1 i1 ... ir

for positive integers i1 ≤ · · · ≤ ir , we have

chn(T) = r + 2
r∑

k=1
(n − ik).
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Thank you for your attention!


	 

