Kostka-Foulkes polynomials in type C_{n}

Jacinta Torres
Karlsruhe Institut for Technology
(jt. with Thomas Gerber)

Representations in Lie Theory and Interactions | CIRM Luminy
5-9 November, 2018

From weight multiplicities...

Let \mathfrak{g} be a complex, simple Lie algebra and $\mathrm{V}(\lambda)$ be a finite-dimensional, irreducible representation.

From weight multiplicities...

Let \mathfrak{g} be a complex, simple Lie algebra and $\mathrm{V}(\lambda)$ be a finite-dimensional, irreducible representation. Then

$$
\begin{aligned}
\mathrm{V}(\lambda) & \cong \bigoplus_{\mu \leq \lambda} \mathrm{V}(\lambda)_{\mu}, \text { and if } K_{\lambda, \mu}=\operatorname{dim}\left(\mathrm{V}(\lambda)_{\mu}\right), \\
K_{\lambda, \mu} & =\sum_{w \in \mathrm{~W}}(-1)^{\prime(w)} \mathcal{P}(w(\lambda+\rho)-(\mu+\rho))
\end{aligned}
$$

where:

$$
\prod_{\alpha \text { positive root }} \frac{1}{1-x^{\alpha}}=\sum_{\beta} \mathcal{P}(\beta) x^{\beta}
$$

and the sum runs over all positive integral combinations of positive roots.

... to their q-analogues

Lusztig's q-analogues of weight multiplicities are given by:

$$
K_{\lambda, \mu}(q)=\sum_{w \in \mathrm{~W}}(-1)^{1(w)} \mathcal{P}_{q}(w(\lambda+\rho)-(\mu+\rho))
$$

where \mathcal{P}_{q} is a q-analoque satisfying:

$$
\prod_{\alpha \text { positive root }} \frac{1}{1-q x^{\alpha}}=\sum_{\beta} \mathcal{P}_{q}(\beta) x^{\beta}
$$

In particular, $K_{\lambda, \mu}(1)=K_{\lambda, \mu}$.

Properties

■ It was shown by Kato that the polynomials $K_{\lambda, \mu}(q)$ are Kostka-Foulkes polynomials defined by:

$$
s_{\lambda}=\sum_{\mu \text { dominant }} K_{\lambda, \mu}(q) P_{\mu}(x ; q)
$$

where s_{λ} is a Weyl character and p_{μ} a Hall-Littlewood polynomial (a.k.a. Macdonald spherical function).

- They are affine Kazhdan-Lusztig polynomials, so their coefficients are positive, but in general, there is no positive, closed, combinatorial formula to describe them...

In this case Lascoux-Schutzenberger found a statistic

$$
\text { ch : } \mathrm{SSYT}_{n} \rightarrow \mathbb{Z}_{\geq 0}
$$

on semistandard Young tableaux called charge which gives the following formula:

$$
K_{\lambda, \mu}(q)=\sum_{\mathrm{T} \in \mathrm{SSYT}_{n}(\lambda, \mu)} q^{\mathrm{ch}(\mathrm{~T})}
$$

The charge of a semistandard Young tableau

- Define a graph structure on SSY_{n} by setting $\mathrm{T} \rightarrow \mathrm{T}^{\prime}$ whenever there exists a word u and a letter $x \neq 1$ such that

$$
\operatorname{word}(\mathrm{T}) \equiv x u \text { and } \operatorname{word}\left(\mathrm{T}^{\prime}\right) \equiv u x
$$

where \equiv denotes plactic equivalence on words.

The charge of a semistandard Young tableau

■ Define a graph structure on SSY_{n} by setting $\mathrm{T} \rightarrow \mathrm{T}^{\prime}$ whenever there exists a word u and a letter $x \neq 1$ such that

$$
\operatorname{word}(\mathrm{T}) \equiv x u \text { and } \operatorname{word}\left(\mathrm{T}^{\prime}\right) \equiv u x
$$

where \equiv denotes plactic equivalence on words.

- If the shape of T^{\prime} is a row, it cannot be obtained from some T in this way.

The charge of a semistandard Young tableau

■ Define a graph structure on SSY_{n} by setting $\mathrm{T} \rightarrow \mathrm{T}^{\prime}$ whenever there exists a word u and a letter $x \neq 1$ such that

$$
\operatorname{word}(\mathrm{T}) \equiv x u \text { and } \operatorname{word}\left(\mathrm{T}^{\prime}\right) \equiv u x
$$

where \equiv denotes plactic equivalence on words.

- If the shape of T^{\prime} is a row, it cannot be obtained from some T in this way.
- Fix a weight μ, and let T_{μ} be the unique tableau with row shape and content/weight μ. Then, all paths joining a tableau T of weight μ to T_{μ} have the same length (and there exists at least one) n_{T}. Then

$$
\operatorname{ch}(\mathrm{T}):=\sum_{i}(i-1) \mu_{i}-n_{\mathrm{T}} .
$$

Type C_{n}

From now on, $\mathfrak{g}=\mathfrak{s p}(2 n, \mathbb{C})$. Semistandard Young tableaux are replaced by Kashiwara-Nakashima tableaux KN_{n}, which are semistandard Young tableaux on the ordered alphabet

$$
\mathcal{C}_{n}=\{\bar{n}<\cdots<\overline{1}<1<\ldots<n\}
$$

satisfying certain conditions.

■ Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$
\mathrm{KN}=\bigcup_{n>0} \mathrm{KN}_{n}
$$

in such a way that all sinks are columns of weight zero, and such that, for every $\mathrm{T} \in \mathrm{KN}$, there always exists a finite path to a unique sink C_{T}, and all paths from T to C_{T} have the same length n_{T}.

- Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$
\mathrm{KN}=\bigcup_{n>0} \mathrm{KN}_{n}
$$

in such a way that all sinks are columns of weight zero, and such that, for every $T \in K N$, there always exists a finite path to a unique sink C_{T}, and all paths from T to C_{T} have the same length n_{T}.
■ Let C be a column of weight zero. Define

$$
\operatorname{ch}_{n}(\mathrm{C}):=2 \sum_{i \in \mathrm{E}_{C}}(n-i)
$$

where

$$
\mathrm{E}_{\mathrm{C}}=\{i \geq 1 \mid i \in \mathrm{C}, i+1 \notin \mathrm{C}\}
$$

- Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$
\mathrm{KN}=\bigcup_{n>0} \mathrm{KN}_{n}
$$

in such a way that all sinks are columns of weight zero, and such that, for every $\mathrm{T} \in \mathrm{KN}$, there always exists a finite path to a unique sink C_{T}, and all paths from T to C_{T} have the same length n_{T}.
■ Let C be a column of weight zero. Define

$$
\operatorname{ch}_{n}(\mathrm{C}):=2 \sum_{i \in \mathrm{E}_{C}}(n-i)
$$

where

$$
\mathrm{E}_{\mathrm{C}}=\{i \geq 1 \mid i \in \mathrm{C}, i+1 \notin \mathrm{C}\}
$$

- Let $\mathrm{T} \in \mathrm{KN}_{n}$. Then

$$
\mathrm{ch}_{n}(\mathrm{~T}):=\mathrm{ch}_{n}\left(\mathrm{C}_{\mathrm{T}}\right)+n_{\mathrm{T}} .
$$

Conjecture (Lecouvey)

Let $\mathrm{KN}_{n}(\lambda, \mu)$ denote the set of Kashiwara-Nakashima tableaux of shape λ and weight μ. The following formula holds:

$$
K_{\lambda, \mu}(q)=\sum_{\mathrm{T} \in \mathrm{KN}_{n}(\lambda, \mu)} q^{\mathrm{ch}_{n}(\mathrm{~T})} .
$$

In recent work, Lecouvey-Lenart have proven this conjecture for columns of weight zero.

Theorem (Gerber-T.)
Lecouvey's conjecture is true for rows of weight zero. Moreover, for $\mathrm{T} \in \mathrm{KN}_{n}((2 r), 0)$, given by

$$
\mathrm{T}=\begin{array}{|l|l|l|l|l|}
\hline \bar{i}_{r} & \ldots & \bar{i}_{1} & i_{1} & \ldots \\
\hline
\end{array}
$$

for positive integers $i_{1} \leq \cdots \leq i_{r}$, we have

$$
\mathrm{ch}_{n}(\mathrm{~T})=r+2 \sum_{k=1}^{r}\left(n-i_{k}\right) .
$$

Theorem (Gerber-T.)
Lecouvey's conjecture is true for rows of weight zero. Moreover, for $\mathrm{T} \in \mathrm{KN}_{n}((2 r), 0)$, given by

$$
\mathrm{T}=\begin{array}{|l|l|l|l|l|}
\hline \bar{i}_{r} & \ldots & \bar{i}_{1} & i_{1} & \ldots \\
\hline
\end{array}
$$

for positive integers $i_{1} \leq \cdots \leq i_{r}$, we have

$$
\mathrm{ch}_{n}(\mathrm{~T})=r+2 \sum_{k=1}^{r}\left(n-i_{k}\right) .
$$

Thank you for your attention!

