Kostka-Foulkes polynomials in type C_n

Jacinta Torres Karlsruhe Institut for Technology (jt. with Thomas Gerber)

Representations in Lie Theory and Interactions | CIRM Luminy

5-9 November, 2018

From weight multiplicities...

Let \mathfrak{g} be a complex, simple Lie algebra and $V(\lambda)$ be a finite-dimensional, irreducible representation.

From weight multiplicities...

Let \mathfrak{g} be a complex, simple Lie algebra and $V(\lambda)$ be a finite-dimensional, irreducible representation. Then

$$V(\lambda) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}$$
, and if $K_{\lambda,\mu} = \dim(V(\lambda)_{\mu})$,

$$\mathcal{K}_{\lambda,\mu} = \sum_{w \in \mathrm{W}} (-1)^{l(w)} \mathcal{P}(w(\lambda +
ho) - (\mu +
ho)),$$

where:

$$\prod_{\alpha \text{ positive root}} \frac{1}{1-x^{\alpha}} = \sum_{\beta} \mathcal{P}(\beta) x^{\beta},$$

and the sum runs over all positive integral combinations of positive roots.

... to their q-analogues

Lusztig's q-analogues of weight multiplicities are given by:

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{w \in \mathrm{W}} (-1)^{l(w)} \mathcal{P}_q(w(\lambda +
ho) - (\mu +
ho))$$

where \mathcal{P}_q is a *q*-analoque satisfying:

$$\prod_{\alpha \text{ positive root}} \frac{1}{1 - qx^{\alpha}} = \sum_{\beta} \mathcal{P}_q(\beta) x^{\beta}.$$

In particular, $K_{\lambda,\mu}(1) = K_{\lambda,\mu}$.

Properties

 It was shown by Kato that the polynomials K_{λ,μ}(q) are Kostka-Foulkes polynomials defined by:

$$s_{\lambda} = \sum_{\mu \; {\sf dominant}} \; {\cal K}_{\lambda,\mu}(q) {\cal P}_{\mu}(x;q)$$

where s_{λ} is a Weyl character and p_{μ} a Hall-Littlewood polynomial (a.k.a. Macdonald spherical function).

They are affine Kazhdan-Lusztig polynomials, so their coefficients are positive, but in general, there is no positive, closed, combinatorial formula to describe them... ...except in type A_{n-1} , that is when $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$:

In this case Lascoux-Schutzenberger found a statistic

 $\mathsf{ch}:\mathsf{SSYT}_n\to\mathbb{Z}_{\geq 0}$

on semistandard Young tableaux called **charge** which gives the following formula:

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{\mathrm{T}\in\mathsf{SSYT}_n(\lambda,\mu)} q^{\mathsf{ch}(\mathrm{T})}.$$

The charge of a semistandard Young tableau

• Define a graph structure on $SSYT_n$ by setting $T \rightarrow T'$ whenever there exists a word u and a letter $x \neq 1$ such that

word(T) $\equiv xu$ and word(T') $\equiv ux$.

where \equiv denotes plactic equivalence on words.

The charge of a semistandard Young tableau

• Define a graph structure on $SSYT_n$ by setting $T \rightarrow T'$ whenever there exists a word u and a letter $x \neq 1$ such that

```
word(T) \equiv xu and word(T') \equiv ux.
```

where \equiv denotes plactic equivalence on words.

If the shape of T' is a row, it cannot be obtained from some T in this way.

The charge of a semistandard Young tableau

• Define a graph structure on $SSYT_n$ by setting $T \rightarrow T'$ whenever there exists a word u and a letter $x \neq 1$ such that

$$\mathsf{word}(\mathrm{T}) \equiv xu \text{ and } \mathsf{word}(\mathrm{T}') \equiv ux.$$

where \equiv denotes plactic equivalence on words.

- If the shape of T' is a row, it cannot be obtained from some T in this way.
- Fix a weight μ, and let T_μ be the unique tableau with row shape and content/weight μ. Then, all paths joining a tableau T of weight μ to T_μ have the same length (and there exists at least one) n_T. Then

$$\mathsf{ch}(\mathrm{T}) := \sum_{i} (i-1)\mu_i - n_{\mathrm{T}}.$$

Type C_n

From now on, $\mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C})$. Semistandard Young tableaux are replaced by Kashiwara-Nakashima tableaux KN_n, which are semistandard Young tableaux on the ordered alphabet

$$\mathcal{C}_n = \left\{ \bar{n} < \cdots < \bar{1} < 1 < \ldots < n \right\}$$

satisfying certain conditions.

 Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$KN = \bigcup_{n>0} KN_n$$

in such a way that all sinks are columns of weight zero, and such that, for every $T\in \mathsf{KN}$, there always exists a finite path to a unique sink C_T , and all paths from T to C_T have the same length $n_T.$

 Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$\mathsf{KN} = \bigcup_{n>0} \mathsf{KN}_n$$

in such a way that all sinks are columns of weight zero, and such that, for every $T \in \mathsf{KN}$, there always exists a finite path to a unique sink C_T , and all paths from T to C_T have the same length $n_T.$

Let C be a column of weight zero. Define

$$\operatorname{ch}_{n}(\mathbf{C}) := 2 \sum_{i \in \mathbf{E}_{C}} (n-i),$$

where

$$\mathbf{E}_{\mathbf{C}} = \left\{ i \ge 1 | i \in \mathbf{C}, i+1 \notin \mathbf{C} \right\}.$$

 Lecouvey has defined a cyclage algorithm and with it a directed graph structure on the set

$$\mathsf{KN} = \bigcup_{n>0} \mathsf{KN}_n$$

in such a way that all sinks are columns of weight zero, and such that, for every $T \in \mathsf{KN}$, there always exists a finite path to a unique sink C_T , and all paths from T to C_T have the same length $n_T.$

Let C be a column of weight zero. Define

$$\operatorname{ch}_{n}(\mathbf{C}) := 2 \sum_{i \in \mathbf{E}_{C}} (n-i),$$

where

$$\mathbf{E}_{\mathbf{C}} = \left\{ i \geq 1 | i \in \mathbf{C}, i+1 \notin \mathbf{C} \right\}.$$

Let $T \in KN_n$. Then

$$\mathsf{ch}_n(\mathbf{T}) := \mathsf{ch}_n(\mathbf{C}_{\mathbf{T}}) + n_{\mathbf{T}}.$$

Conjecture (Lecouvey)

Let $KN_n(\lambda, \mu)$ denote the set of Kashiwara-Nakashima tableaux of shape λ and weight μ . The following formula holds:

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{\mathrm{T}\in\mathsf{KN}_n(\lambda,\mu)} q^{\mathsf{ch}_n(\mathrm{T})}.$$

In recent work, Lecouvey-Lenart have proven this conjecture for columns of weight zero.

Theorem (Gerber-T.)

Lecouvey's conjecture is true for rows of weight zero. Moreover, for $\mathrm{T}\in\mathsf{KN}_n((2r),0),$ given by

$$\mathbf{T} = \boxed{\overline{i_r} \ \dots \ \overline{i_1} \ i_1 \ \dots \ i_r}$$

for positive integers $i_1 \leq \cdots \leq i_r$, we have

$$\operatorname{ch}_n(\mathrm{T}) = r + 2\sum_{k=1}^r (n - i_k).$$

Theorem (Gerber-T.)

Lecouvey's conjecture is true for rows of weight zero. Moreover, for $\mathrm{T}\in\mathsf{KN}_n((2r),0),$ given by

$$\mathbf{T} = \boxed{\overline{i_r} \ \dots \ \overline{i_1} \ i_1 \ \dots \ i_r}$$

for positive integers $i_1 \leq \cdots \leq i_r$, we have

$$\operatorname{ch}_n(\mathrm{T}) = r + 2\sum_{k=1}^r (n - i_k).$$

Thank you for your attention!