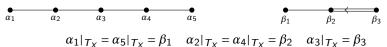
\boldsymbol{X} as the fixed points subgroup of a graph automorphism of \boldsymbol{G}



X as the fixed points subgroup of a graph automorphism of G

$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{3} \qquad \alpha_{4} \qquad \alpha_{5}$$

$$\alpha_{1}|_{T_{X}} = \alpha_{5}|_{T_{X}} = \beta_{1} \qquad \alpha_{2}|_{T_{X}} = \alpha_{4}|_{T_{X}} = \beta_{2} \qquad \alpha_{3}|_{T_{X}} = \beta_{3}$$

Let $\{\lambda_i\}$ denote the fundamental weights in $X(T_G)^+$.

$$\lambda = (p-1)\lambda_3 \in X(T_G)^+ \Longrightarrow L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_X} - \beta_2 - \beta_3)/...?$$

X as the fixed points subgroup of a graph automorphism of ${\it G}$

$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{3} \qquad \alpha_{4} \qquad \alpha_{5}$$

$$\alpha_{1}|_{T_{X}} = \alpha_{5}|_{T_{X}} = \beta_{1} \qquad \alpha_{2}|_{T_{X}} = \alpha_{4}|_{T_{X}} = \beta_{2} \qquad \alpha_{3}|_{T_{X}} = \beta_{3}$$

Let $\{\lambda_i\}$ denote the fundamental weights in $X(T_G)^+$.

$$\lambda = (p-1)\lambda_3 \in X(T_G)^+ \implies L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_X} - \beta_2 - \beta_3)/...?$$

 $L_G(\lambda)|_X$ is self-dual. If \exists third composition factor then \exists maximal vector for $\mathscr{L}(B_X)$ of weight $\theta \in X(T_X)^+$ and $\theta \neq \lambda|_{T_X}, \lambda|_{T_X} - \beta_2 - \beta_3$.

X as the fixed points subgroup of a graph automorphism of G

$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{3} \qquad \alpha_{4} \qquad \alpha_{5}$$

$$\alpha_{1}|_{T_{X}} = \alpha_{5}|_{T_{X}} = \beta_{1} \qquad \alpha_{2}|_{T_{X}} = \alpha_{4}|_{T_{X}} = \beta_{2} \qquad \alpha_{3}|_{T_{X}} = \beta_{3}$$

Let $\{\lambda_i\}$ denote the fundamental weights in $X(T_G)^+$.

$$\lambda = (p-1)\lambda_3 \in X(T_G)^+ \implies L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_X} - \beta_2 - \beta_3)/...?$$

 $L_G(\lambda)|_X$ is self-dual. If \exists third composition factor then \exists maximal vector for $\mathscr{L}(B_X)$ of weight $\theta \in X(T_X)^+$ and $\theta \neq \lambda|_{T_X}, \lambda|_{T_X} - \beta_2 - \beta_3$. By the proposition, if

$$m_{L_G(\lambda)|_X}(\lambda|_{T_X} - \alpha|_{T_X}) = m_{L_X(\lambda|_{T_X}) \oplus L_X(\lambda|_{T_X} - \beta_2 - \beta_3)}(\lambda|_{T_X} - \alpha|_{T_X})$$

$$m_{L_G(\lambda)|_X}(\lambda|_{T_X} - \alpha|_{T_X} - \beta_2 - \beta_3) = m_{L_X(\lambda|_{T_X}) \oplus L_X(\lambda|_{T_X} - \beta_2 - \beta_3)}(\lambda|_{T_X} - \alpha|_{T_X} - \beta_2 - \beta_3)$$
for $\alpha \in R(G)^+ \setminus \{\alpha_0\} \implies L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_Y} - \beta_2 - \beta_3)$.

 \boldsymbol{X} as the fixed points subgroup of a graph automorphism of \boldsymbol{G}

$$\alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \alpha_4 \qquad \alpha_5$$

$$\alpha_1|_{T_X} = \alpha_5|_{T_X} = \beta_1 \qquad \alpha_2|_{T_X} = \alpha_4|_{T_X} = \beta_2 \qquad \alpha_3|_{T_X} = \beta_3$$

Let $\{\lambda_i\}$ denote the fundamental weights in $X(T_G)^+$.

$$\lambda = (p-1)\lambda_3 \in X(T_G)^+ \implies L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_X} - \beta_2 - \beta_3)/...?$$

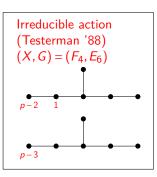
 $L_G(\lambda)|_X$ is self-dual. If \exists third composition factor then \exists maximal vector for $\mathscr{L}(B_X)$ of weight $\theta \in X(T_X)^+$ and $\theta \neq \lambda|_{T_X}, \lambda|_{T_X} - \beta_2 - \beta_3$. By the proposition, if

$$m_{L_{G}(\lambda)|_{X}}(\lambda|_{T_{X}}-\alpha|_{T_{X}})=m_{L_{X}(\lambda|_{T_{Y}})\oplus L_{X}(\lambda|_{T_{Y}}-\beta_{2}-\beta_{3})}(\lambda|_{T_{X}}-\alpha|_{T_{X}})$$

$$m_{L_G(\lambda)|_X}\big(\lambda|_{T_X}-\alpha|_{T_X}-\beta_2-\beta_3\big)=m_{L_X(\lambda|_{T_X})\oplus L_X(\lambda|_{T_X}-\beta_2-\beta_3)}\big(\lambda|_{T_X}-\alpha|_{T_X}-\beta_2-\beta_3\big)$$

for $\alpha \in R(G)^+ \setminus \{\alpha_0\} \implies L_G(\lambda)|_X = L_X(\lambda|_{T_X})/L_X(\lambda|_{T_X} - \beta_2 - \beta_3)$. Same arguments works for (X, G) of type (C_n, A_{2n-1}) .

Comparing irreducible and two composition factors $p \ge 13$



Comparing irreducible and two composition factors $p \ge 13$

