Emmanuel LETELLIER

Exotic Fourier transforms on connected reductive groups

(Work in progress with G. Laumon)

• Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\operatorname{uni}} \simeq \operatorname{Lie}(G)_{\operatorname{nil}}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L., Achar-Henderson-Juteau-Riche).

- Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\mathrm{uni}} \simeq \operatorname{Lie}(G)_{\mathrm{nil}}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L., Achar-Henderson-Juteau-Riche).
- Special case GL_n ⊂ gl_n = Lie(GL_n) (equivariant GL_n × GL_n open embedding). Fourier on gl_n provides Fourier on GL_n (many applications to quiver representations for instance).

- Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\operatorname{uni}} \simeq \operatorname{Lie}(G)_{\operatorname{nil}}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L., Achar-Henderson-Juteau-Riche).
- Special case GL_n ⊂ gl_n = Lie(GL_n) (equivariant GL_n × GL_n open embedding). Fourier on gl_n provides Fourier on GL_n (many applications to quiver representations for instance).
- Generalization of the case of GL_n to other reductive groups? Given $\rho^{\flat}: G^{\flat} \to \operatorname{GL}_n$, would like to transfert $(\operatorname{GL}_n \subset \operatorname{gl}_n, \mathcal{F}^{\operatorname{gl}_n})$ to $(G \subset \mathcal{X}_\rho, \mathcal{F}^{\mathcal{X}_\rho})$.

• G connected reductive group defined over \mathbb{F}_q , with Frobenius $F: G \to G$. Then $G^F = G(\mathbb{F}_q)$ finite group.

G connected reductive group defined over F_q, with Frobenius F : G → G. Then G^F = G(F_q) finite group.
 Ex : G = GL_n(F_q) and F : (a_{ij})_{i,j} → (a^q_{ij})_{i,j}.

• *G* connected reductive group defined over \mathbb{F}_q , with Frobenius $F: G \to G$. Then $G^F = G(\mathbb{F}_q)$ finite group. Ex : $G = \operatorname{GL}_n(\overline{\mathbb{F}}_q)$ and $F: (a_{ij})_{i,j} \mapsto (a_{ij}^q)_{i,j}$. $\mathfrak{g} = \operatorname{Lie}(G)$ and $F: \mathfrak{g} \to \mathfrak{g}$ Frobenius.

• *G* connected reductive group defined over \mathbb{F}_q , with Frobenius $F: G \to G$. Then $G^F = G(\mathbb{F}_q)$ finite group. Ex: $G = \operatorname{GL}_n(\overline{\mathbb{F}}_q)$ and $F: (a_{ij})_{i,j} \mapsto (a_{ij}^q)_{i,j}$. $\mathfrak{g} = \operatorname{Lie}(G)$ and $F: \mathfrak{g} \to \mathfrak{g}$ Frobenius. $\mu: \mathfrak{g} \times \mathfrak{g} \to \overline{\mathbb{F}}_q$ non-degenerate *G*-invariant symmetric bilinear from which commutes with Frobenius (ex. $(x, y) \mapsto \operatorname{Tr}(xy)$ if $G = \operatorname{GL}_n$).

G connected reductive group defined over F_q, with Frobenius F: G → G. Then G^F = G(F_q) finite group.
Ex: G = GL_n(F_q) and F: (a_{ij})_{i,j} → (a^q_{ij})_{i,j}.
g = Lie(G) and F: g → g Frobenius.
μ: g × g → F_q non-degenerate G-invariant symmetric bilinear from which commutes with Frobenius (ex. (x, y) → Tr(xy) if G = GL_n).
ψ: F_q → Q_ℓ[×] non-trivial additive character.

• *G* connected reductive group defined over \mathbb{F}_q , with Frobenius $F: G \to G$. Then $G^F = G(\mathbb{F}_q)$ finite group.

$$\mathsf{Ex}: \, G = \mathrm{GL}_n(\overline{\mathbb{F}}_q) \text{ and } F: (a_{ij})_{i,j} \mapsto (a_{ij}^q)_{i,j}.$$

 $\mathfrak{g} = \operatorname{Lie}(G)$ and $F : \mathfrak{g} \to \mathfrak{g}$ Frobenius.

 $\mu : \mathfrak{g} \times \mathfrak{g} \to \overline{\mathbb{F}}_q$ non-degenerate *G*-invariant symmetric bilinear from which commutes with Frobenius (ex. $(x, y) \mapsto \operatorname{Tr}(xy)$ if $G = \operatorname{GL}_n$).

 $\psi : \mathbb{F}_q \to \overline{\mathbb{Q}}_{\ell}^{\times}$ non-trivial additive character. Fourier transform $\mathcal{F}^{\mathfrak{g}} : \operatorname{Fun}(\mathfrak{g}^F, \overline{\mathbb{Q}}_{\ell}) \to \operatorname{Fun}(\mathfrak{g}^F, \overline{\mathbb{Q}}_{\ell})$,

$$\mathcal{F}^{\mathfrak{g}}(f)(x) = \sum_{y \in \mathfrak{g}^F} \psi(\mu(x,y))f(y).$$

Representations of G^F

G-equivariant isomorphism

 ϕ : $G_{\text{uni}} \simeq \mathfrak{g}_{\text{nil}}$.

Representations of G^{F}

G-equivariant isomorphism

$$\phi$$
: $G_{\text{uni}} \simeq \mathfrak{g}_{\text{nil}}$.

We have a connection

{Irreducible $\overline{\mathbb{Q}}_{\ell}$ -char. of G^{F} } \longleftrightarrow {Fourier trans. of G^{F} -orbits of \mathfrak{g}^{F}]

Representations of G^F

G-equivariant isomorphism

$$\phi$$
: $G_{\text{uni}} \simeq \mathfrak{g}_{\text{nil}}.$

We have a connection

{Irreducible $\overline{\mathbb{Q}}_{\ell}$ -char. of G^{F} } \longleftrightarrow {Fourier trans. of G^{F} -orbits of \mathfrak{g}^{F} } **Remark** : If H finite abelian group, then

{Irreducible $\overline{\mathbb{Q}}_{\ell}$ -char. of H} = Fourier({conjugacy classes of H})

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

{Unipotent char. of $\operatorname{GL}_n^{\mathsf{F}}$ } = $(\mathcal{F}^{\operatorname{gl}_n}$ {nilpotent orbits of $\operatorname{gl}_n^{\mathsf{F}}$ })|_{\operatorname{GL}_n^{\mathsf{F}}}

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

{Unipotent char. of GL_n^F } = $(\mathcal{F}^{\operatorname{gl}_n} \{ \operatorname{nilpotent} \text{ orbits of } \operatorname{gl}_n^F \})|_{\operatorname{GL}_n^F}$

• Many applications (Hausel-L.-Villegas, L.) :

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

{Unipotent char. of GL_n^F } = $(\mathcal{F}^{\operatorname{gl}_n} \{ \operatorname{nilpotent} \text{ orbits of } \operatorname{gl}_n^F \})|_{\operatorname{GL}_n^F}$

• Many applications (Hausel-L.-Villegas, L.) :

- Computation of Poincaré polynomial of Nakajima's quiver varieties.

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

{Unipotent char. of GL_n^F } = $(\mathcal{F}^{\operatorname{gl}_n} \{ \operatorname{nilpotent} \text{ orbits of } \operatorname{gl}_n^F \})|_{\operatorname{GL}_n^F}$

- Many applications (Hausel-L.-Villegas, L.) :
 - Computation of Poincaré polynomial of Nakajima's quiver varieties.
 - Proof of Kac conjectures on quiver representations.

• $G = GL_n$ with standard Frobenius $F : (a_{ij}) \mapsto (a_{ij}^q)$. Then $GL_n \subset gl_n$ compatible with Frobenius.

{Unipotent char. of GL_n^F } = ($\mathcal{F}^{\operatorname{gl}_n}$ {nilpotent orbits of gl_n^F })|_{\operatorname{GL}_n^F}

- Many applications (Hausel-L.-Villegas, L.) :
 - Computation of Poincaré polynomial of Nakajima's quiver varieties.
 - Proof of Kac conjectures on quiver representations.
 - Study of structure coefficients of the character ring of $\mathrm{GL}_n(\mathbb{F}_q).$

General case?

• Example : $G = PGL_n$.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のの()

General case?

• Example : $G = PGL_n$.

 $\mathsf{PGL}_n \subset [\mathrm{gl}_n/\mathrm{GL}_1].$

æ

-

-

• Example : $G = PGL_n$.

 $\mathsf{PGL}_n \subset [\mathrm{gl}_n/\mathrm{GL}_1].$ Then $\mathrm{Fun}([\mathrm{gl}_n/\mathrm{GL}_1]^F, \overline{\mathbb{Q}}_\ell) \simeq \mathrm{Fun}(\mathrm{gl}_n^F, \overline{\mathbb{Q}}_\ell)^{\mathrm{GL}_1^F},$ • Example : $G = PGL_n$.

 $\mathsf{PGL}_n \subset [\mathrm{gl}_n/\mathrm{GL}_1].$ Then $\mathrm{Fun}([\mathrm{gl}_n/\mathrm{GL}_1]^F, \overline{\mathbb{Q}}_\ell) \simeq \mathrm{Fun}(\mathrm{gl}_n^F, \overline{\mathbb{Q}}_\ell)^{\mathrm{GL}_1^F},$

$$\mathcal{F}(f)([x]) = \sum_{[y] \in [\mathrm{gl}_n/\mathrm{GL}_1]^F} \frac{1}{|\mathrm{Stab}_{\mathrm{GL}_1^F}(y)|} \mathcal{K}([x], [y]) f([y]),$$

where

$$\mathcal{K}([x],[y]) = \sum_{z \in \mathrm{GL}_1^F} \psi(\mathrm{Tr}(\lambda x y)) = egin{cases} q-1 & ext{if } \mathrm{Tr}(xy) = 0 \ -1 & ext{if } \mathrm{Tr}(xy)
eq 0 \end{cases}.$$

• Starting datum : an *F*-stable maximal torus *T* of *G* and a representation

$$\rho^{\flat}: \mathcal{N}_{G^{\flat}}(\mathcal{T}^{\flat}) \to \mathrm{GL}_n$$

which commutes with Frobenius.

• Starting datum : an *F*-stable maximal torus *T* of *G* and a representation

$$\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \mathrm{GL}_n$$

which commutes with Frobenius.

• In the previous example : $G = PGL_n$, $\rho^{\flat} : SL_n \subset GL_n$ which dualizes into $\rho : GL_n \to PGL_n$,

$$\mathcal{X} = [\mathrm{gl}_n/\mathrm{Ker}(\rho)] = [\mathrm{gl}_n/\mathrm{GL}_1],$$

and $\mathcal{F}^{\mathcal{X}}$ obtained from $\mathcal{F}^{\mathrm{gl}_n}$ by descent.

• If X finite set, put $\mathcal{C}(X) = \operatorname{Fun}(X, \overline{\mathbb{Q}}_{\ell})$

- If X finite set, put $\mathcal{C}(X) = \operatorname{Fun}(X, \overline{\mathbb{Q}}_{\ell})$
- $\operatorname{GL}_n^F \times \operatorname{GL}_n^F$ acts on $\mathcal{C}(\operatorname{gl}_n^F)$ and

$$\mathcal{F}^{\mathrm{gl}_n}((g,h)\cdot f) = (h,g)\cdot \mathcal{F}^{\mathrm{gl}_n}(f).$$

I.e. $\mathcal{F}^{\mathrm{gl}_n}: \mathcal{C}(\mathrm{gl}_n^F) \to \mathcal{C}(\mathrm{gl}_n^F)^{\iota}$ isomorphism of $\mathrm{GL}_n^F \times \mathrm{GL}_n^F$ -mod.

- If X finite set, put $\mathcal{C}(X) = \operatorname{Fun}(X, \overline{\mathbb{Q}}_{\ell})$
- $\operatorname{GL}_n^F \times \operatorname{GL}_n^F$ acts on $\mathcal{C}(\operatorname{gl}_n^F)$ and

۲

$$\mathcal{F}^{\mathrm{gl}_n}((g,h) \cdot f) = (h,g) \cdot \mathcal{F}^{\mathrm{gl}_n}(f).$$

I.e. $\mathcal{F}^{\mathrm{gl}_n} : \mathcal{C}(\mathrm{gl}_n^F) \to \mathcal{C}(\mathrm{gl}_n^F)^{\iota}$ isomorphism of $\mathrm{GL}_n^F \times \mathrm{GL}_n^F$ -mod.
Deligne-Lusztig theory :

$$\operatorname{Irr}(G^F) = \coprod_{(s)} \mathcal{E}_G(s),$$

where (s) runs over F^{\flat} -stable semisimple conjugacy classes of G^{\flat} . $\mathcal{E}_G(s)$: Lusztig series.

• We have

$$\mathcal{C}(\operatorname{GL}_n^F) \simeq \bigoplus_{\pi \in \widehat{\operatorname{GL}_n^F}} V_{\pi} \boxtimes V_{\pi}^{\vee}.$$

□ > 《 E > 《 E >

æ

• We have

$$\mathcal{C}(\operatorname{GL}_n^F) \simeq \bigoplus_{\pi \in \widehat{\operatorname{GL}_n^F}} V_{\pi} \boxtimes V_{\pi}^{\vee}.$$

where for $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$, we get

$$\operatorname{GL}_n^{\mathcal{F}} \to \overline{\mathbb{Q}}_{\ell}, \ h \mapsto x^{\vee}(\rho_{\pi}(h)(x)).$$

□ > 《 E > 《 E >

æ

We have

$$\mathcal{C}(\operatorname{GL}_n^F) \simeq \bigoplus_{\pi \in \operatorname{GL}_n^F} V_{\pi} \boxtimes V_{\pi}^{\vee}.$$

where for $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$, we get

$$\operatorname{GL}_n^{\mathcal{F}} \to \overline{\mathbb{Q}}_{\ell}, \ h \mapsto x^{\vee}(\rho_{\pi}(h)(x)).$$

۲

$$\mathcal{C}(\mathrm{GL}_n^F) = \bigoplus_{(s)} \mathcal{C}(\mathrm{GL}_n^F)_{(s)}.$$

where (s) runs over the *F*-stable semisimple conjugacy classes of GL_r and

$$\mathcal{C}(\operatorname{GL}_n^F)_{(s)} = igoplus_{\pi \in \mathcal{E}_{\operatorname{GL}_n}(s)} V_\pi \boxtimes V_\pi^{\vee}.$$

E ▶ 4

۲

$$\mathcal{C}(\mathrm{gl}_n^F) = \bigoplus_{(s)} \mathcal{C}(\mathrm{gl}_n^F)_{(s)},$$

where (s) runs over *F*-stable semisimple conjugacy classes of GL_n .

۲

$$\mathcal{C}(\mathrm{gl}_n^F) = \bigoplus_{(s)} \mathcal{C}(\mathrm{gl}_n^F)_{(s)},$$

where (s) runs over *F*-stable semisimple conjugacy classes of GL_n .

∃ ► ∢

• Moreover $\mathcal{F}^{\mathrm{gl}_n}: \mathcal{C}(\mathrm{gl}_n)_{(s)} \to \mathcal{C}(\mathrm{gl}_n)_{(s^{-1})}.$

۲

$$\mathcal{C}(\mathrm{gl}_n^F) = \bigoplus_{(s)} \mathcal{C}(\mathrm{gl}_n^F)_{(s)},$$

where (s) runs over *F*-stable semisimple conjugacy classes of GL_n .

- Moreover $\mathcal{F}^{\mathrm{gl}_n}: \mathcal{C}(\mathrm{gl}_n)_{(s)} \to \mathcal{C}(\mathrm{gl}_n)_{(s^{-1})}.$
- If the eigenvalues of (s) are all $\neq 1$, then $C(\operatorname{gl}_n)_{(s)} = C(\operatorname{GL}_n)_{(s)}$.

• Jordan decomposition for Fourier :

• Jordan decomposition for Fourier :

$$\mathcal{C}(\mathrm{gl}_n)_{(s)} = R_{L_{r'} \times L_{r'}}^{\mathrm{GL}_n \times \mathrm{GL}_n} \left(\mathcal{C}(\mathrm{GL}_{r'}^F)_{(s')} \boxtimes \mathcal{C}(\mathrm{gl}_{n-r'}^F)_{(1)} \right),$$

with $r' = \#\{\text{eigenvalues of } s \neq 1\}$ and $L_{r'} = \operatorname{GL}_{r'} \times \operatorname{GL}_{n-r'}$.

• Jordan decomposition for Fourier :

$$\mathcal{C}(\mathrm{gl}_n)_{(s)} = R^{\mathrm{GL}_n \times \mathrm{GL}_n}_{L_{r'} \times L_{r'}} \left(\mathcal{C}(\mathrm{GL}_{r'}^F)_{(s')} \boxtimes \mathcal{C}(\mathrm{gl}_{n-r'}^F)_{(1)} \right),$$

with $r' = \#\{\text{eigenvalues of } s \neq 1\}$ and $L_{r'} = \operatorname{GL}_{r'} \times \operatorname{GL}_{n-r'}$. Fourier on both sides coincide.

• Jordan decomposition for Fourier :

$$\mathcal{C}(\mathrm{gl}_n)_{(s)} = R^{\mathrm{GL}_n \times \mathrm{GL}_n}_{L_{r'} \times L_{r'}} \left(\mathcal{C}(\mathrm{GL}_{r'}^F)_{(s')} \boxtimes \mathcal{C}(\mathrm{gl}_{n-r'}^F)_{(1)} \right),$$

with $r' = \#\{\text{eigenvalues of } s \neq 1\}$ and $L_{r'} = \operatorname{GL}_{r'} \times \operatorname{GL}_{n-r'}$. Fourier on both sides coincide.

• We are reduced to understand Fourier on $\mathcal{C}(\mathrm{gl}_n^F)_{(1)}$.

• Jordan decomposition for Fourier :

$$\mathcal{C}(\mathrm{gl}_n)_{(s)} = R_{L_{r'} \times L_{r'}}^{\mathrm{GL}_n \times \mathrm{GL}_n} \left(\mathcal{C}(\mathrm{GL}_{r'}^F)_{(s')} \boxtimes \mathcal{C}(\mathrm{gl}_{n-r'}^F)_{(1)} \right),$$

with $r' = \#\{\text{eigenvalues of } s \neq 1\}$ and $L_{r'} = \operatorname{GL}_{r'} \times \operatorname{GL}_{n-r'}$. Fourier on both sides coincide.

- We are reduced to understand Fourier on $\mathcal{C}(\mathrm{gl}_n^F)_{(1)}$.
- Example : *n* = 2

(日) 《聞》 《問》 《問》 『曰 》

• Fourier matrices when n = 2

$$\begin{array}{ccc} (1 \boxtimes 1)_2 & (1 \boxtimes 1)_1 & (1 \boxtimes 1)_0 \\ (1 \boxtimes 1)_2 & \begin{pmatrix} q & -(q+1) & 1 \\ -q(q-1) & q^2 - q - 1 & 1 \\ q(q-1)^2(q+1) & q^3 + q^2 - q - 1 & 1 \end{pmatrix}$$

$$\begin{array}{c} (\operatorname{St}\boxtimes\operatorname{St})_2 & (\operatorname{St}\boxtimes\operatorname{St})_1 \\ (\operatorname{St}\boxtimes\operatorname{St})_2 & \begin{pmatrix} q & -q \\ q(q-1) & q(q+1) \end{pmatrix} \end{array}$$

白 と く ヨ と く ヨ と …

æ

• Fourier matrices when n = 2

$$\begin{array}{cccc} (1 \boxtimes 1)_2 & (1 \boxtimes 1)_1 & (1 \boxtimes 1)_0 \\ (1 \boxtimes 1)_2 & \begin{pmatrix} q & -(q+1) & 1 \\ -q(q-1) & q^2 - q - 1 & 1 \\ q(q-1)^2(q+1) & q^3 + q^2 - q - 1 & 1 \end{pmatrix}$$

$$\begin{array}{ccc} (\operatorname{St}\boxtimes\operatorname{St})_2 & (\operatorname{St}\boxtimes\operatorname{St})_1 \\ (\operatorname{St}\boxtimes\operatorname{St})_2 & \begin{pmatrix} q & -q \\ q(q-1) & q(q+1) \end{pmatrix} \end{array}$$

• In the n = 2 case $\mathcal{F}^{\mathrm{gl}_n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \to (\mathrm{St} \boxtimes 1), \ x \mapsto -q^2 x$.

• Fourier matrices when n = 2

$$\begin{array}{cccc} (1 \boxtimes 1)_2 & (1 \boxtimes 1)_1 & (1 \boxtimes 1)_0 \\ (1 \boxtimes 1)_2 & \begin{pmatrix} q & -(q+1) & 1 \\ -q(q-1) & q^2 - q - 1 & 1 \\ q(q-1)^2(q+1) & q^3 + q^2 - q - 1 & 1 \end{pmatrix}$$

$$\begin{array}{ccc} (\operatorname{St}\boxtimes\operatorname{St})_2 & (\operatorname{St}\boxtimes\operatorname{St})_1 \\ (\operatorname{St}\boxtimes\operatorname{St})_2 & \begin{pmatrix} q & -q \\ q(q-1) & q(q+1) \end{pmatrix} \end{array}$$

• In the n = 2 case $\mathcal{F}^{\mathrm{gl}_n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \to (\mathrm{St} \boxtimes 1), \ x \mapsto -q^2 x$.

• Fourier matrices when n = 2

$$\begin{array}{cccc} (1 \boxtimes 1)_2 & (1 \boxtimes 1)_1 & (1 \boxtimes 1)_0 \\ (1 \boxtimes 1)_2 & \begin{pmatrix} q & -(q+1) & 1 \\ -q(q-1) & q^2 - q - 1 & 1 \\ q(q-1)^2(q+1) & q^3 + q^2 - q - 1 & 1 \end{pmatrix}$$

$$\begin{array}{ccc} (\operatorname{St}\boxtimes\operatorname{St})_2 & (\operatorname{St}\boxtimes\operatorname{St})_1 \\ (\operatorname{St}\boxtimes\operatorname{St})_2 & \begin{pmatrix} q & -q \\ q(q-1) & q(q+1) \end{pmatrix} \end{array}$$

• In the n = 2 case $\mathcal{F}^{\mathrm{gl}_n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \to (\mathrm{St} \boxtimes 1), \ x \mapsto -q^2 x$.

Back to our problem

• Given $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, we would like to transfert $(\operatorname{GL}_n \subset \operatorname{gl}_n, \mathcal{F}^{\operatorname{gl}_n})$ to $(\mathcal{G} \subset \mathcal{X}_\rho, \mathcal{F}^{\mathcal{X}_\rho})$.

Back to our problem

- Given $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, we would like to transfert $(\operatorname{GL}_n \subset \operatorname{gl}_n, \mathcal{F}^{\operatorname{gl}_n})$ to $(G \subset \mathcal{X}_\rho, \mathcal{F}^{\mathcal{X}_\rho})$.
- $\bullet \ \mathcal{F}^{\operatorname{GL}_n}$:

Back to our problem

- Given $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, we would like to transfert $(\operatorname{GL}_n \subset \operatorname{gl}_n, \mathcal{F}^{\operatorname{gl}_n})$ to $(G \subset \mathcal{X}_\rho, \mathcal{F}^{\mathcal{X}_\rho})$.
- $\bullet \ \mathcal{F}^{\operatorname{GL}_n}$:

• We first transfert $\mathcal{F}^{\mathrm{GL}_n}$ to $\mathcal{F}_{\rho}^{\mathsf{G}}: \mathcal{C}(\mathsf{G}^{\mathsf{F}}) \to \mathcal{C}(\mathsf{G}^{\mathsf{F}}).$

The map $\mathfrak{t}_ ho$

• Deligne-Lusztig theory :

$$\operatorname{Irr}(G^{\mathsf{F}}) = \coprod_{(s)} \mathcal{E}_{\mathsf{G}}(s),$$

where (s) runs over F^{\flat} -stable semisimple conjugacy classes of G^{\flat} . $\mathcal{E}_{G}(s)$: Lusztig series.

The map \mathfrak{t}_{ρ}

• Deligne-Lusztig theory :

$$\operatorname{Irr}(G^{\mathsf{F}}) = \coprod_{(s)} \mathcal{E}_{\mathsf{G}}(s),$$

where (s) runs over F^{\flat} -stable semisimple conjugacy classes of G^{\flat} . $\mathcal{E}_G(s)$: Lusztig series.

• $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to H^{\flat}$ (*H* arbitrary connected reductive group) induces a map from F^{\flat} -stable semisimple conjugacy classes of G^{\flat} to F^{\flat} -stable semisimple conjugacy classes of H^{\flat} .

The map $\mathfrak{t}_{ ho}$

• Deligne-Lusztig theory :

$$\operatorname{Irr}(G^{\mathsf{F}}) = \coprod_{(s)} \mathcal{E}_{\mathsf{G}}(s),$$

where (s) runs over F^{\flat} -stable semisimple conjugacy classes of G^{\flat} . $\mathcal{E}_G(s)$: Lusztig series.

• $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to H^{\flat}$ (*H* arbitrary connected reductive group) induces a map from F^{\flat} -stable semisimple conjugacy classes of G^{\flat} to F^{\flat} -stable semisimple conjugacy classes of H^{\flat} .

 $\rightsquigarrow \mathfrak{t}_{\rho}: \{\text{Lusztig series of } G^F\} \rightarrow \{\text{Lusztig series of } H^F\}$ given by

$$\mathfrak{t}_{
ho}(\mathcal{E}_{G}(s)) = \mathcal{E}_{H}(
ho^{\flat}(s)).$$

Cases where \mathfrak{t}_{ρ} is given by a functor

• If $\rho^{\flat}: G^{\flat} \to H^{\flat}$ is a *normal* morphism, then there exists

 $\rho: H \to G$

and \mathfrak{t}_{ρ} is given by the functor $\rho^* : \operatorname{Rep}(G^F) \to \operatorname{Rep}(H^F)$.

Cases where \mathfrak{t}_{ρ} is given by a functor

• If $\rho^{\flat}: G^{\flat} \to H^{\flat}$ is a *normal* morphism, then there exists

 $\rho: H \to G$

and \mathfrak{t}_{ρ} is given by the functor $\rho^* : \operatorname{Rep}(\mathcal{G}^{\mathcal{F}}) \to \operatorname{Rep}(\mathcal{H}^{\mathcal{F}}).$

Examples :

$$\rho^{\flat} : \mathrm{SL}_n \subset \mathrm{GL}_n$$
, then $\rho : \mathrm{GL}_n \to \mathrm{PGL}_n$.
 $\rho^{\flat} : \mathrm{GL}_1 \hookrightarrow \mathrm{GL}_n$, $\lambda \mapsto \lambda . \mathrm{I}_n$, then $\rho = \mathsf{det} : \mathrm{GL}_n \to \mathrm{GL}_1$.

Cases where \mathfrak{t}_{ρ} is given by a functor

• If $\rho^{\flat}: G^{\flat} \to H^{\flat}$ is a *normal* morphism, then there exists

 $\rho: H \to G$

and \mathfrak{t}_{ρ} is given by the functor $\rho^* : \operatorname{Rep}(G^{\mathcal{F}}) \to \operatorname{Rep}(H^{\mathcal{F}}).$

Examples :

$$\rho^{\flat} : \mathrm{SL}_n \subset \mathrm{GL}_n$$
, then $\rho : \mathrm{GL}_n \to \mathrm{PGL}_n$.
 $\rho^{\flat} : \mathrm{GL}_1 \hookrightarrow \mathrm{GL}_n$, $\lambda \mapsto \lambda . \mathrm{I}_n$, then $\rho = \mathsf{det} : \mathrm{GL}_n \to \mathrm{GL}_1$.

• If $\rho^{\flat}: L^{\flat} \hookrightarrow H^{\flat}$ is the inclusion of a Levi, then \mathfrak{t}_{ρ} is given by the Lusztig induction functor

$$R_L^H : \operatorname{Rep}(L^F) \to \operatorname{Rep}(H^F).$$

• Fact :

 $\mathcal{F}^{\mathrm{GL}_n}: \mathcal{C}(\mathrm{GL}_n^{\mathcal{F}}) \to \mathcal{C}(\mathrm{GL}_n^{\mathcal{F}})^\iota \text{ isomorphism of } \mathrm{GL}_n^{\mathcal{F}} \times \mathrm{GL}_n^{\mathcal{F}} \text{-mod}.$

Fact :

 $\mathcal{F}^{\mathrm{GL}_n}: \mathcal{C}(\mathrm{GL}_n^F) \to \mathcal{C}(\mathrm{GL}_n^F)^{\iota} \text{ isomorphism of } \mathrm{GL}_n^F \times \mathrm{GL}_n^F \text{-mod.}$ • Recall $\mathcal{C}(\mathrm{GL}_n^F) \simeq \bigoplus_{i \in I} V_\pi \boxtimes V_\pi^{\vee}.$

 $\pi \in \widehat{\operatorname{GL}_n^F}$

Fact :

 $\mathcal{F}^{\mathrm{GL}_n} : \mathcal{C}(\mathrm{GL}_n^F) \to \mathcal{C}(\mathrm{GL}_n^F)^{\iota} \text{ isomorphism of } \mathrm{GL}_n^F \times \mathrm{GL}_n^F \text{-mod.}$ • Recall $\mathcal{C}(\mathrm{GL}_n^F) \simeq \bigoplus_{\pi \in \widehat{\mathrm{GL}_n^F}} V_{\pi} \boxtimes V_{\pi}^{\vee}.$

• We get a gamma function $\gamma^{\operatorname{GL}_n}: \widehat{\operatorname{GL}_n}^F \to \overline{\mathbb{Q}}_\ell^{\times}$ such that

$$\mathcal{F}^{\operatorname{GL}_n}(x \boxtimes x^{\vee}) = \gamma^{\operatorname{GL}_n}(\pi) (x^{\vee} \boxtimes x)$$

for all $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$.

• Fact : γ^{GL_n} constant on Lusztig series of GL_n^F .

- Fact : $\gamma^{\operatorname{GL}_n}$ constant on Lusztig series of GL_n^F .
- Recall that $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$ defines

 $\mathfrak{t}_{\rho}: \{\mathsf{Lusztig \ series \ of} \ G^{\mathsf{F}}\} \to \{\mathsf{Lusztig \ series \ of} \ \mathrm{GL}_n^{\mathsf{F}}\}$

- Fact : $\gamma^{\operatorname{GL}_n}$ constant on Lusztig series of GL_n^F .
- Recall that $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$ defines

 $\mathfrak{t}_{\rho}: \{\mathsf{Lusztig series of } G^{F}\} \to \{\mathsf{Lusztig series of } \mathrm{GL}_{n}^{F}\}$

Hence we get

$$\gamma_{\rho}^{\mathsf{G}}:\widehat{\mathsf{G}^{\mathsf{F}}}\to\overline{\mathbb{Q}}_{\ell}$$

given by $\gamma^{\operatorname{GL}_n} \circ \mathfrak{t}_{\rho}$.

- Fact : $\gamma^{\operatorname{GL}_n}$ constant on Lusztig series of GL_n^F .
- Recall that $\rho^{\flat}: N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$ defines

 $\mathfrak{t}_{\rho}: \{\mathsf{Lusztig series of } G^{\mathsf{F}}\} \to \{\mathsf{Lusztig series of } \mathrm{GL}_{n}^{\mathsf{F}}\}$

Hence we get

$$\gamma_{\rho}^{\mathsf{G}}:\widehat{\mathsf{GF}}\to\overline{\mathbb{Q}}_{\ell}$$

given by $\gamma^{\operatorname{GL}_n} \circ \mathfrak{t}_{\rho}$. • \rightsquigarrow isomorphism $\mathcal{F}_{\rho}^{\mathcal{G}} : \mathcal{C}(\mathcal{G}^F) \to \mathcal{C}(\mathcal{G}^F)^{\iota}$ of $\mathcal{G}^F \times \mathcal{G}^F$ -modules s.t.

$$\mathcal{F}_{\rho}^{\mathcal{G}}(x\boxtimes x^{\vee})=\gamma_{\rho}^{\mathcal{G}}(\pi)\,(x^{\vee}\boxtimes x),$$

for all $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee} \subset \mathcal{C}(G^{F}).$

(Construction of $\mathcal{F}_{\rho}^{\mathcal{G}}$ due to Braverman-Kazhdan.)

Explicit construction of exotic restricted Fourier kernel

• **Problem** : compute explicitely $\phi_{\rho}^{\mathsf{G}} \in \mathcal{C}_{\mathsf{c}}(\mathsf{G}^{\mathsf{F}})$ such that

$$\mathcal{F}_{\rho}^{\mathsf{G}}(f)(y) = \sum_{x \in \mathcal{G}^{\mathsf{F}}} \phi_{\rho}^{\mathsf{G}}(xy) f(y).$$

Explicit construction of exotic restricted Fourier kernel

• **Problem** : compute explicitely $\phi_{\rho}^{\mathsf{G}} \in \mathcal{C}_{\mathsf{c}}(\mathsf{G}^{\mathsf{F}})$ such that

$$\mathcal{F}_{\rho}^{\mathsf{G}}(f)(y) = \sum_{x \in \mathcal{G}^{\mathsf{F}}} \phi_{\rho}^{\mathsf{G}}(xy) f(y).$$

• Note that abstractly, for all $g \in G^F$

$$\phi^{\mathsf{G}}_{
ho}(g) = \sum_{\pi \in \widehat{G^{\mathsf{F}}}} \gamma^{\mathsf{G}}_{
ho}(\pi) \pi(1) \overline{\pi(g)}.$$

Explicit construction of exotic restricted Fourier kernel

• Problem : compute explicitely $\phi_{
ho}^{\sf G} \in {\mathcal C}_{\sf c}({\sf G}^{\sf F})$ such that

$$\mathcal{F}_{\rho}^{\mathsf{G}}(f)(y) = \sum_{x \in \mathcal{G}^{\mathsf{F}}} \phi_{\rho}^{\mathsf{G}}(xy) f(y).$$

• Note that abstractly, for all $g \in G^F$

$$\phi^{\sf G}_{
ho}({m g}) = \sum_{\pi \in \widehat{G^{\sf F}}} \gamma^{\sf G}_{
ho}(\pi) \pi(1) \overline{\pi({m g})}.$$

• If the image of $\rho^{\flat}: G^{\flat} \to \operatorname{GL}_n$ is normal in some *F*-stable Levi *L* of GL_n , then $\rho: L \to G$ and

$$\phi^{\sf G}_{
ho}=
ho_!(\psi\circ{
m Tr})\;$$
 up to some explicit scalar

• Recall $\rho^{\flat} : N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, put $L := C_{\operatorname{GL}_n}(\rho^{\flat}(T^{\flat}))$ Levi subgroup of GL_n .

• Recall $\rho^{\flat} : N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, put $L := C_{\operatorname{GL}_n}(\rho^{\flat}(T^{\flat}))$ Levi subgroup of GL_n .

Then $\rho^{\flat}: T^{\flat} \to L$ normal and so we have

$$\rho: L \to T.$$

• Recall $\rho^{\flat} : N_{G^{\flat}}(T^{\flat}) \to \operatorname{GL}_n$, put $L := C_{\operatorname{GL}_n}(\rho^{\flat}(T^{\flat}))$ Levi subgroup of GL_n .

Then $\rho^{\flat}: T^{\flat} \rightarrow L$ normal and so we have

$$\rho: L \to T.$$

Artin-Schreier sheaf : h : A¹ → A¹, x ↦ x^q − x Galois covering with Galois group F_q.

 $\mathcal{L}_{\psi} := \mathsf{subsheaf} ext{ of } h_*(\overline{\mathbb{Q}}_{\ell}) ext{ on which } \mathbb{F}_q ext{ acts as } \psi^{-1}.$

Consider $\Phi^L := \operatorname{Tr}^*(\mathcal{L}_{\psi})$ with $\operatorname{Tr} : L \to \mathbb{A}_1$, and put

$$\Phi_{\rho}^{\mathcal{T}} := \rho_! \Phi^{\mathcal{L}}[\dim \mathcal{L}](\dim \mathcal{V}_{\mathcal{L}}) \in \mathcal{D}_{c}^{b}(\mathcal{T})^{\mathcal{F}}.$$

• **Proposition** [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \to T$ is surjective + positivity assumptions on weights of ρ^{\flat} , then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ -adic sheaf on T.

- **Proposition** [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \to T$ is surjective + positivity assumptions on weights of ρ^{\flat} , then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ -adic sheaf on T.
- We have geometric induction :

 $\operatorname{Ind}_T^G : \mathcal{D}_c^b(T) \to \mathcal{D}_c^b(G).$ given by $(pr_2)_! \circ (pr_1)^*[\dim G - \dim T]$ where

$$T \longleftarrow \{(t,x,g) \in T \times G \times G/B \,|\, g^{-1}xg \in tU\} \longrightarrow G$$
.

- **Proposition** [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \to T$ is surjective + positivity assumptions on weights of ρ^{\flat} , then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ -adic sheaf on T.
- We have geometric induction :

$$\operatorname{Ind}_T^G : \mathcal{D}_c^b(\mathcal{T}) \to \mathcal{D}_c^b(G).$$
given by $(pr_2)_! \circ (pr_1)^*[\dim G - \dim T]$ where

$$T \longleftarrow \{(t,x,g) \in T \times G \times G/B \mid g^{-1}xg \in tU\} \longrightarrow G$$
.

• **Theorem** [Lusztig] Under above assumptions, $\operatorname{Ind}_T^G(\Phi_\rho^T)$ is a semisimple perverse sheaf on which $W := W_G(T)$ acts.

• **Conjecture** [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind}_{T}^{G}(\Phi_{\rho}^{T})^{W}$ equals ϕ_{ρ}^{G} .

• **Conjecture** [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind}_{T}^{G}(\Phi_{\rho}^{T})^{W}$ equals ϕ_{ρ}^{G} .

(Proved by BK if $\rho^{\flat} : G^{\flat} = \operatorname{GL}_m \to \operatorname{GL}_n$).

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of Ind^G_T(Φ^T_ρ)^W equals φ^G_ρ.
 (Proved by BK if ρ^b : G^b = GL_m → GL_n).
- Theorem [Laumon-L., 2018] BK conjecture is true.

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of Ind^G_T(Φ^T_ρ)^W equals φ^G_ρ.
 (Proved by BK if ρ^b : G^b = GL_m → GL_n).
- Theorem [Laumon-L., 2018] BK conjecture is true.
 In fact we prove (without any assumptions on ρ) that

$$\phi_{\rho}^{\mathsf{G}} = \frac{1}{|W|} \sum_{w \in W} R_{T_w}^{\mathsf{G}}(\phi_{\rho}^{T_w}),$$

where $R_{T_w}^G$ is Deligne-Lusztig induction and $\phi_{\rho}^{T_w}$ is push forward of ϕ^{L_v} for some $v \in N_{GL_n}(L)$ defined from w.

• Reduces to extending $\mathcal{F}_{\rho}^{G} : \mathcal{C}(G^{F})_{(1)} \to \mathcal{C}(G^{F})_{(1)}$ (by Jordan decomp.).

- Reduces to extending $\mathcal{F}_{\rho}^{G} : \mathcal{C}(G^{F})_{(1)} \to \mathcal{C}(G^{F})_{(1)}$ (by Jordan decomp.).
- Theorem [Laumon, L.] Explicit construction for all representations ρ^b : N_{G^b}(T^b) → GL_n with G = GL₂ or GL₃.

- Reduces to extending $\mathcal{F}_{\rho}^{G} : \mathcal{C}(G^{F})_{(1)} \to \mathcal{C}(G^{F})_{(1)}$ (by Jordan decomp.).
- Theorem [Laumon, L.] Explicit construction for all representations ρ^b : N_{G^b}(T^b) → GL_n with G = GL₂ or GL₃.
- Assume that the image of ρ^b : G^b → GL_n is normal in some Levi L, then we have ρ : L → G.

Proposition [Laumon, L.]

 $\mathcal{X}_{\rho} = [(\operatorname{Lie}(\mathcal{L}) \times \mathcal{G})/\mathcal{L}] \ (= [\operatorname{Lie}(\mathcal{L})/\operatorname{Ker}(\rho)] \ \text{if } \rho \ \text{surjective}).$

where the action is given by $(x,g) \cdot h = (xh, \rho(h)^{-1}g)$.

• Diag. embedding $\rho^{\flat} : \operatorname{GL}_n \hookrightarrow \operatorname{GL}_n \times \operatorname{GL}_n \subset \operatorname{GL}_{2n}$. Then

 $m : \operatorname{GL}_n \times \operatorname{GL}_n \to \operatorname{GL}_n, (x, y) \mapsto xy.$ extends $\rho : \operatorname{T}_n \times \operatorname{T}_n \to \operatorname{T}_n.$

• Diag. embedding $\rho^{\flat} : \operatorname{GL}_n \hookrightarrow \operatorname{GL}_n \times \operatorname{GL}_n \subset \operatorname{GL}_{2n}$. Then

→ < Ξ → </p>

$$m: \operatorname{GL}_n \times \operatorname{GL}_n \to \operatorname{GL}_n, (x, y) \mapsto xy.$$

extends $\rho: \operatorname{T}_n \times \operatorname{T}_n \to \operatorname{T}_n.$
Theorem [Laumon, L.]

$$\mathcal{X}_{
ho} = [\mathrm{gl}_n imes \mathrm{gl}_n / \mathrm{GL}_n],$$
 with action $(x,y) \cdot g = (xg,g^{-1}y).$

• Diag. embedding $\rho^{\flat} : \operatorname{GL}_n \hookrightarrow \operatorname{GL}_n \times \operatorname{GL}_n \subset \operatorname{GL}_{2n}$. Then

$$m : \operatorname{GL}_n \times \operatorname{GL}_n \to \operatorname{GL}_n, (x, y) \mapsto xy.$$

extends $\rho : \operatorname{T}_n \times \operatorname{T}_n \to \operatorname{T}_n.$
Theorem [Laumon, L.]

$$\mathcal{X}_{\rho} = [\mathrm{gl}_n \times \mathrm{gl}_n/\mathrm{GL}_n],$$

with action $(x, y) \cdot g = (xg, g^{-1}y).$
Fourier kernel :

$$\phi^{\mathcal{X}_{\rho}}([x',x'']) = \sum_{z \in \operatorname{GL}_{a}^{F}} \psi(\operatorname{Tr}(x'z^{-1} + zx'')).$$

(ロ) ▲母) ▲臣) ▲臣) ― 臣 ― 夕々で

• $\rho^{\flat}: \operatorname{PGL}_2 \to \operatorname{GL}_3$ given by

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\mapsto \frac{1}{ad-bc}\left(\begin{array}{cc}a^2&ab&b^2\\2ac&ad+bc&2cd\\c^2&cd&d^2\end{array}\right)$$

•

御 と くぼ と くぼ とう

æ

• $\rho^{\flat}: \operatorname{PGL}_2 \to \operatorname{GL}_3$ given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{1}{ad - bc} \begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2cd \\ c^2 & cd & d^2 \end{pmatrix}$$

At the Level of tori we have

$$ho^{\flat}:\overline{T}_{2}
ightarrow T_{3}, \ (a,b)\mapsto (a/b,1,b/a)$$

which dualizes to

 $ho: T_3 \to T'_2 \simeq \{(t, \delta) \in T_2 \times \mathbb{A}^1 \mid \det(t) = \delta^2\}/\mathrm{GL}_1,$ given by $(a, b, c) \mapsto (a/c, c/a) \mapsto [a^2, c^2]$. This induces a bijective morphism

$$[\operatorname{Lie}(T_3)/\operatorname{Ker}(\rho)] \to [\{(t,\delta) \in \operatorname{Lie}(T_2) \times \mathbb{A}^1 \mid \det(t) = \delta^2\}/\operatorname{GL}_1].$$

Theorem [Laumon, L.]

$$\mathcal{X}_{\rho} = [\{(x, \delta) \in \mathrm{gl}_2 \times \mathrm{gl}_1 \mid \mathsf{det}(x) = \delta^2\}/\mathrm{GL}_1].$$

Extending $\mathcal{F}^{\mathcal{G}}_{\rho}$ to involutive Fourier?

Theorem [Laumon, L.]

$$\mathcal{X}_{
ho} = [\{(x, \delta) \in \mathrm{gl}_2 imes \mathrm{gl}_1 \mid \mathsf{det}(x) = \delta^2\}/\mathrm{GL}_1].$$

The Fourier kernel is given by

$$egin{aligned} \phi^{\mathcal{X}_{
ho}}([x,\delta]) &= \sum_{s\in \mathrm{GL}_1} \psi(s(\mathrm{Tr}(x+2\delta))) \ &= egin{cases} q-1 & ext{if } \mathrm{Tr}(x+2\delta) = 0 \ -1 & ext{otherwise.} \end{aligned}$$

•