Emmanuel LETELLIER

Exotic Fourier transforms on connected reductive groups

 (Work in progress with G. Laumon)
Introduction

- Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\text {uni }} \simeq \operatorname{Lie}(G)_{\text {nil }}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L. , Achar-Henderson-Juteau-Riche).

Introduction

- Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\text {uni }} \simeq \operatorname{Lie}(G)_{\text {nil }}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L. , Achar-Henderson-Juteau-Riche).
- Special case $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}=\operatorname{Lie}\left(\mathrm{GL}_{n}\right)$ (equivariant $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ open embedding). Fourier on gl_{n} provides Fourier on GL_{n} (many applications to quiver representations for instance).
- Classical Fourier transforms on $\operatorname{Lie}(G)$ and relationship with representation theory of G through $G_{\text {uni }} \simeq \operatorname{Lie}(G)_{\text {nil }}$ (Springer, Kazhdan, Kawanaka, Lusztig, Waldspurger, L. , Achar-Henderson-Juteau-Riche).
- Special case $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}=\operatorname{Lie}\left(\mathrm{GL}_{n}\right)$ (equivariant $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ open embedding). Fourier on gl_{n} provides Fourier on GL_{n} (many applications to quiver representations for instance).
- Generalization of the case of GL_{n} to other reductive groups ? Given $\rho^{b}: G^{b} \rightarrow \mathrm{GL}_{n}$, would like to transfert $\left(\mathrm{GL}_{n} \subset \mathrm{gl}_{n}, \mathcal{F}^{\mathrm{gl}_{n}}\right)$ to $\left(G \subset \mathcal{X}_{\rho}, \mathcal{F}^{\mathcal{X}_{\rho}}\right)$.

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.
Ex: $G=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$ and $F:\left(a_{i j}\right)_{i, j} \mapsto\left(a_{i j}^{q}\right)_{i, j}$.

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.
Ex: $G=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$ and $F:\left(a_{i j}\right)_{i, j} \mapsto\left(a_{i j}^{q}\right)_{i, j}$.
$\mathfrak{g}=\operatorname{Lie}(G)$ and $F: \mathfrak{g} \rightarrow \mathfrak{g}$ Frobenius.

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.
Ex: $G=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$ and $F:\left(a_{i j}\right)_{i, j} \mapsto\left(a_{i j}^{q}\right)_{i, j}$.
$\mathfrak{g}=\operatorname{Lie}(G)$ and $F: \mathfrak{g} \rightarrow \mathfrak{g}$ Frobenius.
$\mu: \mathfrak{g} \times \mathfrak{g} \rightarrow \overline{\mathbb{F}}_{q}$ non-degenerate G-invariant symmetric bilinear from which commutes with Frobenius (ex. $(x, y) \mapsto \operatorname{Tr}(x y)$ if $G=\mathrm{GL}_{n}$).

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.
Ex: $G=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$ and $F:\left(a_{i j}\right)_{i, j} \mapsto\left(a_{i j}^{q}\right)_{i, j}$. $\mathfrak{g}=\operatorname{Lie}(G)$ and $F: \mathfrak{g} \rightarrow \mathfrak{g}$ Frobenius.
$\mu: \mathfrak{g} \times \mathfrak{g} \rightarrow \overline{\mathbb{F}}_{q}$ non-degenerate G-invariant symmetric bilinear from which commutes with Frobenius (ex. $(x, y) \mapsto \operatorname{Tr}(x y)$ if $G=\mathrm{GL}_{n}$).
$\psi: \mathbb{F}_{q} \rightarrow \overline{\mathbb{Q}}_{\ell}{ }^{\times}$non-trivial additive character.

Classical Fourier transforms

- G connected reductive group defined over \mathbb{F}_{q}, with Frobenius $F: G \rightarrow G$. Then $G^{F}=G\left(\mathbb{F}_{q}\right)$ finite group.
Ex: $G=\operatorname{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$ and $F:\left(a_{i j}\right)_{i, j} \mapsto\left(a_{i j}^{q}\right)_{i, j}$.
$\mathfrak{g}=\operatorname{Lie}(G)$ and $F: \mathfrak{g} \rightarrow \mathfrak{g}$ Frobenius.
$\mu: \mathfrak{g} \times \mathfrak{g} \rightarrow \overline{\mathbb{F}}_{q}$ non-degenerate G-invariant symmetric bilinear from which commutes with Frobenius (ex. $(x, y) \mapsto \operatorname{Tr}(x y)$ if $G=\mathrm{GL}_{n}$).
$\psi: \mathbb{F}_{q} \rightarrow \overline{\mathbb{Q}}_{\ell}{ }^{\times}$non-trivial additive character.
Fourier transform $\mathcal{F}^{\mathfrak{g}}: \operatorname{Fun}\left(\mathfrak{g}^{F}, \overline{\mathbb{Q}}_{\ell}\right) \rightarrow \operatorname{Fun}\left(\mathfrak{g}^{F}, \overline{\mathbb{Q}}_{\ell}\right)$,

$$
\mathcal{F}^{\mathfrak{g}}(f)(x)=\sum_{y \in \mathfrak{g}^{F}} \psi(\mu(x, y)) f(y)
$$

Representations of G^{F}

G-equivariant isomorphism

$$
\phi: G_{\mathrm{uni}} \simeq \mathfrak{g}_{\mathrm{nil}} .
$$

Representations of G^{F}

G-equivariant isomorphism

$$
\phi: G_{\mathrm{uni}} \simeq \mathfrak{g}_{\mathrm{nil}} .
$$

We have a connection
$\left\{\right.$ Irreducible $\overline{\mathbb{Q}}_{\ell}$-char. of $\left.G^{F}\right\} \longleftrightarrow\left\{\right.$ Fourier trans. of G^{F}-orbits of $\left.\mathfrak{g}^{F}\right\}$

Representations of G^{F}

G-equivariant isomorphism

$$
\phi: G_{\mathrm{uni}} \simeq \mathfrak{g}_{\mathrm{nil}} .
$$

We have a connection
$\left\{\right.$ Irreducible $\overline{\mathbb{Q}}_{\ell^{-}}$char. of $\left.G^{F}\right\} \longleftrightarrow\left\{\right.$ Fourier trans. of G^{F}-orbits of $\left.\mathfrak{g}^{F}\right\}$
Remark: If H finite abelian group, then
$\left\{\right.$ Irreducible $\overline{\mathbb{Q}}_{\ell}$-char. of $\left.H\right\}=$ Fourier $(\{$ conjugacy classes of $H\})$

Special case $G=\mathrm{GL}_{n}$

- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.

Special case $G=\mathrm{GL}_{n}$

- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.
$\left\{\right.$ Unipotent char. of $\left.\mathrm{GL}_{n}^{F}\right\}=\left.\left(\mathcal{F}^{\mathrm{gl}}{ }_{n}\left\{\right.\right.$ nilpotent orbits of $\left.\left.\mathrm{gl}_{n}^{F}\right\}\right)\right|_{\mathrm{GL}_{n}^{F}}$

Special case $G=\mathrm{GL}_{n}$

- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.
$\left\{\right.$ Unipotent char. of $\left.\mathrm{GL}_{n}^{F}\right\}=\left.\left(\mathcal{F}^{\mathrm{gl}}{ }_{n}\left\{\right.\right.$ nilpotent orbits of $\left.\left.\mathrm{gl}_{n}^{F}\right\}\right)\right|_{\mathrm{GL}_{n}^{F}}$
- Many applications (Hausel-L.-Villegas, L.) :

Special case $G=\mathrm{GL}_{n}$

- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.
$\left\{\right.$ Unipotent char. of $\left.\mathrm{GL}_{n}^{F}\right\}=\left.\left(\mathcal{F}^{\mathrm{gl}}{ }_{n}\left\{\right.\right.$ nilpotent orbits of $\left.\left.\mathrm{gl}_{n}^{F}\right\}\right)\right|_{\mathrm{GL}_{n}^{F}}$
- Many applications (Hausel-L.-Villegas, L.) :
- Computation of Poincaré polynomial of Nakajima's quiver varieties.
- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.
$\left\{\right.$ Unipotent char. of $\left.\mathrm{GL}_{n}^{F}\right\}=\left.\left(\mathcal{F}^{\mathrm{gl}}{ }_{n}\left\{\right.\right.$ nilpotent orbits of $\left.\left.\mathrm{gl}_{n}^{F}\right\}\right)\right|_{\mathrm{GL}_{n}^{F}}$
- Many applications (Hausel-L.-Villegas, L.) :
- Computation of Poincaré polynomial of Nakajima's quiver varieties.
- Proof of Kac conjectures on quiver representations.
- $G=\mathrm{GL}_{n}$ with standard Frobenius $F:\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$. Then $\mathrm{GL}_{n} \subset \mathrm{gl}_{n}$ compatible with Frobenius.
$\left\{\right.$ Unipotent char. of $\left.\mathrm{GL}_{n}^{F}\right\}=\left.\left(\mathcal{F}^{\mathrm{gl}}{ }_{n}\left\{\right.\right.$ nilpotent orbits of $\left.\left.\mathrm{gl}{ }_{n}^{F}\right\}\right)\right|_{\mathrm{GL}_{n}^{F}}$
- Many applications (Hausel-L.-Villegas, L.) :
- Computation of Poincaré polynomial of Nakajima's quiver varieties.
- Proof of Kac conjectures on quiver representations.
- Study of structure coefficients of the character ring of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

General case?

- Example : $G=\mathrm{PGL}_{n}$.

General case?

- Example : $G=\mathrm{PGL}_{n}$.

$$
\mathrm{PGL}_{n} \subset\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right] .
$$

General case?

- Example : $G=\mathrm{PGL}_{n}$.

$$
\mathrm{PGL}_{n} \subset\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right] .
$$

Then $\operatorname{Fun}\left(\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right]^{F}, \overline{\mathbb{Q}}_{\ell}\right) \simeq \operatorname{Fun}\left(\mathrm{gl}_{n}^{F}, \overline{\mathbb{Q}}_{\ell}\right)^{\mathrm{GL}_{1}^{F}}$,

- Example : $G=\mathrm{PGL}_{n}$.

$$
\mathrm{PGL}_{n} \subset\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right] .
$$

Then $\operatorname{Fun}\left(\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right]^{F}, \overline{\mathbb{Q}}_{\ell}\right) \simeq \operatorname{Fun}\left(\mathrm{gl}_{n}^{F}, \overline{\mathbb{Q}}_{\ell}\right)^{\mathrm{GL}_{1}^{F}}$,

$$
\mathcal{F}(f)([x])=\sum_{[y] \in\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right]} \frac{1}{\left|\operatorname{Stab}_{\mathrm{GL}_{1}^{f}}(y)\right|} K([x],[y]) f([y]),
$$

where

$$
K([x],[y])=\sum_{z \in \operatorname{GLL}_{1}^{F}} \psi(\operatorname{Tr}(\lambda x y))=\left\{\begin{array}{ll}
q-1 & \text { if } \operatorname{Tr}(x y)=0 \\
-1 & \text { if } \operatorname{Tr}(x y) \neq 0
\end{array} .\right.
$$

General case?

- Starting datum : an F-stable maximal torus T of G and a representation

$$
\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}
$$

which commutes with Frobenius.

General case?

- Starting datum : an F-stable maximal torus T of G and a representation

$$
\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}
$$

which commutes with Frobenius.

- In the previous example : $G=\mathrm{PGL}_{n}, \rho^{b}: \mathrm{SL}_{n} \subset \mathrm{GL}_{n}$ which dualizes into $\rho: \mathrm{GL}_{n} \rightarrow \mathrm{PGL}_{n}$,

$$
\mathcal{X}=\left[\mathrm{gl}_{n} / \operatorname{Ker}(\rho)\right]=\left[\mathrm{gl}_{n} / \mathrm{GL}_{1}\right]
$$

and $\mathcal{F}^{\mathcal{X}}$ obtained from $\mathcal{F}^{\mathrm{gl}}$ by descent.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- If X finite set, put $\mathcal{C}(X)=\operatorname{Fun}\left(X, \overline{\mathbb{Q}}_{\ell}\right)$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- If X finite set, put $\mathcal{C}(X)=\operatorname{Fun}\left(X, \overline{\mathbb{Q}}_{\ell}\right)$
- $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}$ acts on $\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)$ and

$$
\mathcal{F}^{\mathrm{gl}_{n}}((g, h) \cdot f)=(h, g) \cdot \mathcal{F}^{\mathrm{gl}}{ }_{n}(f) .
$$

I.e. $\mathcal{F}^{\mathrm{gl}}{ }_{n}: \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right) \rightarrow \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)^{\iota}$ isomorphism of $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}$-mod.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{gl} \mathrm{l}_{n}}$

- If X finite set, put $\mathcal{C}(X)=\operatorname{Fun}\left(X, \overline{\mathbb{Q}}_{\ell}\right)$
- $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}$ acts on $\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)$ and

$$
\mathcal{F}^{\mathrm{gl}_{n}}((g, h) \cdot f)=(h, g) \cdot \mathcal{F}^{\mathrm{gl}}{ }_{n}(f) .
$$

I.e. $\mathcal{F}^{\mathrm{gl}}{ }_{n}: \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right) \rightarrow \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)^{\iota}$ isomorphism of $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}$-mod.

- Deligne-Lusztig theory :

$$
\operatorname{Irr}\left(G^{F}\right)=\coprod_{(s)} \mathcal{E}_{G}(s)
$$

where (s) runs over F^{b}-stable semisimple conjugacy classes of G^{b}. $\mathcal{E}_{G}(s)$: Lusztig series.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- We have

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \simeq \bigoplus_{\pi \in \widehat{\mathrm{GL}_{n}^{F}}} V_{\pi} \boxtimes V_{\pi}^{\vee}
$$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- We have

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \simeq \underset{\pi \in \widehat{\mathrm{GL}_{n}^{F}}}{\bigoplus} V_{\pi} \boxtimes V_{\pi}^{\vee} .
$$

where for $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$, we get

$$
\mathrm{GL}_{n}^{F} \rightarrow \overline{\mathbb{Q}}_{\ell}, h \mapsto x^{\vee}\left(\rho_{\pi}(h)(x)\right)
$$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{gl} \mathrm{l}_{n}}$

- We have

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \simeq \bigoplus_{\pi \in \widehat{\mathrm{GL}_{n}^{F}}} V_{\pi} \boxtimes V_{\pi}^{\vee} .
$$

where for $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$, we get

$$
\mathrm{GL}_{n}^{F} \rightarrow \overline{\mathbb{Q}}_{\ell}, h \mapsto x^{\vee}\left(\rho_{\pi}(h)(x)\right)
$$

-

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)=\bigoplus_{(s)} \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)_{(s)}
$$

where (s) runs over the F-stable semisimple conjugacy classes of GL_{r} and

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)_{(s)}=\bigoplus_{\pi \in \mathcal{E}_{\mathrm{GL}_{n}(s)}} V_{\pi} \boxtimes V_{\pi}^{\vee} .
$$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g} l_{n}}$

$$
\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)=\bigoplus_{(s)} \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)_{(s)}
$$

where (s) runs over F-stable semisimple conjugacy classes of GL_{n}.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g} \mathbf{l}_{n}}$

-

$$
\mathcal{C}\left(\left.\mathrm{g}\right|_{n} ^{F}\right)=\bigoplus_{(s)} \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)_{(s)}
$$

where (s) runs over F-stable semisimple conjugacy classes of GL_{n}.

- Moreover $\quad \mathcal{F}^{\mathrm{gl}}{ }_{n}: \mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)} \rightarrow \mathcal{C}\left(\mathrm{gl}_{n}\right)_{\left(s^{-1}\right)}$.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

-

$$
\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)=\bigoplus_{(s)} \mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)_{(s)}
$$

where (s) runs over F-stable semisimple conjugacy classes of GL_{n}.

- Moreover $\quad \mathcal{F}^{\mathrm{gl}_{n}}: \mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)} \rightarrow \mathcal{C}\left(\mathrm{gl}_{n}\right)_{\left(s^{-1}\right)}$.
- If the eigenvalues of (s) are all $\neq 1$, then

$$
\mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)}=\mathcal{C}\left(\mathrm{GL}_{n}\right)_{(s)}
$$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}} \mathrm{l}_{n}$

- Jordan decomposition for Fourier :

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- Jordan decomposition for Fourier :

$$
\mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)}=R_{L_{r^{\prime}} \times L_{r^{\prime}}}^{\mathrm{GL}_{n} \times \mathrm{GL}_{n}}\left(\mathcal{C}\left(\mathrm{GL}_{r^{\prime}}^{F}\right)_{\left(s^{\prime}\right)} \boxtimes \mathcal{C}\left(\mathrm{gl}_{n-r^{\prime}}^{F}\right)_{(1)}\right),
$$

with $r^{\prime}=\#\{$ eigenvalues of $s \neq 1\}$ and $L_{r^{\prime}}=\mathrm{GL}_{r^{\prime}} \times \mathrm{GL}_{n-r^{\prime}}$.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- Jordan decomposition for Fourier :

$$
\mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)}=R_{L_{r^{\prime}} \times L_{r^{\prime}}}^{\mathrm{GL}_{n} \times \mathrm{GL}_{n}}\left(\mathcal{C}\left(\mathrm{GL}_{r^{\prime}}^{F}\right)_{\left(s^{\prime}\right)} \boxtimes \mathcal{C}\left(\mathrm{gl}_{n-r^{\prime}}^{F}\right)_{(1)}\right),
$$

with $r^{\prime}=\#\{$ eigenvalues of $s \neq 1\}$ and $L_{r^{\prime}}=\mathrm{GL}_{r^{\prime}} \times \mathrm{GL}_{n-r^{\prime}}$.
Fourier on both sides coincide.

Spectral aspect of Fourier transform $\mathcal{F}^{\text {gl }} l_{n}$

- Jordan decomposition for Fourier :

$$
\mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)}=R_{L_{r^{\prime}} \times L_{r^{\prime}}}^{\mathrm{GL}_{n} \times \mathrm{GL}_{n}}\left(\mathcal{C}\left(\mathrm{GL}_{r^{\prime}}^{F}\right)_{\left(s^{\prime}\right)} \boxtimes \mathcal{C}\left(\mathrm{gl}_{n-r^{\prime}}^{F}\right)_{(1)}\right),
$$

with $r^{\prime}=\#\{$ eigenvalues of $s \neq 1\}$ and $L_{r^{\prime}}=\mathrm{GL}_{r^{\prime}} \times \mathrm{GL}_{n-r^{\prime}}$.
Fourier on both sides coincide.

- We are reduced to understand Fourier on $\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)_{(1)}$.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{gl} \mathrm{l}_{n}}$

- Jordan decomposition for Fourier :

$$
\mathcal{C}\left(\mathrm{gl}_{n}\right)_{(s)}=R_{L_{r^{\prime}} \times L_{r^{\prime}}}^{\mathrm{GL}_{n} \times \mathrm{GL}_{n}}\left(\mathcal{C}\left(\mathrm{GL}_{r^{\prime}}^{F}\right)_{\left(s^{\prime}\right)} \boxtimes \mathcal{C}\left(\mathrm{gl}_{n-r^{\prime}}^{F}\right)_{(1)}\right),
$$

with $r^{\prime}=\#\{$ eigenvalues of $s \neq 1\}$ and $L_{r^{\prime}}=\mathrm{GL}_{r^{\prime}} \times \mathrm{GL}_{n-r^{\prime}}$.
Fourier on both sides coincide.

- We are reduced to understand Fourier on $\mathcal{C}\left(\mathrm{gl}_{n}^{F}\right)_{(1)}$.
- Example : $n=2$

$\mathcal{C}\left(\mathrm{GL}_{\mathbf{2}}^{F}\right)$	$1 \boxtimes 1$	$\mathrm{St} \boxtimes \mathrm{St}$			$\left\{V_{\alpha, \mathbf{1}}^{\mathrm{GL}}\right\}_{\alpha \neq \mathbf{1}}$
$\mathcal{C}\left(\mathrm{gl}_{\mathbf{2}, \mathbf{1}}^{F}\right)$	$\mathbf{1} \boxtimes 1$	$\mathrm{St} \boxtimes \mathrm{St}$	$\mathbf{1} \boxtimes \mathrm{St}$	$\mathrm{St} \boxtimes 1$	$\left\{V_{\alpha, \mathbf{1}}^{\mathrm{GL}}\right\}_{\alpha \neq \mathbf{1}}$
$\mathcal{C}\left(\mathrm{gl}_{\mathbf{2}, \mathbf{0}}^{F}\right)$	$\mathbf{1} \boxtimes 1$				

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g}_{n}}$

- Fourier matrices when $n=2$

	$(1 \boxtimes 1)_{2}$	$(1 \boxtimes 1)_{1}$
$(1 \boxtimes 1)_{2}$		
$(1 \boxtimes 1)_{1}$		
$(1 \boxtimes 1)_{0}$		

-q(q-1) \& q^{2}-q-1 \& 1

q(q-1)^{2}(q+1) \& q^{3}+q^{2}-q-1 \& 1\end{array}\right)\)
$(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \quad(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}}$
$(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}}$
$(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}}$$\left(\begin{array}{cc}q & -q \\ q(q-1) & q(q+1)\end{array}\right)$

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g} \mathrm{l}_{n}}$

- Fourier matrices when $n=2$

$$
\begin{aligned}
& \left.\begin{array}{l}
\\
(1 \boxtimes 1)_{2} \\
(1 \boxtimes 1)_{1} \\
(1 \boxtimes 1)_{0}
\end{array} \quad \begin{array}{ccc}
(1 \boxtimes 1)_{2} & (1 \boxtimes 1)_{1} & (1 \boxtimes 1)_{0} \\
-q & -(q+1) & 1 \\
q(q-1)^{2}(q+1) & q^{3}+q^{2}-q-1 & 1 \\
q^{2}-q-1 & 1
\end{array}\right) \\
& (\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \quad(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}} \\
& \begin{array}{l}
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \\
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}}
\end{array}\left(\begin{array}{cc}
q & -q \\
q(q-1) & q(q+1)
\end{array}\right)
\end{aligned}
$$

- In the $n=2$ case $\mathcal{F}^{\mathrm{gl}}{ }_{n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \rightarrow(\mathrm{St} \boxtimes 1), x \mapsto-q^{2} x$.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g} \mathrm{l}_{n}}$

- Fourier matrices when $n=2$

$$
\begin{aligned}
& \left.\begin{array}{l}
\\
(1 \boxtimes 1)_{2} \\
(1 \boxtimes 1)_{1} \\
(1 \boxtimes 1)_{0}
\end{array} \quad \begin{array}{ccc}
(1 \boxtimes 1)_{2} & (1 \boxtimes 1)_{1} & (1 \boxtimes 1)_{0} \\
-q & -(q+1) & 1 \\
q(q-1)^{2}(q+1) & q^{3}+q^{2}-q-1 & 1 \\
q^{2}-q-1 & 1
\end{array}\right) \\
& (\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \quad(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}} \\
& \begin{array}{l}
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \\
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}}
\end{array}\left(\begin{array}{cc}
q & -q \\
q(q-1) & q(q+1)
\end{array}\right)
\end{aligned}
$$

- In the $n=2$ case $\mathcal{F}^{\mathrm{gl}}{ }_{n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \rightarrow(\mathrm{St} \boxtimes 1), x \mapsto-q^{2} x$.

Spectral aspect of Fourier transform $\mathcal{F}^{\mathrm{g} \mathrm{l}_{n}}$

- Fourier matrices when $n=2$

$$
\begin{aligned}
& \left.\begin{array}{l}
\\
(1 \boxtimes 1)_{2} \\
(1 \boxtimes 1)_{1} \\
(1 \boxtimes 1)_{0}
\end{array} \quad \begin{array}{ccc}
(1 \boxtimes 1)_{2} & (1 \boxtimes 1)_{1} & (1 \boxtimes 1)_{0} \\
-q & -(q+1) & 1 \\
q(q-1)^{2}(q+1) & q^{3}+q^{2}-q-1 & 1 \\
q^{2}-q-1 & 1
\end{array}\right) \\
& (\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \quad(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}} \\
& \begin{array}{l}
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{2}} \\
(\mathrm{St} \boxtimes \mathrm{St})_{\mathbf{1}}
\end{array}\left(\begin{array}{cc}
q & -q \\
q(q-1) & q(q+1)
\end{array}\right)
\end{aligned}
$$

- In the $n=2$ case $\mathcal{F}^{\mathrm{gl}}{ }_{n}$ can be reconstructed from these two matrices and $(1 \boxtimes \mathrm{St}) \rightarrow(\mathrm{St} \boxtimes 1), x \mapsto-q^{2} x$.

Back to our problem

- Given $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, we would like to transfert $\left(\mathrm{GL}_{n} \subset \mathrm{gl}_{n}, \mathcal{F}^{\mathrm{gl}_{n}}\right)$ to $\left(G \subset \mathcal{X}_{\rho}, \mathcal{F}^{\mathcal{X}_{\rho}}\right)$.

Back to our problem

- Given $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, we would like to transfert $\left(\mathrm{GL}_{n} \subset \mathrm{gl}_{n}, \mathcal{F}^{\mathrm{gl}_{n}}\right)$ to $\left(G \subset \mathcal{X}_{\rho}, \mathcal{F}^{\mathcal{X}}\right)$.
- $\mathcal{F}^{\mathrm{GL}_{n}}$:

Back to our problem

- Given $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, we would like to transfert $\left(\mathrm{GL}_{n} \subset \mathrm{gl}_{n}, \mathcal{F}^{\mathrm{gl}_{n}}\right)$ to $\left(G \subset \mathcal{X}_{\rho}, \mathcal{F}^{\mathcal{X}}\right)$.
- $\mathcal{F}^{\mathrm{GL}}{ }_{n}$:

- We first transfert $\mathcal{F}^{\mathrm{GL}}{ }_{n}$ to $\mathcal{F}_{\rho}^{G}: \mathcal{C}\left(G^{F}\right) \rightarrow \mathcal{C}\left(G^{F}\right)$.
- Deligne-Lusztig theory :

$$
\operatorname{Irr}\left(G^{F}\right)=\coprod_{(s)} \mathcal{E}_{G}(s)
$$

where (s) runs over F^{b}-stable semisimple conjugacy classes of G^{b}.
$\mathcal{E}_{G}(s)$: Lusztig series.

- Deligne-Lusztig theory :

$$
\operatorname{Irr}\left(G^{F}\right)=\coprod_{(s)} \mathcal{E}_{G}(s)
$$

where (s) runs over F^{b}-stable semisimple conjugacy classes of G^{b}. $\mathcal{E}_{G}(s)$: Lusztig series.

- $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow H^{b}$ (H arbitrary connected reductive group) induces a map from F^{b}-stable semisimple conjugacy classes of G^{b} to F^{b}-stable semisimple conjugacy classes of H^{b}.
- Deligne-Lusztig theory :

$$
\operatorname{Irr}\left(G^{F}\right)=\coprod_{(s)} \mathcal{E}_{G}(s)
$$

where (s) runs over F^{b}-stable semisimple conjugacy classes of G^{b}. $\mathcal{E}_{G}(s)$: Lusztig series.

- $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow H^{b}$ (H arbitrary connected reductive group) induces a map from F^{b}-stable semisimple conjugacy classes of G^{b} to F^{b}-stable semisimple conjugacy classes of H^{b}.
$\rightsquigarrow \mathfrak{t}_{\rho}:\left\{\right.$ Lusztig series of $\left.G^{F}\right\} \rightarrow\left\{\right.$ Lusztig series of $\left.H^{F}\right\}$ given by

$$
\mathfrak{t}_{\rho}\left(\mathcal{E}_{G}(s)\right)=\mathcal{E}_{H}\left(\rho^{b}(s)\right)
$$

Cases where t_{ρ} is given by a functor

- If $\rho^{b}: G^{b} \rightarrow H^{b}$ is a normal morphism, then there exists

$$
\rho: H \rightarrow G
$$

and \mathfrak{t}_{ρ} is given by the functor $\rho^{*}: \operatorname{Rep}\left(G^{F}\right) \rightarrow \operatorname{Rep}\left(H^{F}\right)$.

Cases where t_{ρ} is given by a functor

- If $\rho^{b}: G^{b} \rightarrow H^{b}$ is a normal morphism, then there exists

$$
\rho: H \rightarrow G
$$

and \mathfrak{t}_{ρ} is given by the functor $\rho^{*}: \operatorname{Rep}\left(G^{F}\right) \rightarrow \operatorname{Rep}\left(H^{F}\right)$.

Examples:
$\rho^{b}: \mathrm{SL}_{n} \subset \mathrm{GL}_{n}$, then $\rho: \mathrm{GL}_{n} \rightarrow \mathrm{PGL}_{n}$.
$\rho^{b}: \mathrm{GL}_{1} \hookrightarrow \mathrm{GL}_{n}, \lambda \mapsto \lambda . \mathrm{I}_{n}$, then $\rho=\operatorname{det}: \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{1}$.

Cases where t_{ρ} is given by a functor

- If $\rho^{b}: G^{b} \rightarrow H^{b}$ is a normal morphism, then there exists

$$
\rho: H \rightarrow G
$$

and \mathfrak{t}_{ρ} is given by the functor $\rho^{*}: \operatorname{Rep}\left(G^{F}\right) \rightarrow \operatorname{Rep}\left(H^{F}\right)$.

Examples:
$\rho^{b}: \mathrm{SL}_{n} \subset \mathrm{GL}_{n}$, then $\rho: \mathrm{GL}_{n} \rightarrow \mathrm{PGL}_{n}$.
$\rho^{b}: \mathrm{GL}_{1} \hookrightarrow \mathrm{GL}_{n}, \lambda \mapsto \lambda . \mathrm{I}_{n}$, then $\rho=\operatorname{det}: \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{1}$.

- If $\rho^{b}: L^{b} \hookrightarrow H^{b}$ is the inclusion of a Levi, then \mathfrak{t}_{ρ} is given by the Lusztig induction functor

$$
R_{L}^{H}: \operatorname{Rep}\left(L^{F}\right) \rightarrow \operatorname{Rep}\left(H^{F}\right) .
$$

Transfert of restricted Fourier transform

- Fact:
$\mathcal{F}^{\mathrm{GL}_{n}}: \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \rightarrow \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)^{\iota}$ isomorphism of $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}-\bmod$.
- Fact:
$\mathcal{F}^{\mathrm{GL}_{n}}: \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \rightarrow \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)^{\iota}$ isomorphism of $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}$-mod.
- Recall

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \simeq \bigoplus_{\pi \in \widehat{\mathrm{GL}_{n}^{F}}} V_{\pi} \boxtimes V_{\pi}^{\vee}
$$

- Fact:
$\mathcal{F}^{\mathrm{GL}_{n}}: \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \rightarrow \mathcal{C}\left(\mathrm{GL}_{n}^{F}\right)^{\iota}$ isomorphism of $\mathrm{GL}_{n}^{F} \times \mathrm{GL}_{n}^{F}-\bmod$.
- Recall

$$
\mathcal{C}\left(\mathrm{GL}_{n}^{F}\right) \simeq \bigoplus_{\pi \in \widehat{\mathrm{GL}_{n}^{F}}} V_{\pi} \boxtimes V_{\pi}^{\vee} .
$$

- We get a gamma function $\gamma^{\mathrm{GL}_{n}}: \widehat{\mathrm{GL}_{n}^{F}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$such that

$$
\mathcal{F}^{\mathrm{GL}_{n}}\left(x \boxtimes x^{\vee}\right)=\gamma^{\mathrm{GL}_{n}}(\pi)\left(x^{\vee} \boxtimes x\right)
$$

for all $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee}$.

Transfert of restricted Fourier transform

- Fact : $\gamma^{\mathrm{GL}_{n}}$ constant on Lusztig series of GL_{n}^{F}.
- Fact : $\gamma^{\mathrm{GL}_{n}}$ constant on Lusztig series of GL_{n}^{F}.
- Recall that $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$ defines

$$
\mathfrak{t}_{\rho}:\left\{\text { Lusztig series of } G^{F}\right\} \rightarrow\left\{\text { Lusztig series of } \mathrm{GL}_{n}^{F}\right\}
$$

- Fact : $\gamma^{\mathrm{GL}_{n}}$ constant on Lusztig series of GL_{n}^{F}.
- Recall that $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$ defines

$$
\mathfrak{t}_{\rho}:\left\{\text { Lusztig series of } G^{F}\right\} \rightarrow\left\{\text { Lusztig series of } \mathrm{GL}_{n}^{F}\right\}
$$

Hence we get

$$
\gamma_{\rho}^{G}: \widehat{G^{F}} \rightarrow \overline{\mathbb{Q}}_{\ell}
$$

given by $\gamma^{\mathrm{GL}_{n}} \circ \mathfrak{t}_{\rho}$.

- Fact : $\gamma^{\mathrm{GL}_{n}}$ constant on Lusztig series of GL_{n}^{F}.
- Recall that $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$ defines

$$
\mathfrak{t}_{\rho}:\left\{\text { Lusztig series of } G^{F}\right\} \rightarrow\left\{\text { Lusztig series of } \mathrm{GL}_{n}^{F}\right\}
$$

Hence we get

$$
\gamma_{\rho}^{G}: \widehat{G^{F}} \rightarrow \overline{\mathbb{Q}}_{\ell}
$$

given by $\gamma^{\mathrm{GL}_{n}} \circ \mathfrak{t}_{\rho}$.

- \rightsquigarrow isomorphism $\mathcal{F}_{\rho}^{G}: \mathcal{C}\left(G^{F}\right) \rightarrow \mathcal{C}\left(G^{F}\right)^{\iota}$ of $G^{F} \times G^{F}$-modules s.t.

$$
\mathcal{F}_{\rho}^{G}\left(x \boxtimes x^{\vee}\right)=\gamma_{\rho}^{G}(\pi)\left(x^{\vee} \boxtimes x\right),
$$

for all $x \boxtimes x^{\vee} \in V_{\pi} \boxtimes V_{\pi}^{\vee} \subset \mathcal{C}\left(G^{F}\right)$.
(Construction of \mathcal{F}_{ρ}^{G} due to Braverman-Kazhdan.)

- Problem : compute explicitely $\phi_{\rho}^{G} \in \mathcal{C}_{c}\left(G^{F}\right)$ such that

$$
\mathcal{F}_{\rho}^{G}(f)(y)=\sum_{x \in G^{F}} \phi_{\rho}^{G}(x y) f(y)
$$

- Problem : compute explicitely $\phi_{\rho}^{G} \in \mathcal{C}_{c}\left(G^{F}\right)$ such that

$$
\mathcal{F}_{\rho}^{G}(f)(y)=\sum_{x \in G^{F}} \phi_{\rho}^{G}(x y) f(y)
$$

- Note that abstractly, for all $g \in G^{F}$

$$
\phi_{\rho}^{G}(g)=\sum_{\pi \in \widehat{G^{F}}} \gamma_{\rho}^{G}(\pi) \pi(1) \overline{\pi(g)} .
$$

- Problem : compute explicitely $\phi_{\rho}^{G} \in \mathcal{C}_{c}\left(G^{F}\right)$ such that

$$
\mathcal{F}_{\rho}^{G}(f)(y)=\sum_{x \in G^{F}} \phi_{\rho}^{G}(x y) f(y)
$$

- Note that abstractly, for all $g \in G^{F}$

$$
\phi_{\rho}^{G}(g)=\sum_{\pi \in \widehat{G^{F}}} \gamma_{\rho}^{G}(\pi) \pi(1) \overline{\pi(g)} .
$$

- If the image of $\rho^{b}: G^{b} \rightarrow \mathrm{GL}_{n}$ is normal in some F-stable Levi L of GL_{n}, then $\rho: L \rightarrow G$ and

$$
\phi_{\rho}^{G}=\rho_{!}(\psi \circ \operatorname{Tr}) \text { up to some explicit scalar }
$$

Braverman-Kazhdan conjecture

- Recall $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, put $L:=C_{\mathrm{GL}_{n}}\left(\rho^{b}\left(T^{b}\right)\right)$ Levi subgroup of GL_{n}.

Braverman-Kazhdan conjecture

- Recall $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, put $L:=C_{\mathrm{GL}_{n}}\left(\rho^{b}\left(T^{b}\right)\right)$ Levi subgroup of GL_{n}.
Then $\rho^{b}: T^{b} \rightarrow L$ normal and so we have

$$
\rho: L \rightarrow T .
$$

Braverman-Kazhdan conjecture

- Recall $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$, put $L:=C_{\mathrm{GL}_{n}}\left(\rho^{b}\left(T^{b}\right)\right)$ Levi subgroup of GL_{n}.
Then $\rho^{b}: T^{b} \rightarrow L$ normal and so we have

$$
\rho: L \rightarrow T .
$$

- Artin-Schreier sheaf : $h: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}, x \mapsto x^{q}-x$ Galois covering with Galois group \mathbb{F}_{q}.
$\mathcal{L}_{\psi}:=$ subsheaf of $h_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)$ on which \mathbb{F}_{q} acts as ψ^{-1}.
Consider $\Phi^{L}:=\operatorname{Tr}^{*}\left(\mathcal{L}_{\psi}\right)$ with $\operatorname{Tr}: L \rightarrow \mathbb{A}_{1}$, and put

$$
\Phi_{\rho}^{T}:=\rho_{!} \Phi^{L}[\operatorname{dim} L]\left(\operatorname{dim} V_{L}\right) \in \mathcal{D}_{c}^{b}(T)^{F}
$$

Braverman-Kazhdan conjecture

- Proposition [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \rightarrow T$ is surjective + positivity assumptions on weights of ρ^{b}, then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ-adic sheaf on T.

Braverman-Kazhdan conjecture

- Proposition [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \rightarrow T$ is surjective + positivity assumptions on weights of ρ^{b}, then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ-adic sheaf on T.
- We have geometric induction :

$$
\begin{aligned}
& \operatorname{Ind}_{T}^{G}: \mathcal{D}_{c}^{b}(T) \rightarrow \mathcal{D}_{c}^{b}(G) . \\
& \text { given by }\left(p r_{2}\right)!\circ\left(p r_{1}\right)^{*}[\operatorname{dim} G-\operatorname{dim} T] \text { where } \\
& T \longleftarrow\left\{(t, x, g) \in T \times G \times G / B \mid g^{-1} \times g \in t U\right\} \longrightarrow G .
\end{aligned}
$$

Braverman-Kazhdan conjecture

- Proposition [Braverman-Kazhdan, Cheng-Ngô, Laumon-L.] If $\rho: L \rightarrow T$ is surjective + positivity assumptions on weights of ρ^{b}, then Φ_{ρ}^{T} is an irreducible perverse smooth ℓ-adic sheaf on T.
- We have geometric induction :

$$
\operatorname{Ind}_{T}^{G}: \mathcal{D}_{c}^{b}(T) \rightarrow \mathcal{D}_{c}^{b}(G)
$$

given by $\left(p r_{2}\right)!\circ\left(p r_{1}\right)^{*}[\operatorname{dim} G-\operatorname{dim} T]$ where

$$
T \longleftarrow\left\{(t, x, g) \in T \times G \times G / B \mid g^{-1} x g \in t U\right\} \longrightarrow G .
$$

- Theorem [Lusztig] Under above assumptions, $\operatorname{Ind}_{T}^{G}\left(\Phi_{\rho}^{T}\right)$ is a semisimple perverse sheaf on which $W:=W_{G}(T)$ acts.

Braverman-Kazhdan conjecture

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind} \frac{G}{T}\left(\Phi_{\rho}^{T}\right)^{W}$ equals ϕ_{ρ}^{G}.

Braverman-Kazhdan conjecture

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind}{ }_{T}^{G}\left(\Phi_{\rho}^{T}\right)^{W}$ equals ϕ_{ρ}^{G}.
(Proved by BK if $\rho^{b}: G^{b}=\mathrm{GL}_{m} \rightarrow \mathrm{GL}_{n}$).

Braverman-Kazhdan conjecture

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind}{ }_{T}^{G}\left(\Phi_{\rho}^{T}\right)^{W}$ equals ϕ_{ρ}^{G}.
(Proved by BK if $\rho^{b}: G^{b}=\mathrm{GL}_{m} \rightarrow \mathrm{GL}_{n}$).
- Theorem [Laumon-L., 2018] BK conjecture is true.

Braverman-Kazhdan conjecture

- Conjecture [Braverman-Kazhdan, 2002] The characteristic function of $\operatorname{Ind}{ }_{T}^{G}\left(\Phi_{\rho}^{T}\right)^{W}$ equals ϕ_{ρ}^{G}.
(Proved by BK if $\rho^{b}: G^{b}=\mathrm{GL}_{m} \rightarrow \mathrm{GL}_{n}$).
- Theorem [Laumon-L., 2018] BK conjecture is true. In fact we prove (without any assumptions on ρ) that

$$
\phi_{\rho}^{G}=\frac{1}{|W|} \sum_{w \in W} R_{T_{w}}^{G}\left(\phi_{\rho}^{T_{w}}\right),
$$

where $R_{T_{w}}^{G}$ is Deligne-Lusztig induction and $\phi_{\rho}^{T_{w}}$ is push forward of $\phi^{L_{v}}$ for some $v \in N_{\mathrm{GL}_{n}}(L)$ defined from w.

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- Reduces to extending $\mathcal{F}_{\rho}^{G}: \mathcal{C}\left(G^{F}\right)_{(1)} \rightarrow \mathcal{C}\left(G^{F}\right)_{(1)}$ (by Jordan decomp.).

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- Reduces to extending $\mathcal{F}_{\rho}^{G}: \mathcal{C}\left(G^{F}\right)_{(1)} \rightarrow \mathcal{C}\left(G^{F}\right)_{(1)}$ (by Jordan decomp.).
- Theorem [Laumon, L.] Explicit construction for all representations $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$ with $G=\mathrm{GL}_{2}$ or GL_{3}.

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- Reduces to extending $\mathcal{F}_{\rho}^{G}: \mathcal{C}\left(G^{F}\right)_{(1)} \rightarrow \mathcal{C}\left(G^{F}\right)_{(1)}$ (by Jordan decomp.).
- Theorem [Laumon, L.] Explicit construction for all representations $\rho^{b}: N_{G^{b}}\left(T^{b}\right) \rightarrow \mathrm{GL}_{n}$ with $G=\mathrm{GL}_{2}$ or GL_{3}.
- Assume that the image of $\rho^{b}: G^{b} \rightarrow \mathrm{GL}_{n}$ is normal in some Levi L, then we have $\rho: L \rightarrow G$.

Proposition [Laumon, L.]

$$
\mathcal{X}_{\rho}=[(\operatorname{Lie}(L) \times G) / L](=[\operatorname{Lie}(L) / \operatorname{Ker}(\rho)] \text { if } \rho \text { surjective }) .
$$

where the action is given by $(x, g) \cdot h=\left(x h, \rho(h)^{-1} g\right)$.

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- Diag. embedding $\rho^{b}: \mathrm{GL}_{n} \hookrightarrow \mathrm{GL}_{n} \times \mathrm{GL}_{n} \subset \mathrm{GL}_{2 n}$. Then

$$
m: \mathrm{GL}_{n} \times \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n},(x, y) \mapsto x y
$$

extends $\rho: \mathrm{T}_{n} \times \mathrm{T}_{n} \rightarrow \mathrm{~T}_{n}$.

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- Diag. embedding $\rho^{b}: \mathrm{GL}_{n} \hookrightarrow \mathrm{GL}_{n} \times \mathrm{GL}_{n} \subset \mathrm{GL}_{2 n}$. Then

$$
m: \mathrm{GL}_{n} \times \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n},(x, y) \mapsto x y
$$

extends $\rho: \mathrm{T}_{n} \times \mathrm{T}_{n} \rightarrow \mathrm{~T}_{n}$.
Theorem [Laumon, L.]

$$
\mathcal{X}_{\rho}=\left[\mathrm{gl}_{n} \times \mathrm{gl}_{n} / \mathrm{GL}_{n}\right],
$$

with action $(x, y) \cdot g=\left(x g, g^{-1} y\right)$.

- Diag. embedding $\rho^{b}: \mathrm{GL}_{n} \hookrightarrow \mathrm{GL}_{n} \times \mathrm{GL}_{n} \subset \mathrm{GL}_{2 n}$. Then

$$
m: \mathrm{GL}_{n} \times \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n},(x, y) \mapsto x y
$$

extends $\rho: \mathrm{T}_{n} \times \mathrm{T}_{n} \rightarrow \mathrm{~T}_{n}$.
Theorem [Laumon, L.]

$$
\mathcal{X}_{\rho}=\left[\mathrm{gl}_{n} \times \mathrm{gl}_{n} / \mathrm{GL}_{n}\right],
$$

with action $(x, y) \cdot g=\left(x g, g^{-1} y\right)$.
Fourier kernel :

$$
\phi^{\mathcal{X}}\left(\left[x^{\prime}, x^{\prime \prime}\right]\right)=\sum_{z \in \mathrm{GL}_{n}^{F}} \psi\left(\operatorname{Tr}\left(x^{\prime} z^{-1}+z x^{\prime \prime}\right)\right) .
$$

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- $\rho^{b}: \mathrm{PGL}_{2} \rightarrow \mathrm{GL}_{3}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \frac{1}{a d-b c}\left(\begin{array}{ccc}
a^{2} & a b & b^{2} \\
2 a c & a d+b c & 2 c d \\
c^{2} & c d & d^{2}
\end{array}\right)
$$

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

- $\rho^{b}: \mathrm{PGL}_{2} \rightarrow \mathrm{GL}_{3}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \frac{1}{a d-b c}\left(\begin{array}{ccc}
a^{2} & a b & b^{2} \\
2 a c & a d+b c & 2 c d \\
c^{2} & c d & d^{2}
\end{array}\right)
$$

At the Level of tori we have

$$
\rho^{b}: \bar{T}_{2} \rightarrow T_{3}, \quad(a, b) \mapsto(a / b, 1, b / a)
$$

which dualizes to

$$
\rho: T_{3} \rightarrow T_{2}^{\prime} \simeq\left\{(t, \delta) \in T_{2} \times \mathbb{A}^{1} \mid \operatorname{det}(t)=\delta^{2}\right\} / \mathrm{GL}_{1}
$$

given by $(a, b, c) \mapsto(a / c, c / a) \mapsto\left[a^{2}, c^{2}\right]$. This induces a bijective morphism
$\left[\operatorname{Lie}\left(T_{3}\right) / \operatorname{Ker}(\rho)\right] \rightarrow\left[\left\{(t, \delta) \in \operatorname{Lie}\left(T_{2}\right) \times \mathbb{A}^{1} \mid \operatorname{det}(t)=\delta^{2}\right\} / \mathrm{GL}_{1}\right]$.

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

Theorem [Laumon, L.]

$$
\mathcal{X}_{\rho}=\left[\left\{(x, \delta) \in \mathrm{gl}_{2} \times \mathrm{gl}_{1} \mid \operatorname{det}(x)=\delta^{2}\right\} / \mathrm{GL}_{1}\right] .
$$

Extending \mathcal{F}_{ρ}^{G} to involutive Fourier?

Theorem [Laumon, L.]

$$
\mathcal{X}_{\rho}=\left[\left\{(x, \delta) \in \mathrm{gl}_{2} \times \mathrm{gl}_{1} \mid \operatorname{det}(x)=\delta^{2}\right\} / \mathrm{GL}_{1}\right] .
$$

The Fourier kernel is given by

$$
\begin{aligned}
\phi^{\mathcal{X}_{\rho}}([x, \delta]) & =\sum_{s \in \mathrm{GL}_{1}} \psi(s(\operatorname{Tr}(x+2 \delta))) \\
& = \begin{cases}q-1 & \text { if } \operatorname{Tr}(x+2 \delta)=0 \\
-1 & \text { otherwise. }\end{cases}
\end{aligned} .
$$

