Linear characters of Sylow subgroups of the symmetric group

Stacey Law
University of Cambridge

Representations in Lie Theory and Interactions, CIRM
5 November 2018

- G finite $\operatorname{group}, \operatorname{lrr}(G)=\{$ irreducible characters of $G\}$
- p prime, $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G): p \nmid \chi(1)\}$
- G finite group, $\operatorname{Irr}(G)=\{$ irreducible characters of $G\}$
- p prime, $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G): p \nmid \chi(1)\}$

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.

- G finite $\operatorname{group}, \operatorname{Irr}(G)=\{$ irreducible characters of $G\}$
- p prime, $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G): p \nmid \chi(1)\}$

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Isaacs (1973): $|G|$ odd, all p;
\diamond Olsson (1976): $G=S_{n}, G L_{n}(q)$, all p;

- G finite group, $\operatorname{Irr}(G)=\{$ irreducible characters of $G\}$
- p prime, $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G): p \nmid \chi(1)\}$

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{|rr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Isaacs (1973): $|G|$ odd, all p;
\diamond Olsson (1976): $G=S_{n}, G L_{n}(q)$, all p;
\diamond Isaacs-Malle-Navarro (2007): reduction to simple groups;
\diamond Malle-Späth (2016): all G, $p=2$.

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\left|\operatorname{rr}_{p^{\prime}}\left(N_{G}(P)\right)\right|\right.\right.$.

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Natural bijections $\operatorname{Irr}_{p^{\prime}}(G) \longleftrightarrow \operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$?

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Natural bijections $\operatorname{Irr}_{p^{\prime}}(G) \longleftrightarrow \operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$?
\diamond Can be found when e.g. $P=N_{G}(P)$.

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Natural bijections $\operatorname{Irr}_{p^{\prime}}(G) \longleftrightarrow \operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$?
\diamond Can be found when e.g. $P=N_{G}(P)$.

Theorem (Navarro-Tiep-Vallejo, 2014)

Let p be odd, $P \in \operatorname{Syl}_{p}(G)$. Suppose $P=N_{G}(P)$. There is a bijection

$$
\operatorname{lrr}_{p^{\prime}}(G) \longrightarrow \operatorname{Irr}_{p^{\prime}}(P), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irred. constituent of $\chi \downarrow_{p}$ of degree coprime to p.

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Natural bijections $\operatorname{Irr}_{p^{\prime}}(G) \longleftrightarrow \operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$?
\diamond Can be found when e.g. $P=N_{G}(P)$.

Theorem (Navarro-Tiep-Vallejo, 2014)

Let p be odd, $P \in \operatorname{Syl}_{p}(G)$. Suppose $P=N_{G}(P)$. There is a bijection

$$
\operatorname{lrr}_{p^{\prime}}(G) \longrightarrow \operatorname{Irr}_{p^{\prime}}(P), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irred. constituent of $\chi \downarrow_{p}$ of degree coprime to p.

- Naturality of bijection: restriction of characters.

Conjecture (McKay, 1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)\right|$.
\diamond Natural bijections $\operatorname{Irr}_{p^{\prime}}(G) \longleftrightarrow \operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$?
\diamond Can be found when e.g. $P=N_{G}(P)$.

Theorem (Navarro-Tiep-Vallejo, 2014)

Let p be odd, $P \in \operatorname{Syl}_{p}(G)$. Suppose $P=N_{G}(P)$. There is a bijection

$$
\operatorname{lrr}_{p^{\prime}}(G) \longrightarrow \operatorname{Lin}(P), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irred. constituent of $\chi \downarrow_{p}$ of degree coprime to p.

- Naturality of bijection: restriction of characters.
- $\operatorname{lrr}_{p^{\prime}}(P)=\operatorname{Lin}(P):=\{$ linear characters of $P\}$
- Navarro-Tiep-Vallejo false for $p=2$, e.g. $G=S_{5}$.
- Symmetric groups: $p=2, P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. Then $P_{n}=N_{S_{n}}\left(P_{n}\right)$.
- Navarro-Tiep-Vallejo false for $p=2$, e.g. $G=S_{5}$.
- Symmetric groups: $p=2, P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. Then $P_{n}=N_{S_{n}}\left(P_{n}\right)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. When $n=2^{k}$, there is a bijection

$$
\operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(P_{2^{k}}\right)=\operatorname{Lin}\left(P_{2^{k}}\right), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irreducible constituent of $\chi \downarrow_{P_{2^{k}}}$ of odd degree.

- Navarro-Tiep-Vallejo false for $p=2$, e.g. $G=S_{5}$.
- Symmetric groups: $p=2, P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. Then $P_{n}=N_{S_{n}}\left(P_{n}\right)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. When $n=2^{k}$, there is a bijection

$$
\operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(P_{2^{k}}\right)=\operatorname{Lin}\left(P_{2^{k}}\right), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irreducible constituent of $\chi \downarrow_{P_{2^{k}}}$ of odd degree.
Moreover, for all $n \in \mathbb{N}$ and all $\chi \in \operatorname{Irr}\left(S_{n}\right), \chi \downarrow_{P_{n}}$ has a linear constituent.

- Navarro-Tiep-Vallejo false for $p=2$, e.g. $G=S_{5}$.
- Symmetric groups: $p=2, P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. Then $P_{n}=N_{S_{n}}\left(P_{n}\right)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$. When $n=2^{k}$, there is a bijection

$$
\operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(P_{2^{k}}\right)=\operatorname{Lin}\left(P_{2^{k}}\right), \quad \chi \mapsto \chi^{*}
$$

where χ^{*} is the unique irreducible constituent of $\chi \downarrow_{P_{2^{k}}}$ of odd degree.
Moreover, for all $n \in \mathbb{N}$ and all $\chi \in \operatorname{Irr}\left(S_{n}\right), \chi \downarrow_{P_{n}}$ has a linear constituent.

- If $\chi(1)>1$, then $\chi \downarrow_{P_{n}}$ has a unique linear constituent if and only if $n=2^{k}$ and $\chi(1)$ is odd.
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.
- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.
- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.
- Every irreducible character of S_{n} when restricted to a Sylow 2-subgroup has a linear constituent.
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.
- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.
- Every irreducible character of S_{n} when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli-Navarro, 2018)

Let $n \in \mathbb{N}, p$ any prime, $P_{n} \in \operatorname{Syl}_{p}\left(S_{n}\right)$. Let $\chi \in \operatorname{Irr}\left(S_{n}\right)$. Suppose $p \mid \chi(1)$. Then $\chi \downarrow_{P_{n}}$ contains at least p different linear constituents.
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.

- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.
- Every irreducible character of S_{n} when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli-Navarro, 2018)

Let $n \in \mathbb{N}$, p any prime, $P_{n} \in \operatorname{SyI}_{p}\left(S_{n}\right)$. Let $\chi \in \operatorname{Irr}\left(S_{n}\right)$. Suppose $p \mid \chi(1)$. Then $\chi \downarrow_{P_{n}}$ contains at least p different linear constituents.

- So for all n, p and all $\chi \in \operatorname{Irr}\left(S_{n}\right), \chi \downarrow_{P_{n}}$ has a linear constituent. (Not true for general G.)
\diamond Little known about restrictions to $P \in \operatorname{Syl}_{p}(G)$ in general.
- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.
- Every irreducible character of S_{n} when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli-Navarro, 2018)

Let $n \in \mathbb{N}$, p any prime, $P_{n} \in \operatorname{SyI}_{p}\left(S_{n}\right)$. Let $\chi \in \operatorname{Irr}\left(S_{n}\right)$. Suppose $p \mid \chi(1)$. Then $\chi \downarrow_{P_{n}}$ contains at least p different linear constituents.

- So for all n, p and all $\chi \in \operatorname{Irr}\left(S_{n}\right), \chi \downarrow_{P_{n}}$ has a linear constituent. (Not true for general G.)

Question

Given $\chi \in \operatorname{Irr}\left(S_{n}\right)$, what are the linear constituents of $\chi \downarrow_{P_{n}}$?

Aim

To determine all of the linear constituents of $\chi \downarrow_{P_{n}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.

Aim

To determine all of the linear constituents of $\chi\rfloor_{P_{n_{n}}}$, for all $\chi \in \operatorname{lrr}\left(S_{n}\right)$.
\diamond First step: for which χ does the trivial $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}}$?

Aim

To determine all of the linear constituents of $\chi \downarrow_{P_{n^{\prime}}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.
\diamond First step: for which χ does the trivial $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}}$?

- Partition of n, e.g. $\lambda=(4,3,3,1,1,1,1)=\left(4,3^{2}, 1^{4}\right) \vdash 14$.

Aim

To determine all of the linear constituents of $\chi \downarrow_{P_{n^{\prime}}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.
\diamond First step: for which χ does the trivial $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}}$?

- Partition of n, e.g. $\lambda=(4,3,3,1,1,1,1)=\left(4,3^{2}, 1^{4}\right) \vdash 14$.
- $\operatorname{lrr}\left(S_{n}\right) \longleftrightarrow\{\lambda: \lambda \vdash n\}, \quad \chi^{\lambda} \longmapsto \lambda$.

Aim

To determine all of the linear constituents of $\chi \downarrow_{P_{n}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.
\diamond First step: for which χ does the trivial $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}}$?

- Partition of n, e.g. $\lambda=(4,3,3,1,1,1,1)=\left(4,3^{2}, 1^{4}\right) \vdash 14$.
$-\operatorname{lrr}\left(S_{n}\right) \longleftrightarrow\{\lambda: \lambda \vdash n\}, \quad \chi^{\lambda} \longmapsto \lambda$.

Theorem (Giannelli, L.)

Let $n \in \mathbb{N}_{>10}$, p odd. Let $\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right)$. Then $\mathbb{1}_{P_{n}} \nmid \chi^{\lambda} \downarrow_{P_{n}}$ if and only if $n=p^{k}, k \in \mathbb{N}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Aim

To determine all of the linear constituents of $\chi \downarrow_{P_{n}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.
\diamond First step: for which χ does the trivial $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}}$?

- Partition of n, e.g. $\lambda=(4,3,3,1,1,1,1)=\left(4,3^{2}, 1^{4}\right) \vdash 14$.
$-\operatorname{lrr}\left(S_{n}\right) \longleftrightarrow\{\lambda: \lambda \vdash n\}, \quad \chi^{\lambda} \longmapsto \lambda$.

Theorem (Giannelli, L.)

Let $n \in \mathbb{N}_{>10}$, p odd. Let $\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right)$. Then $\mathbb{1}_{P_{n}} \nmid \chi^{\lambda} \downarrow_{P_{n}}$ if and only if $n=p^{k}, k \in \mathbb{N}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.
\diamond So almost all $\chi \downarrow_{P_{n}}$ contain the trivial $\mathbb{1}_{P_{n}}$ as a constituent.
\diamond Corollary: determined $\operatorname{Irr}(\mathcal{H})$ for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_{n}} \uparrow^{S_{n}}$.
$\left[\mathcal{H}=\mathcal{H}\left(S_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)=e \mathbb{C} S_{n} e, e=\frac{1}{\left|P_{n}\right|} \sum_{h \in P_{n}} h\right]$
\diamond Corollary: determined $\operatorname{Irr}(\mathcal{H})$ for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_{n}} \uparrow^{S_{n}}$.
$\left[\mathcal{H}=\mathcal{H}\left(S_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)=e \mathbb{C} S_{n} e, e=\frac{1}{\left|P_{n}\right|} \sum_{h \in P_{n}} h\right]$

- Question: is there a combinatorial description of the multiplicity map $f:\{\lambda: \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda)=\left\langle\chi^{\lambda} \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle$?
\diamond Corollary: determined $\operatorname{Irr}(\mathcal{H})$ for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_{n}} \uparrow^{S_{n}}$.
$\left[\mathcal{H}=\mathcal{H}\left(S_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)=e \mathbb{C} S_{n} e, e=\frac{1}{\left|P_{n}\right|} \sum_{h \in P_{n}} h\right]$
- Question: is there a combinatorial description of the multiplicity map $f:\{\lambda: \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda)=\left\langle\chi^{\lambda} \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle$?

Theorem (L.)

Determined precisely which $\chi \in \operatorname{Irr}\left(S_{n}\right)$ satisfy $\left\langle\chi \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle=1$, and hence determined the linear characters of \mathcal{H}, for p odd.
\diamond Corollary: determined $\operatorname{Irr}(\mathcal{H})$ for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_{n}} \uparrow^{S_{n}}$.
$\left[\mathcal{H}=\mathcal{H}\left(S_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)=e \mathbb{C} S_{n} e, e=\frac{1}{\left|P_{n}\right|} \sum_{h \in P_{n}} h\right]$

- Question: is there a combinatorial description of the multiplicity map $f:\{\lambda: \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda)=\left\langle\chi^{\lambda} \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle$?

Theorem (L.)

Determined precisely which $\chi \in \operatorname{Irr}\left(S_{n}\right)$ satisfy $\left\langle\chi \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle=1$, and hence determined the linear characters of \mathcal{H}, for p odd.
\diamond Giannelli, L.: analogous result for alternating groups A_{n} and their associated Hecke algebras $\mathcal{H}\left(A_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)$.
\diamond Corollary: determined $\operatorname{Irr}(\mathcal{H})$ for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_{n}} \uparrow^{S_{n}}$.
$\left[\mathcal{H}=\mathcal{H}\left(S_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)=e \mathbb{C} S_{n} e, e=\frac{1}{\left|P_{n}\right|} \sum_{h \in P_{n}} h\right]$

- Question: is there a combinatorial description of the multiplicity map $f:\{\lambda: \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda)=\left\langle\chi^{\lambda} \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle$?

Theorem (L.)

Determined precisely which $\chi \in \operatorname{Irr}\left(S_{n}\right)$ satisfy $\left\langle\chi \downarrow_{P_{n}}, \mathbb{1}_{P_{n}}\right\rangle=1$, and hence determined the linear characters of \mathcal{H}, for p odd.
\diamond Giannelli, L.: analogous result for alternating groups A_{n} and their associated Hecke algebras $\mathcal{H}\left(A_{n}, P_{n}, \mathbb{1}_{P_{n}}\right)$.

- $p=2$ much more chaotic:
e.g. $p=2, \mathbb{1}_{P_{n}} \nmid \operatorname{sign} \downarrow_{P_{n}} \quad$ vs. $\quad p$ odd, $\mathbb{1}_{P_{n}} \mid \chi \downarrow_{P_{n}} \forall \chi \in \operatorname{Irr}\left(S_{n}\right)$ if $n \neq p^{k}$.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.
- ϕ, ψ are N-conjugate $\Rightarrow \phi \uparrow^{N}=\psi \uparrow^{N} \Rightarrow \phi \uparrow^{G}=\psi \uparrow^{G}$.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.
- ϕ, ψ are N-conjugate $\Rightarrow \phi \uparrow^{N}=\psi \uparrow^{N} \Rightarrow \phi \uparrow^{G}=\psi \uparrow^{G} \ldots$ Converse?

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.
- ϕ, ψ are N-conjugate $\Rightarrow \phi \uparrow^{N}=\psi \uparrow^{N} \Rightarrow \phi \uparrow^{G}=\psi \uparrow^{G} \ldots$ Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$. Let $\phi, \psi \in \operatorname{Lin}(P)$. If $\phi \uparrow^{G}=\psi \uparrow^{G}$, then ϕ and ψ are N-conjugate.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.
- ϕ, ψ are N-conjugate $\Rightarrow \phi \uparrow^{N}=\psi \uparrow^{N} \Rightarrow \phi \uparrow^{G}=\psi \uparrow^{G} \ldots$ Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$. Let $\phi, \psi \in \operatorname{Lin}(P)$. If $\phi \uparrow^{G}=\psi \uparrow^{G}$, then ϕ and ψ are N-conjugate.
\diamond Converse not true for general G.

Aim

Given $\phi \in \operatorname{Lin}\left(P_{n}\right)$, find the irreducible constituents of $\phi \uparrow^{S_{n}}$.
\diamond Question: for $\phi, \psi \in \operatorname{Lin}\left(P_{n}\right)$, when does $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$?

- G group, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$ acts on $\operatorname{Lin}(P)$ by conjugation.
- ϕ, ψ are N-conjugate $\Rightarrow \phi \uparrow^{N}=\psi \uparrow^{N} \Rightarrow \phi \uparrow^{G}=\psi \uparrow^{G}$. . Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in \operatorname{Syl}_{p}(G), N=N_{G}(P)$. Let $\phi, \psi \in \operatorname{Lin}(P)$. If $\phi \uparrow^{G}=\psi \uparrow^{G}$, then ϕ and ψ are N-conjugate.
\diamond Converse not true for general G.

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}$, p prime. Let $P \in \operatorname{SyI}_{p}\left(S_{n}\right), N=N_{S_{n}}(P)$. Let $\phi, \psi \in \operatorname{Lin}(P)$. If $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$, then ϕ and ψ are N-conjugate.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{lrr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
\diamond Know $\Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
\diamond Know $\Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.
\diamond Proposition: p odd, $\Omega_{n}:=\bigcap_{\phi \in \operatorname{Lin}\left(P_{n}\right)} \Omega(\phi)$. Then $\lim _{n \rightarrow \infty} \frac{\left|\Omega_{n}\right|}{\left|\operatorname{lrr}\left(S_{n}\right)\right|}=1$.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
\diamond Know $\Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.
\diamond Proposition: p odd, $\Omega_{n}:=\bigcap_{\phi \in \operatorname{Lin}\left(P_{n}\right)} \Omega(\phi)$. Then $\lim _{n \rightarrow \infty} \frac{\left|\Omega_{n}\right|}{\left|\operatorname{lrr}\left(S_{n}\right)\right|}=1$.

- Let $\mathcal{B}_{n}(t)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right): \lambda_{1}, I(\lambda) \leq t\right\}$.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
$\diamond \operatorname{Know} \Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.
\diamond Proposition: p odd, $\Omega_{n}:=\bigcap_{\phi \in \operatorname{Lin}\left(P_{n}\right)} \Omega(\phi)$. Then $\lim _{n \rightarrow \infty} \frac{\left|\Omega_{n}\right|}{\left|\operatorname{lr}\left(S_{n}\right)\right|}=1$.

- Let $\mathcal{B}_{n}(t)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right): \lambda_{1}, I(\lambda) \leq t\right\}$.

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}, p$ odd ≥ 5 and $\phi \in \operatorname{Lin}\left(P_{n}\right)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi)=\max \left\{t: \mathcal{B}_{n}(t) \subseteq \Omega(\phi)\right\} \quad$ and $\quad M(\phi)=\min \left\{t: \Omega(\phi) \subseteq \mathcal{B}_{n}(t)\right\}$.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
$\diamond \operatorname{Know} \Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.
\diamond Proposition: p odd, $\Omega_{n}:=\bigcap_{\phi \in \operatorname{Lin}\left(P_{n}\right)} \Omega(\phi)$. Then $\lim _{n \rightarrow \infty} \frac{\left|\Omega_{n}\right|}{\left|\operatorname{lr}\left(S_{n}\right)\right|}=1$.

- Let $\mathcal{B}_{n}(t)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right): \lambda_{1}, I(\lambda) \leq t\right\}$.

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}, p$ odd ≥ 5 and $\phi \in \operatorname{Lin}\left(P_{n}\right)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi)=\max \left\{t: \mathcal{B}_{n}(t) \subseteq \Omega(\phi)\right\} \quad$ and $\quad M(\phi)=\min \left\{t: \Omega(\phi) \subseteq \mathcal{B}_{n}(t)\right\}$.

- Clearly $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}} \Longrightarrow \Omega(\phi)=\Omega(\psi)$, and \nLeftarrow in general.

Aim

To determine $\Omega(\phi):=\left\{\chi \in \operatorname{Irr}\left(S_{n}\right): \chi \mid \phi \uparrow^{S_{n}}\right\}$, for every n, p and $\phi \in \operatorname{Lin}\left(P_{n}\right)$.
\diamond Know $\Omega(\mathbb{1}) \forall n$, odd p : almost all of $\operatorname{Irr}\left(S_{n}\right)$.
\diamond Proposition: p odd, $\Omega_{n}:=\bigcap_{\phi \in \operatorname{Lin}\left(P_{n}\right)} \Omega(\phi)$. Then $\lim _{n \rightarrow \infty} \frac{\left|\Omega_{n}\right|}{\left|\operatorname{lr}\left(S_{n}\right)\right|}=1$.

- Let $\mathcal{B}_{n}(t)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(S_{n}\right): \lambda_{1}, I(\lambda) \leq t\right\}$.

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}, p$ odd ≥ 5 and $\phi \in \operatorname{Lin}\left(P_{n}\right)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi)=\max \left\{t: \mathcal{B}_{n}(t) \subseteq \Omega(\phi)\right\} \quad$ and $\quad M(\phi)=\min \left\{t: \Omega(\phi) \subseteq \mathcal{B}_{n}(t)\right\}$.

- Clearly $\phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}} \Longrightarrow \Omega(\phi)=\Omega(\psi)$, and \nLeftarrow in general. . . but!

Proposition

When $n=p^{k}, \quad \Omega(\phi)=\Omega(\psi) \Longrightarrow \phi \uparrow^{S_{n}}=\psi \uparrow^{S_{n}}$.

