Linear characters of Sylow subgroups of the symmetric group

Stacey Law

University of Cambridge

Representations in Lie Theory and Interactions, CIRM

5 November 2018

- G finite group, $Irr(G) = \{irreducible characters of G\}$
- p prime, $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) : p \nmid \chi(1)\}$

- G finite group, $Irr(G) = \{irreducible characters of G\}$
- p prime, $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) : p \nmid \chi(1)\}$

Let $P \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

- G finite group, $Irr(G) = \{irreducible characters of G\}$
- p prime, $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) : p \nmid \chi(1)\}$

. . .

Let $P \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

- ◇ Isaacs (1973): |G| odd, all p;
- ♦ Olsson (1976): $G = S_n$, $GL_n(q)$, all p;

- G finite group, $Irr(G) = \{irreducible characters of G\}$
- p prime, $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) : p \nmid \chi(1)\}$

. . .

Let $P \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

◇ Isaacs (1973): |G| odd, all p;

◇ Olsson (1976):
$$G = S_n$$
, $GL_n(q)$, all p ;

- Isaacs–Malle–Navarro (2007): reduction to simple groups;
- ♦ Malle–Späth (2016): all G, p = 2.

The McKay Conjecture

Conjecture (McKay, 1972)

Let $P \in Syl_p(G)$. Then $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|$.

CIRM, November 2018

> < 臣 > < 臣 >

Let $P \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

♦ Natural bijections $Irr_{p'}(G) \longleftrightarrow Irr_{p'}(N_G(P))$?

Let
$$P \in \operatorname{Syl}_p(G)$$
. Then $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|$.

- ♦ Natural bijections $Irr_{p'}(G) \longleftrightarrow Irr_{p'}(N_G(P))$?
- ♦ Can be found when e.g. $P = N_G(P)$.

- Let $P \in Syl_p(G)$. Then $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|$.
 - ♦ Natural bijections $Irr_{p'}(G) \longleftrightarrow Irr_{p'}(N_G(P))$?
 - Can be found when e.g. $P = N_G(P)$.

Theorem (Navarro–Tiep–Vallejo, 2014)

Let p be odd, $P \in Syl_p(G)$. Suppose $P = N_G(P)$. There is a bijection

$$\operatorname{Irr}_{p'}(G) \longrightarrow \operatorname{Irr}_{p'}(P), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irred. constituent of $\chi \downarrow_P$ of degree coprime to p.

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Let $P \in Syl_p(G)$. Then $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|$.
 - ♦ Natural bijections $Irr_{p'}(G) \longleftrightarrow Irr_{p'}(N_G(P))$?
 - Can be found when e.g. $P = N_G(P)$.

Theorem (Navarro–Tiep–Vallejo, 2014)

Let p be odd, $P \in Syl_p(G)$. Suppose $P = N_G(P)$. There is a bijection

$$\operatorname{Irr}_{\rho'}(G) \longrightarrow \operatorname{Irr}_{\rho'}(P), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irred. constituent of χ_{\downarrow_P} of degree coprime to p.

• Naturality of bijection: restriction of characters.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

- Let $P \in Syl_p(G)$. Then $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|$.
 - ♦ Natural bijections $Irr_{p'}(G) \longleftrightarrow Irr_{p'}(N_G(P))$?
 - Can be found when e.g. $P = N_G(P)$.

Theorem (Navarro–Tiep–Vallejo, 2014)

Let p be odd, $P \in Syl_p(G)$. Suppose $P = N_G(P)$. There is a bijection

$${\sf Irr}_{
ho'}(G) \longrightarrow {\sf Lin}({\sf P}), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irred. constituent of $\chi \downarrow_P$ of degree coprime to p.

- Naturality of bijection: restriction of characters.
- $Irr_{p'}(P) = Lin(P) := \{linear characters of P\}$

- Navarro-Tiep-Vallejo false for p = 2, e.g. $G = S_5$.
- Symmetric groups: p = 2, $P_n \in Syl_2(S_n)$. Then $P_n = N_{S_n}(P_n)$.

- Navarro–Tiep–Vallejo false for p = 2, e.g. $G = S_5$.
- Symmetric groups: p = 2, $P_n \in Syl_2(S_n)$. Then $P_n = N_{S_n}(P_n)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_n \in Syl_2(S_n)$. When $n = 2^k$, there is a bijection

$$\operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(P_{2^k}) = \operatorname{Lin}(P_{2^k}), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irreducible constituent of $\chi \downarrow_{P_{\gamma_k}}$ of odd degree.

- Navarro-Tiep-Vallejo false for p = 2, e.g. $G = S_5$.
- Symmetric groups: p = 2, $P_n \in Syl_2(S_n)$. Then $P_n = N_{S_n}(P_n)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_n \in Syl_2(S_n)$. When $n = 2^k$, there is a bijection

$$\operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(P_{2^k}) = \operatorname{Lin}(P_{2^k}), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irreducible constituent of $\chi \downarrow_{P_{2^k}}$ of odd degree. Moreover, for all $n \in \mathbb{N}$ and all $\chi \in \operatorname{Irr}(S_n)$, $\chi \downarrow_{P_n}$ has a linear constituent.

- Navarro–Tiep–Vallejo false for p = 2, e.g. $G = S_5$.
- Symmetric groups: p = 2, $P_n \in Syl_2(S_n)$. Then $P_n = N_{S_n}(P_n)$.

Theorem (Giannelli, 2017)

For $n \in \mathbb{N}$, let $P_n \in Syl_2(S_n)$. When $n = 2^k$, there is a bijection

$$\operatorname{Irr}_{2'}(S_{2^k}) \longrightarrow \operatorname{Irr}_{2'}(P_{2^k}) = \operatorname{Lin}(P_{2^k}), \qquad \chi \mapsto \chi^*$$

where χ^* is the unique irreducible constituent of $\chi \downarrow_{P_{2^k}}$ of odd degree. Moreover, for all $n \in \mathbb{N}$ and all $\chi \in \operatorname{Irr}(S_n)$, $\chi \downarrow_{P_2}$ has a linear constituent.

• If $\chi(1) > 1$, then $\chi \downarrow_{P_n}$ has a *unique* linear constituent if and only if $n = 2^k$ and $\chi(1)$ is odd.

♦ Little known about restrictions to $P \in Syl_p(G)$ in general.

3

- ♦ Little known about restrictions to $P \in Syl_p(G)$ in general.
- If $\chi \in Irr_{p'}(G)$, then $\chi \downarrow_{P}$ has at least one linear constituent.

- ♦ Little known about restrictions to $P \in Syl_p(G)$ in general.
- If $\chi \in Irr_{p'}(G)$, then $\chi \downarrow_{p}$ has at least one linear constituent.
- *Every* irreducible character of S_n when restricted to a Sylow 2-subgroup has a linear constituent.

- ♦ Little known about restrictions to $P \in Syl_p(G)$ in general.
- If $\chi \in Irr_{p'}(G)$, then $\chi \downarrow_{p}$ has at least one linear constituent.
- *Every* irreducible character of S_n when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli–Navarro, 2018)

Let $n \in \mathbb{N}$, p any prime, $P_n \in \text{Syl}_p(S_n)$. Let $\chi \in \text{Irr}(S_n)$. Suppose $p|\chi(1)$. Then $\chi \downarrow_{P_n}$ contains at least p different linear constituents.

- ♦ Little known about restrictions to $P \in Syl_p(G)$ in general.
- If $\chi \in Irr_{p'}(G)$, then $\chi \downarrow_{p}$ has at least one linear constituent.
- *Every* irreducible character of S_n when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli–Navarro, 2018)

Let $n \in \mathbb{N}$, p any prime, $P_n \in \text{Syl}_p(S_n)$. Let $\chi \in \text{Irr}(S_n)$. Suppose $p|\chi(1)$. Then $\chi \downarrow_{P_n}$ contains at least p different linear constituents.

 So for <u>all</u> n, p and <u>all</u> x ∈ Irr(S_n), x↓_{P_n} has a linear constituent. (Not true for general G.)

- ♦ Little known about restrictions to $P \in Syl_p(G)$ in general.
- If $\chi \in Irr_{p'}(G)$, then $\chi \downarrow_{p}$ has at least one linear constituent.
- *Every* irreducible character of S_n when restricted to a Sylow 2-subgroup has a linear constituent.

Theorem (Giannelli-Navarro, 2018)

Let $n \in \mathbb{N}$, p any prime, $P_n \in \text{Syl}_p(S_n)$. Let $\chi \in \text{Irr}(S_n)$. Suppose $p|\chi(1)$. Then $\chi \downarrow_{P_n}$ contains at least p different linear constituents.

• So for all *n*, *p* and all $\chi \in Irr(S_n)$, $\chi \downarrow_{P_n}$ has a linear constituent.

(Not true for general G.)

Question

Given $\chi \in Irr(S_n)$, what are the linear constituents of $\chi \downarrow_{P_n}$?

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

♦ First step: for which χ does the trivial $\mathbb{1}_{P_n} | \chi \downarrow_{P_n}$?

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

- **First step:** for which χ does the trivial $\mathbb{1}_{P_n} | \chi |_{P_n}$?
- Partition of *n*, e.g. $\lambda = (4, 3, 3, 1, 1, 1, 1) = (4, 3^2, 1^4) \vdash 14$.

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

- **First step:** for which χ does the trivial $\mathbb{1}_{P_n} \mid \chi \downarrow_{P_n}$?
- Partition of *n*, e.g. $\lambda = (4, 3, 3, 1, 1, 1, 1) = (4, 3^2, 1^4) \vdash 14$.
- $\operatorname{Irr}(S_n) \longleftrightarrow \{\lambda : \lambda \vdash n\}, \quad \chi^{\lambda} \vdash \lambda.$

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

- ♦ First step: for which χ does the trivial $\mathbb{1}_{P_n} | \chi |_{P_n}$?
- Partition of *n*, e.g. $\lambda = (4, 3, 3, 1, 1, 1, 1) = (4, 3^2, 1^4) \vdash 14$.

•
$$\mathsf{Irr}(S_n) \longleftrightarrow \{\lambda : \lambda \vdash n\}, \quad \chi^{\lambda} \mapsto \lambda.$$

Theorem (Giannelli, L.)

Let $n \in \mathbb{N}_{>10}$, p odd. Let $\chi^{\lambda} \in \operatorname{Irr}(S_n)$. Then $\mathbb{1}_{P_n} \nmid \chi^{\lambda} \downarrow_{P_n}$ if and only if $n = p^k$, $k \in \mathbb{N}$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

To determine all of the linear constituents of $\chi \downarrow_{P_n}$, for all $\chi \in Irr(S_n)$.

- **First step:** for which χ does the trivial $\mathbb{1}_{P_n} | \chi |_{P_n}$?
- Partition of *n*, e.g. $\lambda = (4, 3, 3, 1, 1, 1, 1) = (4, 3^2, 1^4) \vdash 14$.

•
$$\mathsf{Irr}(S_n) \longleftrightarrow \{\lambda : \lambda \vdash n\}, \quad \chi^{\lambda} \mapsto \lambda.$$

Theorem (Giannelli, L.)

Let $n \in \mathbb{N}_{>10}$, p odd. Let $\chi^{\lambda} \in \operatorname{Irr}(S_n)$. Then $\mathbb{1}_{P_n} \nmid \chi^{\lambda} \downarrow_{P_n}$ if and only if $n = p^k$, $k \in \mathbb{N}$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}$.

♦ So almost all $\chi \downarrow_{P_n}$ contain the trivial $\mathbb{1}_{P_n}$ as a constituent.

- ♦ **Corollary**: determined Irr(\mathcal{H}) for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_n} \uparrow^{S_n}$.
 - $[\mathcal{H} = \mathcal{H}(S_n, P_n, \mathbb{1}_{P_n}) = e\mathbb{C}S_n e, \ e = \frac{1}{|P_n|}\sum_{h \in P_n} h]$

- ♦ **Corollary:** determined Irr(\mathcal{H}) for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_n} \uparrow^{S_n}$. $[\mathcal{H} = \mathcal{H}(S_n, P_n, \mathbb{1}_{P_n}) = e \mathbb{C} S_n e, \ e = \frac{1}{|P_n|} \sum_{h \in P_n} h]$
- Question: is there a combinatorial description of the multiplicity map $f: \{\lambda : \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda) = \langle \chi^{\lambda} \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle$?

- ♦ **Corollary:** determined Irr(\mathcal{H}) for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_n} \uparrow^{S_n}$. $[\mathcal{H} = \mathcal{H}(S_n, P_n, \mathbb{1}_{P_n}) = e \mathbb{C} S_n e, \ e = \frac{1}{|P_n|} \sum_{h \in P_n} h]$
- Question: is there a combinatorial description of the multiplicity map $f: \{\lambda : \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda) = \langle \chi^{\lambda} \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle$?

Theorem (L.)

Determined precisely which $\chi \in Irr(S_n)$ satisfy $\langle \chi \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle = 1$, and hence determined the linear characters of \mathcal{H} , for p odd.

- ♦ **Corollary:** determined Irr(\mathcal{H}) for Hecke algebra \mathcal{H} associated with permutation character $\mathbb{1}_{P_n} \uparrow^{S_n}$. $[\mathcal{H} = \mathcal{H}(S_n, P_n, \mathbb{1}_{P_n}) = e \mathbb{C} S_n e, \ e = \frac{1}{|P_n|} \sum_{h \in P_n} h]$
- Question: is there a combinatorial description of the multiplicity map $f: \{\lambda : \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda) = \langle \chi^{\lambda} \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle$?

Theorem (L.)

Determined precisely which $\chi \in Irr(S_n)$ satisfy $\langle \chi \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle = 1$, and hence determined the linear characters of \mathcal{H} , for p odd.

♦ Giannelli, L.: analogous result for alternating groups A_n and their associated Hecke algebras $\mathcal{H}(A_n, P_n, \mathbb{1}_{P_n})$.

ヘロト 人間 とくほ とくほ とうほう

- ◇ Corollary: determined Irr(H) for Hecke algebra H associated with permutation character $\mathbb{1}_{P_n} \uparrow^{S_n}$. $[\mathcal{H} = \mathcal{H}(S_n, P_n, \mathbb{1}_{P_n}) = e \mathbb{C} S_n e, \ e = \frac{1}{|P_n|} \sum_{h \in P_n} h]$
- Question: is there a combinatorial description of the multiplicity map $f: \{\lambda : \lambda \vdash n\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad f(\lambda) = \langle \chi^{\lambda} \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle$?

Theorem (L.)

Determined precisely which $\chi \in Irr(S_n)$ satisfy $\langle \chi \downarrow_{P_n}, \mathbb{1}_{P_n} \rangle = 1$, and hence determined the linear characters of \mathcal{H} , for p odd.

- ♦ Giannelli, L.: analogous result for alternating groups A_n and their associated Hecke algebras $\mathcal{H}(A_n, P_n, \mathbb{1}_{P_n})$.
- p = 2 much more chaotic:

e.g. p = 2, $\mathbb{1}_{P_n} \nmid sign \downarrow_{P_n}$ vs. p odd, $\mathbb{1}_{P_n} \mid \chi \downarrow_{P_n} \forall \chi \in Irr(S_n)$ if $n \neq p^k$.

Given $\phi \in Lin(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

♦ Question: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?

> < 프 > < 프 >

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ **Question**: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi^{\uparrow S_n} = \psi^{\uparrow S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ Question: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.
- ϕ, ψ are *N*-conjugate $\Rightarrow \phi \uparrow^N = \psi \uparrow^N \Rightarrow \phi \uparrow^G = \psi \uparrow^G$.

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ Question: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.
- ϕ, ψ are *N*-conjugate $\Rightarrow \phi \uparrow^{N} = \psi \uparrow^{N} \Rightarrow \phi \uparrow^{G} = \psi \uparrow^{G}$. . Converse?

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ **Question**: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.

• ϕ, ψ are *N*-conjugate $\Rightarrow \phi \uparrow^N = \psi \uparrow^N \Rightarrow \phi \uparrow^G = \psi \uparrow^G$. . Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in Syl_p(G)$, $N = N_G(P)$. Let $\phi, \psi \in Lin(P)$. If $\phi \uparrow^G = \psi \uparrow^G$, then ϕ and ψ are N-conjugate.

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ **Question**: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.

• ϕ, ψ are *N*-conjugate $\Rightarrow \phi \uparrow^N = \psi \uparrow^N \Rightarrow \phi \uparrow^G = \psi \uparrow^G$. . Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in Syl_p(G)$, $N = N_G(P)$. Let $\phi, \psi \in Lin(P)$. If $\phi \uparrow^G = \psi \uparrow^G$, then ϕ and ψ are N-conjugate.

 \diamond Converse not true for general G.

Given $\phi \in \text{Lin}(P_n)$, find the irreducible constituents of $\phi \uparrow^{S_n}$.

- ♦ Question: for $\phi, \psi \in \text{Lin}(P_n)$, when does $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$?
- G group, $P \in Syl_p(G)$, $N = N_G(P)$ acts on Lin(P) by conjugation.

• ϕ, ψ are *N*-conjugate $\Rightarrow \phi \uparrow^N = \psi \uparrow^N \Rightarrow \phi \uparrow^G = \psi \uparrow^G$. . Converse?

Theorem (Navarro, 2003)

Let p be prime, G be p-solvable, $P \in Syl_p(G)$, $N = N_G(P)$. Let $\phi, \psi \in Lin(P)$. If $\phi \uparrow^G = \psi \uparrow^G$, then ϕ and ψ are N-conjugate.

$\diamond~$ Converse not true for general G.

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}$, p prime. Let $P \in \text{Syl}_p(S_n)$, $N = N_{S_n}(P)$. Let $\phi, \psi \in \text{Lin}(P)$. If $\phi \uparrow^{S_n} = \psi \uparrow^{S_n}$, then ϕ and ψ are N-conjugate.

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

♦ Know $\Omega(1)$ ∀ *n*, odd *p*: almost all of Irr(*S_n*).

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

- ♦ Know $\Omega(1)$ ∀ *n*, odd *p*: almost all of Irr(*S_n*).
- ♦ **Proposition**: *p* odd, $Ω_n := \bigcap_{\phi \in Lin(P_n)} Ω(\phi)$. Then $\lim_{n\to\infty} \frac{|Ω_n|}{|Irr(S_n)|} = 1$.

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

- ♦ Know Ω(1) \forall *n*, odd *p*: almost all of Irr(*S_n*).
- ♦ **Proposition**: *p* odd, $Ω_n := \bigcap_{\phi \in Lin(P_n)} Ω(\phi)$. Then $\lim_{n\to\infty} \frac{|Ω_n|}{|Irr(S_n)|} = 1$.
- Let $\mathcal{B}_n(t) = \{\chi^\lambda \in \operatorname{Irr}(S_n) : \lambda_1, l(\lambda) \leq t\}.$

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

- ♦ Know $\Omega(1)$ ∀ *n*, odd *p*: almost all of Irr(*S_n*).
- ♦ **Proposition:** *p* odd, $Ω_n := \bigcap_{\phi \in Lin(P_n)} Ω(\phi)$. Then $\lim_{n \to ∞} \frac{|Ω_n|}{|Irr(S_n)|} = 1$.
- Let $\mathcal{B}_n(t) = \{\chi^\lambda \in \operatorname{Irr}(S_n) : \lambda_1, l(\lambda) \leq t\}.$

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}$, $p \text{ odd} \ge 5$ and $\phi \in \text{Lin}(P_n)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi) = \max\{t : B_n(t) \subseteq \Omega(\phi)\}$ and $M(\phi) = \min\{t : \Omega(\phi) \subseteq B_n(t)\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

- ♦ Know $\Omega(1)$ ∀ *n*, odd *p*: almost all of Irr(*S_n*).
- ♦ **Proposition**: *p* odd, $Ω_n := \bigcap_{\phi \in Lin(P_n)} Ω(\phi)$. Then $\lim_{n\to\infty} \frac{|Ω_n|}{|Irr(S_n)|} = 1$.
- Let $\mathcal{B}_n(t) = \{\chi^\lambda \in \operatorname{Irr}(S_n) : \lambda_1, l(\lambda) \leq t\}.$

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}$, $p \text{ odd} \ge 5$ and $\phi \in \text{Lin}(P_n)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi) = \max\{t : B_n(t) \subseteq \Omega(\phi)\}$ and $M(\phi) = \min\{t : \Omega(\phi) \subseteq B_n(t)\}$.

• Clearly
$$\phi^{\uparrow S_n} = \psi^{\uparrow S_n} \Longrightarrow \Omega(\phi) = \Omega(\psi)$$
, and $\not\Leftarrow$ in general.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

To determine $\Omega(\phi) := \{\chi \in Irr(S_n) : \chi \mid \phi \uparrow^{S_n}\}$, for every n, p and $\phi \in Lin(P_n)$.

- ♦ Know $\Omega(1)$ ∀ *n*, odd *p*: almost all of Irr(*S_n*).
- ♦ **Proposition**: *p* odd, $Ω_n := \bigcap_{\phi \in Lin(P_n)} Ω(\phi)$. Then $\lim_{n \to ∞} \frac{|Ω_n|}{|Irr(S_n)|} = 1$.
- Let $\mathcal{B}_n(t) = \{\chi^\lambda \in \operatorname{Irr}(S_n) : \lambda_1, l(\lambda) \leq t\}.$

Theorem (Giannelli, L., Long)

Let $n \in \mathbb{N}$, $p \text{ odd} \ge 5$ and $\phi \in \text{Lin}(P_n)$. We determine $m(\phi)$ and $M(\phi)$, where $m(\phi) = \max\{t : \mathcal{B}_n(t) \subseteq \Omega(\phi)\}$ and $M(\phi) = \min\{t : \Omega(\phi) \subseteq \mathcal{B}_n(t)\}.$

• Clearly
$$\phi \uparrow^{S_n} = \psi \uparrow^{S_n} \Longrightarrow \Omega(\phi) = \Omega(\psi)$$
, and $\not\models$ in general. . . but!

Proposition

When
$$n = p^k$$
, $\Omega(\phi) = \Omega(\psi) \Longrightarrow \phi \uparrow^{S_n} = \psi \uparrow^{S_n}$.