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Z-modular data

Definition
A N-modular datum (resp. Z-modular datum) is a quadruple (I,S,T , i0)
where

I is a finite set,
S ∈ MI(C),
T ∈ MI(C) is a diagonal matrix,
i0 is a distinguished element in I, called special,

such that
(M1) for all i ∈ I, Si0,i 6= 0,
(M2) S is symmetric and unitary,
(M3) S4 = 1, [S2,T ] = 1 and (ST )3 = 1,
(M4) for all i , j , k ∈ I,

Nk
i,j :=

∑
l∈I

Sl,iSl,jSl,k
Sl,i0

∈ N (resp. Z).
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Fusion algebra

The integers (Nk
i,j)i,j,k∈I are the structure constants of a free associative

Z-algebra of rank |I|, called fusion algebra associated with the modular
data:

A =
⊕
i∈I

ZXi Xi · Xj =
∑
k∈I

Nk
i,jXk .

Question
How to construct modular data?

A categorical answer
Using monoidal categories with extra structures.
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A first example: modular categories

Let C be an C-linear abelian category. We suppose moreover that C is

monoidal: ⊗ the tensor product, 1 unit object and ⊗ bilinear on
morphism,
rigid: existence of left duals X∗ and right duals ∗X ,
artinian, with a finite number of simple objects, End(1) = C,
semisimple,
pivotal: there exists a natural isomorphism aX : X → X∗∗ such that
aX⊗Y = aX ⊗ aY ,
braided: there exists a binatural isomorphism
cX ,Y : X ⊗ Y → Y ⊗ X satisfying some axioms (hexagons).

pivotal structure
 two quantum traces tr± and two quantum dimensions dim±.

braiding + pivotal structure
 twist θX : X → X such that θX⊗Y = θX ⊗ θY ◦ cY ,X ◦ cX ,Y .
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Symmetric center

Definition
The symmetric center of C is the full subcategory of C with objects X
such that

∀Y , cY ,X ◦ cX ,Y = id .

It is a symmetric tensor category.

Definition
C is non-degenerate if the symmetric center is generated by 1.
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Non-degenerate categories

Theorem (Turaev)
Suppose that C is non-degenerate.

I = Irr(C),
SX ,Y = λ tr+

X⊗Y (cY ,X ◦ cX ,Y ),
TX ,Y = δX ,Y θX ,
i0 = 1

is a N-modular datum.

The associated fusion algebra is Gr(C), the Grothendieck ring of C: NZ
X ,Y

is the multiplicity of Z in X ⊗ Y .

Question
What is a categorical version of Z-modular data?
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Slightly degenerate categories

Suppose that the symmetric center of C is equal to sVect, the braided
category of finite dimensional superspaces: C is slightly degenerate.

Denote by ε the simple object in C corresponding to the one-dimensional
purely odd superspace.

Hypothesis
The positive and negative quantum dimensions of ε are equal to −1
(=⇒ θε = 1).

The matrices S and T defined before are

S =
(

S −S
−S S

)
T =

(
T 0
0 T

)
.
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Z-modular data from slightly degenerate categories

Tensorization by ε induces an action of Z/2Z on Irr(C) without fixed
points

 choose J a system of representatives such that 1 ∈ J .

Theorem (L.)
Suppose that C is slightly degenerate and that ε is of dimension −1.

I = J,
SX ,Y = γ tr+

X⊗Y (cY ,X ◦ cX ,Y ),
TX ,Y = δX ,Y θX ,
i0 = 1

is a Z-modular datum.
The fusion algebra is Gr(C)/([ε] + [1]), the structure constants are

sNZ
X ,Y = NZ

X ,Y − Nε⊗Z
X ,Y .
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Some motivations: finite groups of Lie type

q = pα with p prime,

G a reductive group over F = Fp and F : G → G
be a Frobenius endomorphism. Suppose that the Fq-structure is split.

Deligne-Lusztig: definition of unipotent characters of GF ,
Lusztig: classification of unipotent characters, partition into families.

A N-modular datum (F ,S(F),T (F), ρsp) is associated with each family
F of unipotent characters of GF .
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A hope? Spetses

Crucial observation (Lusztig,Broué-Malle-Michel,1993)
Nearly nothing does depend on q, and we should be able to reconstruct
everything just using the Weyl group W of G .

Hope (Spetses)
Do the same thing with W a Coxeter group? a complex reflection group?

Lusztig: Coxeter groups of type H3, H4 (except for one family) and
dihedral groups,
Malle: G(d , 1, n) and G(d , d , n),
Broué-Malle-Michel: some exceptional complex reflection groups.
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The group G(d , 1, n)

W = G(d , 1, n). There is an extension of Lusztig’s combinatorics of
symbols in type B describing unipotent characters of G(d , 1, n)

 families of unipotent characters, Fourier matrices, eigenvalues of
the Frobenius.

Theorem (Malle,Cuntz)
Let F be a family of unipotent characters of G(d , 1, n), S(F) its Fourier
matrix and T (F) the diagonal matrix of eigenvalues of the Frobenius.
There is fsp ∈ F such that (F ,S(F),T (F), fsp) is a Z-modular datum.

Question
Is there a categorification of these data?
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A family of G(d , 1, n(n + 1)/2)

n, d be an integers with d ≥ n + 1. There is a family F with dn−1( d
n+1
)

unipotent characters.

Theorem (Bonnafé-Rouquier)
If n = 1, a categorification of the Z-modular datum associated with F is
given by a quotient of the stable category of modules over the Drinfeld
double of the Taft algebra.

Now we generalize this result for any n, in the framework of slightly
degenerate categories.
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Drinfeld double of Uq(sln+1)≥0

Consider Dq the Drinfeld double of Uq(sln+1)≥0:

it is the Q(q)-algebra
generated by K±1i , L±1i ,Ei ,Fi with 1 ≤ i ≤ n with relations

KiKj = KjKi , KiK−1i = 1 = K−1i Ki ,

LiLj = LjLi , LiL−1i = 1 = L−1i Li ,

KiLj = LjKi ,

KiEj = q−δi,j−1+2δi,j−δi,j+1EjKi , KiFj = qδi,j−1−2δi,j +δi,j+1FjKi ,

LiEj = q−δi,j−1+2δi,j−δi,j+1EjLi , LiFj = qδi,j−1−2δi,j +δi,j+1FjLi ,

+ other relations (quantum Serre relations, ...)

zi = KiL−1i is central and Dq/(zi − 1)1≤i≤n ' Uq(sln+1).
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Representations of Dq

Φ ⊂ V the root system of type An,
∆ = {α1, . . . , αn} a set of simple roots,
〈·, ·〉 a symmetric bilinear form such that 〈α, α〉 = 2 for all α ∈ Φ.

Q =
⊕n

i=1 Zαi the root lattice
P = {λ ∈ V | ∀α ∈ Φ, 〈λ, α〉 ∈ Z} the weight lattice,
P+ = {λ ∈ V | ∀α ∈ Φ, 〈λ, α〉 ∈ N} the cone of dominant weights.

Cq the category of finite dimensional Dq-modules M such that

M =
⊕

(λ,µ)∈P×P

M(λ,µ),

where M(λ,µ) is the weight space of weight (λ, µ):

M(λ,µ) = {m ∈ M | ∀1 ≤ i ≤ n, Ki ·m = q〈λ,αi〉m, Li ·m = q〈µ,αi〉m}.
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Representations of Dq

Fact
For each M ∈ Cq, zi = KiL−1i acts by a power of q2.

Proposition
The category Cq is semisimple and there is a bijection

{(λ, µ) ∈ P × P | λ+ µ ∈ 2P+}
{
isomorphism classes of
simple objects in Cq

}

(λ, µ) L(λ, µ)

∼
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Extra structures on Cq

Similarly to the algebra Uq(sln+1), there is a Hopf algebra structure on Dq

 monoidal structure on Cq and left and right duality and many
pivotal structures

There also is a quasi-R-matrix in (a completion of) Dq ⊗Dq
 braiding on Cq.

Problem
There is an infinite numbers of simple objects in Cq...

Working with q a root of unity will truncate this category.
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A version of Dq at a root of unity

There are many versions of quantum groups at root of unity. Following
Lusztig, we define Dres

q as a certain sub-Z[q, q−1]-algebra of Dq.

In this algebra, we have some elements
[
Ki ; c
t

]
and

[
Li ; c
t

]
for c ∈ Z,

t ∈ N e.g.: [
Ki ; c
t

]
=

t∏
r=1

qc−r+1Ki − q−c+r−1K−1i
qr − q−r

Let ξ = exp
( iπ

d
)
and

Dξ = Dres
q ⊗Z[q,q−1] Cξ.

Note that
[
Ki ; 0
d

]
exists in Dξ but its definition above makes no sense in

Dξ.
The algebra Dξ is still a Hopf algebra and has a quasi-R-matrix.
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Representation theory of Dξ

Let Cξ be the category of finite dimensional Dξ-modules M such that

M =
⊕

(λ,µ)∈P×P

M(λ,µ),

where M(λ,µ) is the weight space of weight (λ, µ):

M(λ,µ) =
{
m ∈

∣∣∣ ∀1 ≤ i ≤ n, Ki ·m = ξ〈λ,αi〉m, Li ·m = ξ〈µ,αi〉m,[
Ki ; 0
d

]
·m =

[
〈λ, αi〉

d

]
ξ

m,
[
Li ; 0
d

]
m =

[
〈µ, αi〉

d

]
ξ

m
}
.

Remark
The category Cξ is not semisimple.
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Tilting modules

For each (λ, µ) ∈ P × P with λ+ µ ∈ 2P+, there is a Dres
q (sln+1) form

Lres(λ, µ) of L(λ, µ)

 W (λ, µ) = Lres(λ, µ)⊗Z[q,q−1] C, the Weyl module.

Definition
A module M in Cξ is a tilting module if both M and M∗ are filtered by
Weyl modules.

Theorem (Andersen)
Tensor product of tilting modules is a tilting module.
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Semisimplification

C a pivotal monoidal category (+ other technical assumptions)

 Css the semisimplification of C (kill negligible morphisms)

{simple objects in Css}
{

indecomposable objects in C
of non-zero quantum dimension

}
∼

Z(Tξ) the semisimplification of the full subcategory of Cξ consisting of
tilting modules filtered by Weyl modules of the form W (λ, µ) with µ ∈ Q.

Proposition
Isomorphism classes of simple objects in Z(Tξ) are in bijection with pairs
(λ, µ) ∈ P × P with λ+ µ ∈ 2C and µ ∈ Q where

C = {η ∈ P+ | 〈η, θ0〉 ≤ d − (n + 1)},

θ0 being the longest root of Φ.
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Relation with the modular data of G(d , 1, n(n + 1)/2)

Z(Tξ) has a lot of invertible objects which are in the symmetric center. If
I is such an object of quantum dimension 1, add an isomorphism between
X and X ⊗ I for any X . Denote by Z(Tξ) o S the category with these
additional isomorphisms.

Theorem (L.)
Z(Tξ) o S is a braided pivotal fusion category.
If n is even, this category is non-degenerate and has dn−1( d

n+1
)
simple

objects.
If n is odd, this category is slightly degenerate and has 2dn−1( d

n+1
)

simple objects.
In any cases, the Z-modular datum defined by Z(Tξ) o S coincide with
the modular datum associated with the family F of G

(
d , 1, n(n+1)

2

)
defined before.
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A conjecture of Cuntz

Corollary
If we replace Nh

f ,g in the definition of the fusion algebra AF by |Nh
f ,g|, we

obtain an associative algebra Aabs
F .

If n is odd, we have a commutative diagram

Gr(C)

Aabs
F ' Gr(C)/([1]− [ε]) Gr(C)/([1] + [ε]) ' AF .

with C = Z(Tξ) o S.
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Thank you for your attention!
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