Categorification of $\mathbb Z\text{-modular}$ data associated to complex reflection groups

Abel Lacabanne

IMAG - Université de Montpellier

Representation in Lie Theory and Interactions 8 november 2018

< ∃ >

Definition

A N-modular datum (resp. \mathbb{Z} -modular datum) is a quadruple (I, S, T, i_0) where

• I is a finite set,

Definition

- I is a finite set,
- $S \in M_{l}(\mathbb{C})$,

Definition

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_I(\mathbb{C})$ is a diagonal matrix,

Definition

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_l(\mathbb{C})$ is a diagonal matrix,
- i_0 is a distinguished element in I, called special,

Definition

A N-modular datum (resp. \mathbb{Z} -modular datum) is a quadruple (I, S, T, i_0) where

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_l(\mathbb{C})$ is a diagonal matrix,
- i_0 is a distinguished element in I, called special,

such that

(M1) for all $i \in I$, $S_{i_0,i} \neq 0$,

Definition

A N-modular datum (resp. \mathbb{Z} -modular datum) is a quadruple (I, S, T, i_0) where

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_l(\mathbb{C})$ is a diagonal matrix,
- i_0 is a distinguished element in I, called special,

such that

(M1) for all $i \in I$, $S_{i_0,i} \neq 0$,

(M2) S is symmetric and unitary,

Definition

A N-modular datum (resp. \mathbb{Z} -modular datum) is a quadruple (I, S, T, i_0) where

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_l(\mathbb{C})$ is a diagonal matrix,
- i_0 is a distinguished element in I, called special,

such that

(M1) for all $i \in I$, $S_{i_0,i} \neq 0$,

(M2) S is symmetric and unitary,

(M3)
$$S^4 = 1, [S^2, T] = 1$$
 and $(ST)^3 = 1$,

Definition

A N-modular datum (resp. \mathbb{Z} -modular datum) is a quadruple (I, S, T, i_0) where

- I is a finite set,
- $S \in M_I(\mathbb{C})$,
- $\mathcal{T}\in M_l(\mathbb{C})$ is a diagonal matrix,
- i_0 is a distinguished element in I, called special,

such that

(M1) for all $i \in I$, $S_{i_0,i} \neq 0$, (M2) *S* is symmetric and unitary, (M3) $S^4 = 1, [S^2, T] = 1$ and $(ST)^3 = 1$, (M4) for all $i, j, k \in I$,

$$N_{i,j}^k := \sum_{l \in I} rac{S_{l,i} S_{l,j} \overline{S_{l,k}}}{S_{l,i_0}} \in \mathbb{N} \ (ext{resp. } \mathbb{Z}).$$

The integers $(N_{i,j}^k)_{i,j,k\in I}$ are the structure constants of a free associative \mathbb{Z} -algebra of rank |I|, called fusion algebra associated with the modular data:

Image: A test in te

Fusion algebra

The integers $(N_{i,j}^k)_{i,j,k\in I}$ are the structure constants of a free associative \mathbb{Z} -algebra of rank |I|, called fusion algebra associated with the modular data:

$$A = \bigoplus_{i \in I} \mathbb{Z} X_i \qquad X_i \cdot X_j = \sum_{k \in I} N_{i,j}^k X_k.$$

Image: A test in te

Fusion algebra

The integers $(N_{i,j}^k)_{i,j,k\in I}$ are the structure constants of a free associative \mathbb{Z} -algebra of rank |I|, called fusion algebra associated with the modular data:

$$A = \bigoplus_{i \in I} \mathbb{Z} X_i \qquad X_i \cdot X_j = \sum_{k \in I} N_{i,j}^k X_k.$$

Question

How to construct modular data?

< 문 > < 문 > · ·

Fusion algebra

The integers $(N_{i,j}^k)_{i,j,k\in I}$ are the structure constants of a free associative \mathbb{Z} -algebra of rank |I|, called fusion algebra associated with the modular data:

$$A = \bigoplus_{i \in I} \mathbb{Z} X_i \qquad X_i \cdot X_j = \sum_{k \in I} N_{i,j}^k X_k.$$

Question

How to construct modular data?

A categorical answer

Using monoidal categories with extra structures.

* E * * E *

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

▶ ★ Ξ ▶ ...

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,
- semisimple,

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,
- semisimple,
- pivotal: there exists a natural isomorphism $a_X \colon X \to X^{**}$ such that $a_{X \otimes Y} = a_X \otimes a_Y$,

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,
- semisimple,
- pivotal: there exists a natural isomorphism $a_X \colon X \to X^{**}$ such that $a_{X \otimes Y} = a_X \otimes a_Y$,
- braided: there exists a binatural isomorphism $c_{X,Y}: X \otimes Y \to Y \otimes X$ satisfying some axioms (hexagons).

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,
- semisimple,
- pivotal: there exists a natural isomorphism $a_X \colon X \to X^{**}$ such that $a_{X \otimes Y} = a_X \otimes a_Y$,
- braided: there exists a binatural isomorphism $c_{X,Y}: X \otimes Y \to Y \otimes X$ satisfying some axioms (hexagons).

pivotal structure

 \rightsquigarrow two quantum traces tr[±] and two quantum dimensions dim[±].

A = A = A = A < A
</p>

Let ${\mathcal C}$ be an ${\mathbb C}\text{-linear}$ abelian category. We suppose moreover that ${\mathcal C}$ is

- $\bullet\,$ monoidal: $\otimes\,$ the tensor product, 1 unit object and $\otimes\,$ bilinear on morphism,
- rigid: existence of left duals X^* and right duals *X ,
- artinian, with a finite number of simple objects, $\mathsf{End}(1) = \mathbb{C}$,
- semisimple,
- pivotal: there exists a natural isomorphism $a_X \colon X \to X^{**}$ such that $a_{X \otimes Y} = a_X \otimes a_Y$,
- braided: there exists a binatural isomorphism $c_{X,Y}: X \otimes Y \to Y \otimes X$ satisfying some axioms (hexagons).

pivotal structure

 \rightsquigarrow two quantum traces tr^ \pm and two quantum dimensions dim $^\pm.$ braiding + pivotal structure

 \rightsquigarrow twist $\theta_X \colon X \to X$ such that $\theta_{X \otimes Y} = \theta_X \otimes \theta_Y \circ c_{Y,X} \circ c_{X,Y}$.

The symmetric center of ${\mathcal C}$ is the full subcategory of ${\mathcal C}$ with objects X such that

$$\forall Y, c_{Y,X} \circ c_{X,Y} = \mathsf{id} \,.$$

문에서 문어?

The symmetric center of ${\mathcal C}$ is the full subcategory of ${\mathcal C}$ with objects X such that

$$\forall Y, c_{Y,X} \circ c_{X,Y} = \mathsf{id}.$$

It is a symmetric tensor category.

► < Ξ ►</p>

The symmetric center of ${\mathcal C}$ is the full subcategory of ${\mathcal C}$ with objects X such that

$$\forall Y, c_{Y,X} \circ c_{X,Y} = \mathsf{id} \,.$$

It is a symmetric tensor category.

Definition

 $\mathcal C$ is non-degenerate if the symmetric center is generated by $\mathbf 1$.

* ヨト * ヨト -

Theorem (Turaev)

Suppose that C is non-degenerate.

- $I = Irr(\mathcal{C})$,
- $S_{X,Y} = \lambda \operatorname{tr}^+_{X \otimes Y}(c_{Y,X} \circ c_{X,Y}),$
- $T_{X,Y} = \delta_{X,Y} \theta_X$,
- $i_0 = \mathbf{1}$

is a ℕ-modular datum.

< 注入 < 注入 -

Theorem (Turaev)

Suppose that C is non-degenerate.

- $I = Irr(\mathcal{C})$,
- $S_{X,Y} = \lambda \operatorname{tr}^+_{X \otimes Y} (c_{Y,X} \circ c_{X,Y}),$
- $T_{X,Y} = \delta_{X,Y} \theta_X$,
- $i_0 = \mathbf{1}$

is a ℕ-*modular datum.*

The associated fusion algebra is $Gr(\mathcal{C})$, the Grothendieck ring of $\mathcal{C}: N_{X,Y}^Z$ is the multiplicity of Z in $X \otimes Y$.

A B M A B M

Theorem (Turaev)

Suppose that C is non-degenerate.

• $I = Irr(\mathcal{C})$,

•
$$S_{X,Y} = \lambda \operatorname{tr}^+_{X \otimes Y} (c_{Y,X} \circ c_{X,Y}),$$

•
$$T_{X,Y} = \delta_{X,Y} \theta_X$$
,

•
$$i_0 = 1$$

is a ℕ-*modular datum.*

The associated fusion algebra is $Gr(\mathcal{C})$, the Grothendieck ring of $\mathcal{C}: N_{X,Y}^Z$ is the multiplicity of Z in $X \otimes Y$.

Question

What is a categorical version of \mathbb{Z} -modular data?

A B M A B M

프 () () 프 () (

Slightly degenerate categories

Suppose that the symmetric center of C is equal to sVect, the braided category of finite dimensional superspaces: C is *slightly degenerate*.

Denote by ε the simple object in C corresponding to the one-dimensional purely odd superspace.

Denote by ε the simple object in ${\cal C}$ corresponding to the one-dimensional purely odd superspace.

Hypothesis

The positive and negative quantum dimensions of arepsilon are equal to -1

Denote by ε the simple object in ${\cal C}$ corresponding to the one-dimensional purely odd superspace.

Hypothesis

The positive and negative quantum dimensions of ε are equal to -1 ($\Longrightarrow \theta_{\varepsilon} = 1$).

Denote by ε the simple object in ${\cal C}$ corresponding to the one-dimensional purely odd superspace.

Hypothesis

The positive and negative quantum dimensions of ε are equal to -1 (\Longrightarrow $\theta_{\varepsilon}=1).$

The matrices S and T defined before are

$$S = \begin{pmatrix} \mathbf{S} & -\mathbf{S} \\ -\mathbf{S} & \mathbf{S} \end{pmatrix}$$
 $T = \begin{pmatrix} \mathbf{T} & 0 \\ 0 & \mathbf{T} \end{pmatrix}$.

Z-modular data from slightly degenerate categories

Tensorization by ε induces an action of $\mathbb{Z}/2\mathbb{Z}$ on ${\rm Irr}(\mathcal{C})$ without fixed points

 \rightsquigarrow choose J a system of representatives such that $\mathbf{1} \in J$.

글 🖌 🖌 글 🛌 👘

Z-modular data from slightly degenerate categories

Tensorization by ε induces an action of $\mathbb{Z}/2\mathbb{Z}$ on ${\rm Irr}(\mathcal{C})$ without fixed points

 \rightsquigarrow choose J a system of representatives such that $\mathbf{1} \in J$.

Theorem (L.)

Suppose that C is slightly degenerate and that ε is of dimension -1.

• I = J,

•
$$\mathbf{S}_{X,Y} = \gamma \operatorname{tr}^+_{X \otimes Y} (c_{Y,X} \circ c_{X,Y}),$$

•
$$\mathbf{T}_{X,Y} = \delta_{X,Y}\theta_X$$
,

•
$$i_0 = 1$$

is a ℤ-modular datum.

- ◆ 臣 ▶ - -

\mathbb{Z} -modular data from slightly degenerate categories

Tensorization by ε induces an action of $\mathbb{Z}/2\mathbb{Z}$ on ${\rm Irr}(\mathcal{C})$ without fixed points

 \rightsquigarrow choose J a system of representatives such that $\mathbf{1} \in J$.

Theorem (L.)

Suppose that C is slightly degenerate and that ε is of dimension -1.

• *I* = *J*,

•
$$\mathbf{S}_{X,Y} = \gamma \operatorname{tr}^+_{X \otimes Y} (c_{Y,X} \circ c_{X,Y}),$$

•
$$\mathbf{T}_{X,Y} = \delta_{X,Y}\theta_X$$
,

•
$$i_0 = \mathbf{1}$$

is a ℤ*-modular datum.*

The fusion algebra is $Gr(\mathcal{C})/([\varepsilon] + [1])$, the structure constants are

$$sN_{X,Y}^Z = N_{X,Y}^Z - N_{X,Y}^{\varepsilon \otimes Z}.$$

▶ ★ Ξ ▶ ...

Some motivations: finite groups of Lie type

 $q = p^{\alpha}$ with p prime,

문에서 문어 다

æ

 $q = p^{\alpha}$ with p prime, G a reductive group over $\mathbb{F} = \overline{\mathbb{F}_p}$ and $F: G \to G$ be a Frobenius endomorphism. Suppose that the \mathbb{F}_q -structure is split.

▶ ★ Ξ ▶ ...

 $q = p^{\alpha}$ with p prime, G a reductive group over $\mathbb{F} = \overline{\mathbb{F}_p}$ and $F \colon G \to G$ be a Frobenius endomorphism. Suppose that the \mathbb{F}_q -structure is split.

Deligne-Lusztig: definition of unipotent characters of G^F ,

▶ ★ Ξ ▶ ...

 $q = p^{\alpha}$ with p prime, G a reductive group over $\mathbb{F} = \overline{\mathbb{F}_p}$ and $F \colon G \to G$ be a Frobenius endomorphism. Suppose that the \mathbb{F}_q -structure is split.

Deligne-Lusztig: definition of unipotent characters of G^F , Lusztig: classification of unipotent characters, partition into families. $q = p^{\alpha}$ with p prime, G a reductive group over $\mathbb{F} = \overline{\mathbb{F}_p}$ and $F \colon G \to G$ be a Frobenius endomorphism. Suppose that the \mathbb{F}_q -structure is split.

Deligne-Lusztig: definition of unipotent characters of G^F , Lusztig: classification of unipotent characters, partition into families.

A N-modular datum $(\mathcal{F}, S(\mathcal{F}), T(\mathcal{F}), \rho_{sp})$ is associated with each family \mathcal{F} of unipotent characters of G^{F} .

医下颌 医下颌

Nearly nothing does depend on q, and we should be able to reconstruct everything just using the Weyl group W of G.

Nearly nothing does depend on q, and we should be able to reconstruct everything just using the Weyl group W of G.

Hope (Spetses)

Do the same thing with \boldsymbol{W} a Coxeter group? a complex reflection group?

Nearly nothing does depend on q, and we should be able to reconstruct everything just using the Weyl group W of G.

Hope (Spetses)

Do the same thing with \boldsymbol{W} a Coxeter group? a complex reflection group?

• Lusztig: Coxeter groups of type H_3 , H_4 (except for one family) and dihedral groups,

Nearly nothing does depend on q, and we should be able to reconstruct everything just using the Weyl group W of G.

Hope (Spetses)

Do the same thing with \boldsymbol{W} a Coxeter group? a complex reflection group?

- Lusztig: Coxeter groups of type H_3 , H_4 (except for one family) and dihedral groups,
- Malle: G(d, 1, n) and G(d, d, n),

Nearly nothing does depend on q, and we should be able to reconstruct everything just using the Weyl group W of G.

Hope (Spetses)

Do the same thing with \boldsymbol{W} a Coxeter group? a complex reflection group?

- Lusztig: Coxeter groups of type H_3 , H_4 (except for one family) and dihedral groups,
- Malle: G(d, 1, n) and G(d, d, n),
- Broué-Malle-Michel: some exceptional complex reflection groups.

伺 ト イヨト イヨト

W = G(d, 1, n). There is an extension of Lusztig's combinatorics of symbols in type *B* describing unipotent characters of G(d, 1, n)

 \rightsquigarrow families of unipotent characters, Fourier matrices, eigenvalues of the Frobenius.

э.

W = G(d, 1, n). There is an extension of Lusztig's combinatorics of symbols in type *B* describing unipotent characters of G(d, 1, n)

 \rightsquigarrow families of unipotent characters, Fourier matrices, eigenvalues of the Frobenius.

Theorem (Malle,Cuntz)

Let \mathcal{F} be a family of unipotent characters of G(d, 1, n), $S(\mathcal{F})$ its Fourier matrix and $T(\mathcal{F})$ the diagonal matrix of eigenvalues of the Frobenius. There is $f_{sp} \in \mathcal{F}$ such that $(\mathcal{F}, S(\mathcal{F}), T(\mathcal{F}), f_{sp})$ is a \mathbb{Z} -modular datum.

• • = • • = •

W = G(d, 1, n). There is an extension of Lusztig's combinatorics of symbols in type *B* describing unipotent characters of G(d, 1, n) \rightsquigarrow families of unipotent characters. Fourier matrices, eigenvalues of

the Frobenius.

Theorem (Malle,Cuntz)

Let \mathcal{F} be a family of unipotent characters of G(d, 1, n), $S(\mathcal{F})$ its Fourier matrix and $T(\mathcal{F})$ the diagonal matrix of eigenvalues of the Frobenius. There is $f_{sp} \in \mathcal{F}$ such that $(\mathcal{F}, S(\mathcal{F}), T(\mathcal{F}), f_{sp})$ is a \mathbb{Z} -modular datum.

Question

Is there a categorification of these data?

向下 イヨト イヨト

n, d be an integers with $d \ge n + 1$. There is a family \mathcal{F} with $d^{n-1} \binom{d}{n+1}$ unipotent characters.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q () ◆

n, d be an integers with $d \ge n+1$. There is a family \mathcal{F} with $d^{n-1} \binom{d}{n+1}$ unipotent characters.

Theorem (Bonnafé-Rouquier)

If n = 1, a categorification of the \mathbb{Z} -modular datum associated with \mathcal{F} is given by a quotient of the stable category of modules over the Drinfeld double of the Taft algebra.

n, d be an integers with $d \ge n+1$. There is a family \mathcal{F} with $d^{n-1} \binom{d}{n+1}$ unipotent characters.

Theorem (Bonnafé-Rouquier)

If n = 1, a categorification of the \mathbb{Z} -modular datum associated with \mathcal{F} is given by a quotient of the stable category of modules over the Drinfeld double of the Taft algebra.

Now we generalize this result for any n, in the framework of slightly degenerate categories.

Drinfeld double of $\mathcal{U}_q(\mathfrak{sl}_{n+1})^{\geq 0}$

Consider \mathcal{D}_q the Drinfeld double of $\mathcal{U}_q(\mathfrak{sl}_{n+1})^{\geq 0}$:

물에 귀 문어 ??

Drinfeld double of $\mathcal{U}_q(\mathfrak{sl}_{n+1})^{\geq 0}$

Consider \mathcal{D}_q the Drinfeld double of $\mathcal{U}_q(\mathfrak{sl}_{n+1})^{\geq 0}$:it is the $\mathbb{Q}(q)$ -algebra generated by $K_i^{\pm 1}, L_i^{\pm 1}, E_i, F_i$ with $1 \leq i \leq n$ with relations

Image: A matrix and a matrix

$$K_i K_j = K_j K_i,$$
 $K_i K_i^{-1} = 1 = K_i^{-1} K_i,$
 $L_i L_j = L_j L_i,$ $L_i L_i^{-1} = 1 = L_i^{-1} L_i,$

 $K_i L_j = L_j K_i,$

Image: A image: A

 $K_i K_j = K_j K_i, \qquad K_i K_i^{-1} = 1 = K_i^{-1} K_i,$ $L_i L_j = L_j L_i, \qquad L_i L_i^{-1} = 1 = L_i^{-1} L_i,$

$$K_i L_j = L_j K_i,$$

$$\begin{split} & \mathcal{K}_{i} E_{j} = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_{j} \mathcal{K}_{i}, \qquad \mathcal{K}_{i} F_{j} = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_{j} \mathcal{K}_{i}, \\ & \mathcal{L}_{i} E_{j} = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_{j} \mathcal{L}_{i}, \qquad \mathcal{L}_{i} F_{j} = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_{j} \mathcal{L}_{i}, \end{split}$$

A 3 - 5

$K_i K_j = K_j K_i,$	$K_i K_i^{-1} = 1 = K_i^{-1} K_i,$
$L_i L_j = L_j L_i,$	$L_i L_i^{-1} = 1 = L_i^{-1} L_i,$

$$K_i L_j = L_j K_i,$$

$$\begin{split} & {\cal K}_i E_j = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_j {\cal K}_i, \qquad {\cal K}_i F_j = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_j {\cal K}_i, \\ & {\cal L}_i E_j = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_j {\cal L}_i, \qquad {\cal L}_i F_j = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_j {\cal L}_i, \end{split}$$

+ other relations (quantum Serre relations, ...)

Image: A image: A

$K_i K_j = K_j K_i,$	$K_i K_i^{-1} = 1 = K_i^{-1} K_i,$
$L_i L_j = L_j L_i,$	$L_i L_i^{-1} = 1 = L_i^{-1} L_i,$

$$K_i L_j = L_j K_i,$$

$$\begin{split} & {\cal K}_i E_j = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_j {\cal K}_i, \qquad {\cal K}_i F_j = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_j {\cal K}_i, \\ & {\cal L}_i E_j = q^{-\delta_{i,j-1}+2\delta_{i,j}-\delta_{i,j+1}} E_j {\cal L}_i, \qquad {\cal L}_i F_j = q^{\delta_{i,j-1}-2\delta_{i,j}+\delta_{i,j+1}} F_j {\cal L}_i, \end{split}$$

+ other relations (quantum Serre relations, ...)

$$z_i = \mathcal{K}_i L_i^{-1}$$
 is central and $\mathcal{D}_q/(z_i-1)_{1 \leq i \leq n} \simeq \mathcal{U}_q(\mathfrak{sl}_{n+1}).$

Image: A image: A

- $\Phi \subset V$ the root system of type A_n ,
- $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a set of simple roots,
- $\langle \cdot, \cdot \rangle$ a symmetric bilinear form such that $\langle \alpha, \alpha \rangle = 2$ for all $\alpha \in \Phi$.

- $\Phi \subset V$ the root system of type A_n ,
- $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a set of simple roots,
- $\langle \cdot, \cdot \rangle$ a symmetric bilinear form such that $\langle \alpha, \alpha \rangle = 2$ for all $\alpha \in \Phi$.
- $Q = \bigoplus_{i=1}^{n} \mathbb{Z} \alpha_i$ the root lattice
- $P = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{Z}\}$ the weight lattice,
- $P^+ = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{N}\}$ the cone of dominant weights.

- $\Phi \subset V$ the root system of type A_n ,
- $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a set of simple roots,
- $\langle \cdot, \cdot \rangle$ a symmetric bilinear form such that $\langle \alpha, \alpha \rangle = 2$ for all $\alpha \in \Phi$.
- $Q = \bigoplus_{i=1}^{n} \mathbb{Z} \alpha_i$ the root lattice
- $P = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{Z}\}$ the weight lattice,
- $P^+ = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{N}\}$ the cone of dominant weights.

 \mathcal{C}_q the category of finite dimensional \mathcal{D}_q -modules M such that

$$M = \bigoplus_{(\lambda,\mu)\in P\times P} M_{(\lambda,\mu)},$$

- $\Phi \subset V$ the root system of type A_n ,
- $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a set of simple roots,
- $\langle \cdot, \cdot \rangle$ a symmetric bilinear form such that $\langle \alpha, \alpha \rangle = 2$ for all $\alpha \in \Phi$.
- $Q = \bigoplus_{i=1}^{n} \mathbb{Z} \alpha_i$ the root lattice
- $P = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{Z}\}$ the weight lattice,
- $P^+ = \{\lambda \in V \mid \forall \alpha \in \Phi, \ \langle \lambda, \alpha \rangle \in \mathbb{N}\}$ the cone of dominant weights.

 \mathcal{C}_q the category of finite dimensional \mathcal{D}_q -modules M such that

$$M = \bigoplus_{(\lambda,\mu)\in P\times P} M_{(\lambda,\mu)},$$

where $M_{(\lambda,\mu)}$ is the weight space of weight (λ,μ) :

$$M_{(\lambda,\mu)} = \{ m \in M \mid \forall 1 \leq i \leq n, \ K_i \cdot m = q^{\langle \lambda, \alpha_i \rangle} m, \ L_i \cdot m = q^{\langle \mu, \alpha_i \rangle} m \}.$$

Fact

For each $M \in C_q$, $z_i = K_i L_i^{-1}$ acts by a power of q^2 .

< 문) · · 문) · · ·

Fact

For each
$$M \in C_q$$
, $z_i = K_i L_i^{-1}$ acts by a power of q^2 .

Proposition

The category C_q is semisimple and there is a bijection

$$\{(\lambda,\mu) \in P \times P \mid \lambda + \mu \in 2P^+\} \xrightarrow{\sim} \begin{cases} \text{isomorphism classes of} \\ \text{simple objects in } \mathcal{C}_q \end{cases}$$
$$(\lambda,\mu) \longmapsto L(\lambda,\mu)$$

▶ ★ 문 ▶ ★ 문 ▶

Similarly to the algebra $U_q(\mathfrak{sl}_{n+1})$, there is a Hopf algebra structure on \mathcal{D}_q

▶ ★ 臣 ▶ …

æ

Similarly to the algebra $U_q(\mathfrak{sl}_{n+1})$, there is a Hopf algebra structure on \mathcal{D}_q \rightsquigarrow monoidal structure on \mathcal{C}_q and left and right duality

글 🖌 🖌 글 🛌 👘

► < Ξ ►</p>

There also is a quasi-R-matrix in (a completion of) $\mathcal{D}_q \otimes \mathcal{D}_q$

There also is a quasi-R-matrix in (a completion of) $\mathcal{D}_q \otimes \mathcal{D}_q \sim \mathcal{D}_q$.

There also is a quasi-R-matrix in (a completion of) $\mathcal{D}_q \otimes \mathcal{D}_q \sim \mathcal{D}_q$.

Problem

There is an infinite numbers of simple objects in C_q ...

There also is a quasi-R-matrix in (a completion of) $\mathcal{D}_q \otimes \mathcal{D}_q$ \rightsquigarrow braiding on \mathcal{C}_q .

Problem

There is an infinite numbers of simple objects in C_q ...

Working with q a root of unity will truncate this category.

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q .

A version of \mathcal{D}_q at a root of unity

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q . In this algebra, we have some elements $\begin{bmatrix} K_i; c \\ t \end{bmatrix}$ and $\begin{bmatrix} L_i; c \\ t \end{bmatrix}$ for $c \in \mathbb{Z}$, $t \in \mathbb{N}$

▶ ★ Ξ ▶ ...

A version of \mathcal{D}_q at a root of unity

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q . In this algebra, we have some elements $\begin{bmatrix} K_i; c \\ t \end{bmatrix}$ and $\begin{bmatrix} L_i; c \\ t \end{bmatrix}$ for $c \in \mathbb{Z}$, $t \in \mathbb{N}$ e.g.:

$$\begin{bmatrix} K_i; c \\ t \end{bmatrix} = \prod_{r=1}^{t} \frac{q^{c-r+1}K_i - q^{-c+r-1}K_i^{-1}}{q^r - q^{-r}}$$

医下头 医下口

A version of \mathcal{D}_q at a root of unity

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q . In this algebra, we have some elements $\begin{bmatrix} \kappa_i; c \\ t \end{bmatrix}$ and $\begin{bmatrix} L_i; c \\ t \end{bmatrix}$ for $c \in \mathbb{Z}$, $t \in \mathbb{N}$ e.g.:

$$\begin{bmatrix} K_i; c \\ t \end{bmatrix} = \prod_{r=1}^t \frac{q^{c-r+1}K_i - q^{-c+r-1}K_i^{-1}}{q^r - q^{-r}}$$

Let $\xi = \exp\left(\frac{i\pi}{d}\right)$ and

$$\mathcal{D}_{\xi} = \mathcal{D}_{q}^{\mathrm{res}} \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}_{\xi}.$$

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q . In this algebra, we have some elements $\begin{bmatrix} K_i; c \\ t \end{bmatrix}$ and $\begin{bmatrix} L_i; c \\ t \end{bmatrix}$ for $c \in \mathbb{Z}$, $t \in \mathbb{N}$ e.g.:

$$\begin{bmatrix} K_i; c \\ t \end{bmatrix} = \prod_{r=1}^{t} \frac{q^{c-r+1}K_i - q^{-c+r-1}K_i^{-1}}{q^r - q^{-r}}$$

Let $\xi = \exp\left(\frac{i\pi}{d}\right)$ and

$$\mathcal{D}_{\xi} = \mathcal{D}_{q}^{\mathrm{res}} \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}_{\xi}.$$

Note that $\begin{bmatrix} K_i; 0 \\ d \end{bmatrix}$ exists in \mathcal{D}_{ξ} but its definition above makes no sense in \mathcal{D}_{ξ} .

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

There are many versions of quantum groups at root of unity. Following Lusztig, we define $\mathcal{D}_q^{\text{res}}$ as a certain sub- $\mathbb{Z}[q, q^{-1}]$ -algebra of \mathcal{D}_q . In this algebra, we have some elements $\begin{bmatrix} K_i; c \\ t \end{bmatrix}$ and $\begin{bmatrix} L_i; c \\ t \end{bmatrix}$ for $c \in \mathbb{Z}$, $t \in \mathbb{N}$ e.g.:

$$\begin{bmatrix} K_i; c \\ t \end{bmatrix} = \prod_{r=1}^{t} \frac{q^{c-r+1}K_i - q^{-c+r-1}K_i^{-1}}{q^r - q^{-r}}$$

Let $\xi = \exp\left(rac{i\pi}{d}
ight)$ and

$$\mathcal{D}_{\xi} = \mathcal{D}_{q}^{\mathrm{res}} \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}_{\xi}.$$

Note that $\begin{bmatrix} K_i; 0 \\ d \end{bmatrix}$ exists in \mathcal{D}_{ξ} but its definition above makes no sense in \mathcal{D}_{ξ} . The algebra \mathcal{D}_{ξ} is still a Hopf algebra and has a quasi-*R*-matrix.

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ● � � � �

Let C_{ξ} be the category of finite dimensional \mathcal{D}_{ξ} -modules M such that

$$M = \bigoplus_{(\lambda,\mu)\in P\times P} M_{(\lambda,\mu)},$$

▶ ★ 문 ▶ ★ 문 ▶ ... 문

Let C_{ξ} be the category of finite dimensional \mathcal{D}_{ξ} -modules M such that

$$M = \bigoplus_{(\lambda,\mu)\in P\times P} M_{(\lambda,\mu)},$$

where $M_{(\lambda,\mu)}$ is the weight space of weight (λ,μ) :

$$M_{(\lambda,\mu)} = \left\{ m \in \left| \begin{array}{l} \forall 1 \leq i \leq n, \\ K_i \cdot m = \xi^{\langle \lambda, \alpha_i \rangle} m, \\ L_i \cdot m = \xi^{\langle \mu, \alpha_i \rangle} m, \\ \begin{bmatrix} K_i; 0 \\ d \end{bmatrix} \cdot m = \begin{bmatrix} \langle \lambda, \alpha_i \rangle \\ d \end{bmatrix}_{\xi} m, \\ \begin{bmatrix} L_i; 0 \\ d \end{bmatrix} m = \begin{bmatrix} \langle \mu, \alpha_i \rangle \\ d \end{bmatrix}_{\xi} m \right\}.$$

ヨト 米 ヨトー

Let C_{ξ} be the category of finite dimensional \mathcal{D}_{ξ} -modules M such that

$$M = \bigoplus_{(\lambda,\mu)\in P\times P} M_{(\lambda,\mu)},$$

where $M_{(\lambda,\mu)}$ is the weight space of weight (λ,μ) :

$$M_{(\lambda,\mu)} = \left\{ m \in \left| \begin{array}{l} \forall 1 \leq i \leq n, \ K_i \cdot m = \xi^{\langle \lambda, \alpha_i \rangle} m, \ L_i \cdot m = \xi^{\langle \mu, \alpha_i \rangle} m, \\ \begin{bmatrix} K_i; 0 \\ d \end{bmatrix} \cdot m = \begin{bmatrix} \langle \lambda, \alpha_i \rangle \\ d \end{bmatrix}_{\xi} m, \begin{bmatrix} L_i; 0 \\ d \end{bmatrix} m = \begin{bmatrix} \langle \mu, \alpha_i \rangle \\ d \end{bmatrix}_{\xi} m \right\}.$$

Remark

The category C_{ξ} is not semisimple.

《문》 《문》

э

For each $(\lambda, \mu) \in P \times P$ with $\lambda + \mu \in 2P^+$, there is a $\mathcal{D}_q^{\mathrm{res}}(\mathfrak{sl}_{n+1})$ form $L^{\mathrm{res}}(\lambda, \mu)$ of $L(\lambda, \mu)$

▲ 臣 ▶ | ▲ 臣 ▶ | |

∃ 990

For each $(\lambda, \mu) \in P \times P$ with $\lambda + \mu \in 2P^+$, there is a $\mathcal{D}_q^{res}(\mathfrak{sl}_{n+1})$ form $L^{res}(\lambda, \mu)$ of $L(\lambda, \mu)$ $\rightsquigarrow W(\lambda, \mu) = L^{res}(\lambda, \mu) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}$, the Weyl module.

For each $(\lambda, \mu) \in P \times P$ with $\lambda + \mu \in 2P^+$, there is a $\mathcal{D}_q^{res}(\mathfrak{sl}_{n+1})$ form $\mathcal{L}^{res}(\lambda, \mu)$ of $\mathcal{L}(\lambda, \mu)$ $\rightsquigarrow W(\lambda, \mu) = \mathcal{L}^{res}(\lambda, \mu) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}$, the Weyl module.

Definition

A module M in C_{ξ} is a tilting module if both M and M^* are filtered by Weyl modules.

For each $(\lambda, \mu) \in P \times P$ with $\lambda + \mu \in 2P^+$, there is a $\mathcal{D}_q^{res}(\mathfrak{sl}_{n+1})$ form $\mathcal{L}^{res}(\lambda, \mu)$ of $\mathcal{L}(\lambda, \mu)$ $\rightsquigarrow W(\lambda, \mu) = \mathcal{L}^{res}(\lambda, \mu) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}$, the Weyl module.

Definition

A module M in C_{ξ} is a tilting module if both M and M^* are filtered by Weyl modules.

Theorem (Andersen)

Tensor product of tilting modules is a tilting module.

向下 イヨト イヨト ニヨー

 \mathcal{C} a pivotal monoidal category (+ other technical assumptions)

문에서 문어 다

C a pivotal monoidal category (+ other technical assumptions) $\rightsquigarrow C^{ss}$ the semisimplification of C (kill negligible morphisms)

< 문 > < 문 > · ·

C a pivotal monoidal category (+ other technical assumptions) $\rightsquigarrow C^{ss}$ the semisimplification of C (kill negligible morphisms)

 $\{\text{simple objects in } \mathcal{C}^{ss}\} \xrightarrow{\sim} \begin{cases} \text{indecomposable objects in } \mathcal{C} \\ \text{of non-zero quantum dimension} \end{cases}$

C a pivotal monoidal category (+ other technical assumptions) $\rightsquigarrow C^{ss}$ the semisimplification of C (kill negligible morphisms)

 $\{\text{simple objects in } \mathcal{C}^{ss}\} \xrightarrow{\sim} \begin{cases} \text{indecomposable objects in } \mathcal{C} \\ \text{of non-zero quantum dimension} \end{cases}$

 $\mathbb{Z}(\mathcal{T}_{\xi})$ the semisimplification of the full subcategory of \mathcal{C}_{ξ} consisting of tilting modules filtered by Weyl modules of the form $W(\lambda, \mu)$ with $\mu \in Q$.

C a pivotal monoidal category (+ other technical assumptions) $\rightsquigarrow C^{ss}$ the semisimplification of C (kill negligible morphisms)

$$\{\text{simple objects in } \mathcal{C}^{ss}\} \xrightarrow{\sim} \begin{cases} \text{indecomposable objects in } \mathcal{C} \\ \text{of non-zero quantum dimension} \end{cases}$$

 $\mathbb{Z}(\mathcal{T}_{\xi})$ the semisimplification of the full subcategory of \mathcal{C}_{ξ} consisting of tilting modules filtered by Weyl modules of the form $W(\lambda, \mu)$ with $\mu \in Q$.

Proposition

Isomorphism classes of simple objects in $\mathbb{Z}(\mathcal{T}_{\xi})$ are in bijection with pairs $(\lambda, \mu) \in P \times P$ with $\lambda + \mu \in 2C$ and $\mu \in Q$ where

$$C = \{\eta \in P^+ \mid \langle \eta, \theta_0 \rangle \le d - (n+1)\},\$$

 θ_0 being the longest root of Φ .

 $\mathbb{Z}(\mathcal{T}_{\xi})$ has a lot of invertible objects which are in the symmetric center. If I is such an object of quantum dimension 1, add an isomorphism between X and $X \otimes I$ for any X. Denote by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ the category with these additional isomorphisms.

 $\mathbb{Z}(\mathcal{T}_{\xi})$ has a lot of invertible objects which are in the symmetric center. If I is such an object of quantum dimension 1, add an isomorphism between X and $X \otimes I$ for any X. Denote by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ the category with these additional isomorphisms.

Theorem (L.)

 $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ is a braided pivotal fusion category.

 $\mathbb{Z}(\mathcal{T}_{\xi})$ has a lot of invertible objects which are in the symmetric center. If I is such an object of quantum dimension 1, add an isomorphism between X and $X \otimes I$ for any X. Denote by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ the category with these additional isomorphisms.

Theorem (L.)

 $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ is a braided pivotal fusion category. If n is even, this category is non-degenerate and has $d^{n-1}\binom{d}{n+1}$ simple objects.

 $\mathbb{Z}(\mathcal{T}_{\xi})$ has a lot of invertible objects which are in the symmetric center. If I is such an object of quantum dimension 1, add an isomorphism between X and $X \otimes I$ for any X. Denote by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ the category with these additional isomorphisms.

Theorem (L.)

 $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ is a braided pivotal fusion category.

If n is even, this category is non-degenerate and has $d^{n-1} \binom{d}{n+1}$ simple objects.

If n is odd, this category is slightly degenerate and has $2d^{n-1}\binom{d}{n+1}$ simple objects.

 $\mathbb{Z}(\mathcal{T}_{\xi})$ has a lot of invertible objects which are in the symmetric center. If I is such an object of quantum dimension 1, add an isomorphism between X and $X \otimes I$ for any X. Denote by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ the category with these additional isomorphisms.

Theorem (L.)

 $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ is a braided pivotal fusion category.

If n is even, this category is non-degenerate and has $d^{n-1} \binom{d}{n+1}$ simple objects.

If n is odd, this category is slightly degenerate and has $2d^{n-1}\binom{d}{n+1}$ simple objects.

In any cases, the \mathbb{Z} -modular datum defined by $\mathbb{Z}(\mathcal{T}_{\xi}) \rtimes S$ coincide with

the modular datum associated with the family \mathcal{F} of $G\left(d, 1, \frac{n(n+1)}{2}\right)$ defined before.

向下 イヨト イヨト

э

Corollary

If we replace $N_{f,g}^h$ in the definition of the fusion algebra $A_{\mathcal{F}}$ by $|N_{f,g}^h|$, we obtain an associative algebra $A_{\mathcal{F}}^{abs}$.

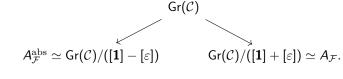
글 🖌 🔺 글 🕨 👘

э

Corollary

If we replace $N_{f,g}^h$ in the definition of the fusion algebra $A_{\mathcal{F}}$ by $|N_{f,g}^h|$, we obtain an associative algebra $A_{\mathcal{F}}^{abs}$.

If n is odd, we have a commutative diagram



with $\mathcal{C} = \mathbb{Z}(\mathcal{T}_{\xi}) \rtimes \mathcal{S}$.

크 에 관 에 크 어 ~~

Thank you for your attention!

▶ ★ 臣 ▶ ...

æ