Balanced system of cell representations in affine Hecke algebras and Lusztig conjectures

Jérémie Guilhot (University of Tours)
joint work with James Parkinson (University of Sydney)

Balanced system of cell representations in affine Hecke algebras and Lusztig conjectures

Jérémie Guilhot (University of Tours)

joint work with James Parkinson (University of Sydney)

Note: no affine Weyl group such that $\mathrm{w}_{0} \neq-$ Id were harmed during the making of this talk

Coxeter Group, weight functions and Hecke algebras

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$
- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

Example: $\tilde{A}_{1}: \stackrel{\stackrel{a}{a}}{\stackrel{\bullet}{s_{1}}} \stackrel{\infty}{s_{2}} \quad \stackrel{\rightharpoonup}{\bullet} \quad$ We have $L(w)=\# s_{1} \cdot a+\# s_{2} \cdot b$.

- The Hecke algebra \mathcal{H} is defined over $\mathrm{R}=\mathbb{Z}\left[q, \mathrm{q}^{-1}\right]$ with basis $\left(T_{w}\right)_{w \in W}$

$$
T_{w} T_{s}= \begin{cases}T_{w s} & \text { if } \ell(w s)>\ell(w) \\ T_{w s}+\left(\mathrm{q}^{L(s)}-\mathrm{q}^{-L(s)}\right) T_{w} & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

- The Hecke algebra \mathcal{H} is defined over $\mathrm{R}=\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$ with basis $\left(T_{w}\right)_{w \in W}$

$$
T_{w} T_{s}= \begin{cases}T_{w s} & \text { if } \ell(w s)>\ell(w) \\ T_{w s}+\left(\mathrm{q}^{L(s)}-\mathrm{q}^{-L(s)}\right) T_{w} & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

$\rightsquigarrow T_{s}$ is invertible with inverse $T_{s}^{-1}=T_{s}-\left(\mathrm{q}^{L(s)}-\mathrm{q}^{-L(s)}\right)$

Coxeter Group, weight functions and Hecke algebras

- (W, S) Coxeter system with length function ℓ

Example: the infinite dihedral group $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}^{2}=s_{2}^{2}=e$

- A weight function $L: W \longrightarrow \mathbb{N}$ that is

$$
L\left(w w^{\prime}\right)=L(w)+L\left(w^{\prime}\right) \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)
$$

Example: $\tilde{A}_{1}: \stackrel{\stackrel{a}{a}}{s_{1}} \quad \stackrel{\infty}{s_{2}} \quad \stackrel{b}{\bullet} \quad$ We have $L(w)=\# s_{1} \cdot a+\# s_{2} \cdot b$.

- The Hecke algebra \mathcal{H} is defined over $\mathrm{R}=\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$ with basis $\left(T_{w}\right)_{w \in W}$

$$
T_{w} T_{s}= \begin{cases}T_{w s} & \text { if } \ell(w s)>\ell(w) \\ T_{w s}+\left(\mathrm{q}^{L(s)}-\mathrm{q}^{-L(s)}\right) T_{w} & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

$\rightsquigarrow T_{s}$ is invertible with inverse $T_{s}^{-1}=T_{s}-\left(\mathrm{q}^{L(s)}-\mathrm{q}^{-L(s)}\right)$
\rightsquigarrow we have $\left(T_{s}-q^{L(s)}\right)\left(T_{s}+q^{-L(s)}\right)=0$

Kazhdan-Lusztig basis
The ${ }^{-}$-involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

Kazhdan-Lusztig basis
The ${ }^{-}$-involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

There exists a unique basis $\left(C_{w}\right)_{w \in W}$ that satisfies

Kazhdan-Lusztig basis
The ${ }^{-}$-involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

There exists a unique basis $\left(C_{w}\right)_{w \in W}$ that satisfies

- $\bar{C}_{w}=C_{w}$

Kazhdan-Lusztig basis

The --involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

There exists a unique basis $\left(C_{w}\right)_{w \in W}$ that satisfies

- $\bar{C}_{w}=C_{w}$
- $C_{w}=T_{w}+\sum_{y \in W, \ell(y)<\ell(w)} P_{y, w} T_{y}$ where $P_{y, w} \in \mathrm{q}^{-1} \mathbb{Z}\left[\mathrm{q}^{-1}\right]$

Kazhdan-Lusztig basis

The --involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

There exists a unique basis $\left(C_{w}\right)_{w \in w}$ that satisfies

- $\bar{C}_{w}=C_{w}$
- $C_{w}=T_{w}+\sum_{y \in W, \ell(y)<\ell(w)} P_{y, w} T_{y}$ where $P_{y, w} \in \mathrm{q}^{-1} \mathbb{Z}\left[\mathrm{q}^{-1}\right]$

Example: If $s \in S$ with $L(s)=a$ we have $C_{s}=T_{s}+\mathrm{q}^{-a}$.

Kazhdan-Lusztig basis

The --involution $\mathrm{q} \rightarrow \mathrm{q}^{-1}$ on R extends to \mathcal{H} :

$$
\sum a_{w} T_{w} \longmapsto \sum \bar{a}_{w} T_{w^{-1}}^{-1}
$$

There exists a unique basis $\left(C_{w}\right)_{w \in W}$ that satisfies

- $\bar{C}_{w}=C_{w}$
- $C_{w}=T_{w}+\sum_{y \in W, \ell(y)<\ell(w)} P_{y, w} T_{y}$ where $P_{y, w} \in \mathrm{q}^{-1} \mathbb{Z}\left[\mathrm{q}^{-1}\right]$

Example: If $s \in S$ with $L(s)=a$ we have $C_{s}=T_{s}+\mathrm{q}^{-a}$. Indeed

$$
\bar{C}_{s}=\bar{T}_{s}+\overline{\mathrm{q}^{-a}}=T_{s}^{-1}+\mathrm{q}^{a}=\left(T_{s}-\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right)\right)+\mathrm{q}^{a}=C_{s}
$$

Kazhdan-Lusztig cells
Define a pre-order by extending:

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L R}} y \Longleftrightarrow \exists h, h^{\prime} \in \mathcal{H} \text { with } h C_{y} h^{\prime}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L R}} y \Longleftrightarrow \exists h, h^{\prime} \in \mathcal{H} \text { with } h C_{y} h^{\prime}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L R}} y \Longleftrightarrow \exists h, h^{\prime} \in \mathcal{H} \text { with } h C_{y} h^{\prime}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L R}} y \Longleftrightarrow \exists h, h^{\prime} \in \mathcal{H} \text { with } h C_{y} h^{\prime}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{R}} y \Longleftrightarrow \exists h^{\prime} \in \mathcal{H} \text { with } C_{y} h^{\prime}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{\text { a }}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{b}{\bullet}}{s_{2}}$ Group of reflection in 1-dim space

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{\text { a }}}{\stackrel{\infty}{\infty}}$

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{\text { a }}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{b}{\bullet}}{s_{2}}$ Group of reflection in 1-dim space

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{\text { a }}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{b}{\bullet}}{s_{2}}$ Group of reflection in 1-dim space

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{a}}{\stackrel{\infty}{\bullet}} \stackrel{\stackrel{b}{\bullet}}{s_{2}}$ Group of reflection in 1-dim space

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

Example: back to $\tilde{A}_{1}: \stackrel{\underset{s_{1}}{a}}{\stackrel{\infty}{\bullet}} \stackrel{\stackrel{b}{\bullet}}{s_{2}}$ Group of reflection in 1-dim space

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

\square two-sided cell containing one right cell

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

\square two-sided cell containing one right cell
\square two-sided cell containing one right cell

Kazhdan-Lusztig cells

Define a pre-order by extending:

$$
x \leq_{\mathcal{L}} y \Longleftrightarrow \exists h \in \mathcal{H} \text { with } h C_{y}=\sum a_{w} C_{w} \text { and } a_{x} \neq 0
$$

Define the associated equivalence relation by

$$
x \sim_{\mathcal{L R}} y \Longleftrightarrow x \leq_{\mathcal{L R}} y \quad \text { and } \quad y \leq_{\mathcal{L R}} x
$$

The equivalence classes are the two-sided cells of W.
One can define $\leq_{\mathcal{R}}, \sim_{\mathcal{R}}, \leq_{\mathcal{L}}$ and $\sim_{\mathcal{L}}$ similarly.

\square two-sided cell containing one right cell
\square two-sided cell containing one right cell
\square two-sided cell containing two right cells

Lusztig a-function

Lusztig a-function

Let $h_{x, y, z}$ be the structure constants associated to the KL-basis:

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}
$$

Lusztig a-function

Let $h_{x, y, z}$ be the structure constants associated to the KL-basis:

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}
$$

Define a : $W \longrightarrow \mathbb{N}$ by

$$
\begin{aligned}
\mathbf{a}(z) & =\min \left\{n \in \mathbb{N} \mid \mathrm{q}^{-n} h_{x, y, z} \in \mathbb{Z}\left[\mathrm{q}^{-1}\right] \text { for all } x, y \in W\right\} \\
& \left.=\max \left\{\operatorname{deg}_{q}\left(h_{x, y, z}\right) \mid x, y \in W\right)\right\}
\end{aligned}
$$

Lusztig a-function

Let $h_{x, y, z}$ be the structure constants associated to the KL-basis:

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}
$$

Define a : $W \longrightarrow \mathbb{N}$ by

$$
\begin{aligned}
\mathbf{a}(z) & =\min \left\{n \in \mathbb{N} \mid \mathrm{q}^{-n} h_{x, y, z} \in \mathbb{Z}\left[\mathrm{q}^{-1}\right] \text { for all } x, y \in W\right\} \\
& \left.=\max \left\{\operatorname{deg}_{q}\left(h_{x, y, z}\right) \mid x, y \in W\right)\right\}
\end{aligned}
$$

Let $\gamma_{x, y, z^{-1}} \in \mathbb{Z}$ be such that

$$
h_{x, y, z}=\gamma_{x, y, z^{-1}} q^{\mathbf{a}(z)}+\text { lower powers }
$$

Lusztig a-function

Let $h_{x, y, z}$ be the structure constants associated to the KL-basis:

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}
$$

Define a : $W \longrightarrow \mathbb{N}$ by

$$
\begin{aligned}
\mathbf{a}(z) & =\min \left\{n \in \mathbb{N} \mid \mathrm{q}^{-n} h_{x, y, z} \in \mathbb{Z}\left[\mathrm{q}^{-1}\right] \text { for all } x, y \in W\right\} \\
& \left.=\max \left\{\operatorname{deg}_{q}\left(h_{x, y, z}\right) \mid x, y \in W\right)\right\}
\end{aligned}
$$

Let $\gamma_{x, y, z^{-1}} \in \mathbb{Z}$ be such that

$$
h_{x, y, z}=\gamma_{x, y, z^{-1}} q^{\mathbf{a}(z)}+\text { lower powers }
$$

If $\gamma_{x, y, z^{-1}} \neq 0$ then $z \leq_{\mathcal{R}} x$ and $z \leq_{\mathcal{L}} y$

Let $h_{x, y, z}$ be the structure constants associated to the KL-basis:

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}
$$

Define a : $W \longrightarrow \mathbb{N}$ by

$$
\begin{aligned}
\mathbf{a}(z) & =\min \left\{n \in \mathbb{N} \mid \mathrm{q}^{-n} h_{x, y, z} \in \mathbb{Z}\left[\mathrm{q}^{-1}\right] \text { for all } x, y \in W\right\} \\
& \left.=\max \left\{\operatorname{deg}_{\mathrm{q}}\left(h_{x, y, z}\right) \mid x, y \in W\right)\right\}
\end{aligned}
$$

Let $\gamma_{x, y, z^{-1}} \in \mathbb{Z}$ be such that

$$
h_{x, y, z}=\gamma_{x, y, z^{-1}} \mathrm{q}^{\mathbf{a}(z)}+\text { lower powers }
$$

If $\gamma_{x, y, z^{-1}} \neq 0$ then $z \leq_{\mathcal{R}} x$ and $z \leq_{\mathcal{L}} y$
Careful! One may have $h_{x, y, z} \neq 0$ with $\gamma_{x, y, z^{-1}}=0$

Lusztig's conjectures

Lusztig's conjectures

15 conjectures known as P1-P15.

15 conjectures known as P1-P15.

P4. if $z \leq_{\mathcal{L R}} z^{\prime}$ then $\mathbf{a}(z) \geq \mathbf{a}\left(z^{\prime}\right)$
P7. $\gamma_{x, y, z}=\gamma_{z, x, y}=\gamma_{y, z, x}$
P8. if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
P9. If $z^{\prime} \leq_{\mathcal{L}} z$ and $\mathbf{a}\left(z^{\prime}\right)=\mathbf{a}(z)$, then $z^{\prime} \sim_{\mathcal{L}} z$
P14. For each $z \in W$ we have $z \sim_{\mathcal{L R}} z^{-1}$.

State of the art

State of the art
Lusztig conjectures are known to hold for

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (Lusztig, Elias-Williamson)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LUSZTIG, ELIAS-WilLIAMSON)
- the quasisplit case where a geometric interpretation is also available (Lusztig, Elias-Williamson)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LUSZTIG, ELIAS-WilLIAMSON)
- the quasisplit case where a geometric interpretation is also available (Lusztig, Elias-Williamson)
- finite dihedral type and infinite dihedral type for arbitrary parameters (GECK, Lusztig)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LUSZTIG, ELIAS-WilLIAMSON)
- the quasisplit case where a geometric interpretation is also available (Lusztig, Elias-Williamson)
- finite dihedral type and infinite dihedral type for arbitrary parameters (GECK, Lusztig)
- universal Coxeter groups for arbitrary parameters (SHI-YANG)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LUSZTIG, ELIAS-WilLIAMSON)
- the quasisplit case where a geometric interpretation is also available (LuSztig, Elias-Williamson)
- finite dihedral type and infinite dihedral type for arbitrary parameters (GECK, Lusztig)
- universal Coxeter groups for arbitrary parameters (SHI-YANG)
- type B_{n} in the "asymptotic" case (Bonnafé, GECK, IANCU)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LUSZTIG, ELIAS-WilLiAMSON)
- the quasisplit case where a geometric interpretation is also available (LuSztig, Elias-Williamson)
- finite dihedral type and infinite dihedral type for arbitrary parameters (GECK, Lusztig)
- universal Coxeter groups for arbitrary parameters (SHI-YANG)
- type B_{n} in the "asymptotic" case (Bonnafé, GECK, IANCU)
- F_{4} for arbitrary parameters, B_{n} for $n \leq 5$ (GECK)

State of the art

Lusztig conjectures are known to hold for

- the equal parameter case where there is a geometric interpretation and some positivity properties (LusZTig, Elias-Williamson)
- the quasisplit case where a geometric interpretation is also available (Lusztig, Elias-Williamson)
- finite dihedral type and infinite dihedral type for arbitrary parameters (GECK, Lusztig)
- universal Coxeter groups for arbitrary parameters (SHI-YANG)
- type B_{n} in the "asymptotic" case (Bonnafé, GECK, IANCU)
- F_{4} for arbitrary parameters, B_{n} for $n \leq 5$ (GECK)

Theorem. (G.,PARKINSON 2018)
Lusztig conjectures P1-P15 holds in affine Weyl groups of rank 2 for any choices of parameters.

Lusztig's conjectures

Our methods to prove the conjectures:

Lusztig's conjectures

Our methods to prove the conjectures:

- Plancherel formula : $\operatorname{tr}\left(\sum a_{w} T_{w}\right)=a_{e}$

Lusztig's conjectures

Our methods to prove the conjectures:

- Plancherel formula : $\operatorname{tr}\left(\sum a_{w} T_{w}\right)=a_{e}$

$$
\operatorname{tr}(h)=\sum_{\pi \in \operatorname{irrep}(\mathcal{H})} m_{\pi} \chi_{\pi}(h)
$$

Lusztig's conjectures

Our methods to prove the conjectures:

- Plancherel formula : $\operatorname{tr}\left(\sum a_{w} T_{w}\right)=a_{e}$

$$
\operatorname{tr}(h)=\sum_{\pi \in \operatorname{irrep}(\mathcal{H})} m_{\pi} \chi_{\pi}(h) \longleftrightarrow \underbrace{\operatorname{tr}(h)=\int_{\pi \in \operatorname{lrrep}(\overline{\mathcal{H}})} \chi_{\pi} d \mu(\pi)}_{\begin{array}{c}
\text { OPDAM (GENERAL) } \\
\text { PARKINSON (EXPLICIT RANK 2) }
\end{array}}
$$

Our methods to prove the conjectures:

- Plancherel formula : $\operatorname{tr}\left(\sum a_{w} T_{w}\right)=a_{e}$

$$
\operatorname{tr}(h)=\sum_{\pi \in \operatorname{irrep}(\mathcal{H})} m_{\pi} \chi_{\pi}(h) \longleftrightarrow \underbrace{\operatorname{tr}(h)=\int_{\pi \in \operatorname{lrrep}(\overline{\mathcal{H}})} \chi_{\pi} d \mu(\pi)}_{\begin{array}{c}
\text { OPDAM (GENERAL) } \\
\text { PARKINSON (EXPLICIT RANK 2) }
\end{array}}
$$

- balanced system of representations

Balanced system of cell representations

Balanced system of cell representations
A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[q, q^{-1}\right]$-polynomial ring such that (among other things)

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{q}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[q, q^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined Set $\quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(q^{-\mathfrak{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined

$$
\text { Set } \quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(q^{-\mathbf{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)
$$

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined

$$
\text { Set } \quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(q^{-\mathbf{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)
$$

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right) \rightsquigarrow \mathfrak{c}_{\Gamma}(w)=\left(\begin{array}{cc}\xi+\frac{1}{\xi} & 0 \\ 0 & 0\end{array}\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined

$$
\text { Set } \quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(\mathrm{q}^{-\mathbf{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)
$$

- $\mathfrak{c}_{\Gamma}(w) \neq 0$ if and only if $w \in \Gamma$.

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right) \rightsquigarrow \mathfrak{c}_{\Gamma}(w)=\left(\begin{array}{cc}\xi+\frac{1}{\xi} & 0 \\ 0 & 0\end{array}\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[q, q^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{q}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined

$$
\text { Set } \quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(q^{-\mathfrak{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)
$$

- $\mathfrak{c}_{\Gamma}(w) \neq 0$ if and only if $w \in \Gamma$.
- the leading matrices $\mathfrak{c}_{\Gamma}(w)(w \in \Gamma)$ are free over \mathbb{Z}

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right) \rightsquigarrow \mathfrak{c}_{\Gamma}(w)=\left(\begin{array}{cc}\xi+\frac{1}{\xi} & 0 \\ 0 & 0\end{array}\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[q, q^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{q}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined Set $\quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(q^{-\mathbf{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)$
- $\mathfrak{c}_{\Gamma}(w) \neq 0$ if and only if $w \in \Gamma$.
- the leading matrices $\mathfrak{c}_{\Gamma}(w)(w \in \Gamma)$ are free over \mathbb{Z}
- $\mathbf{a}_{\Gamma} \leq \mathbf{a}_{\Gamma}$, if $\Gamma^{\prime} \leq_{\mathcal{L R}} \Gamma$

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right) \rightsquigarrow \mathfrak{c}_{\Gamma}(w)=\left(\begin{array}{cc}\xi+\frac{1}{\xi} & 0 \\ 0 & 0\end{array}\right)$

Balanced system of cell representations

A family of matrix representations $\left(\pi_{\Gamma}\right)_{\Gamma \in \Lambda}$ of \mathcal{H} defined over a $\mathbb{Z}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$-polynomial ring such that (among other things)

- $\pi_{\Gamma}\left(C_{w}\right)=0$ whenever $w<_{\mathcal{L R}} \Gamma$ or if w is not comparable to Γ
- $a_{\Gamma}=\max \left\{\operatorname{deg}_{q}\left(\left[\pi_{\Gamma}\left(T_{w}\right)\right]_{i, j}\right) \mid w \in W\right\}$ is well-defined Set $\quad \mathfrak{c}_{\Gamma}(w)=\operatorname{Spec}_{\left.\right|_{q^{-1}=0}}\left(\mathrm{q}^{-\mathbf{a}_{\Gamma}} \pi_{\Gamma}\left(T_{w}\right)\right)$
- $\mathfrak{c}_{\Gamma}(w) \neq 0$ if and only if $w \in \Gamma$.
- the leading matrices $\mathfrak{c}_{\Gamma}(w)(w \in \Gamma)$ are free over \mathbb{Z}
- $\mathbf{a}_{\Gamma} \leq \mathbf{a}_{\Gamma^{\prime}}$ if $\Gamma^{\prime} \leq_{\mathcal{L R}} \Gamma$

Example: If $\mathbf{a}_{\Gamma}=a$ and π_{Γ} is defined over $\mathbb{Z}\left[\mathbf{q}, \mathrm{q}^{-1}\right][\xi]$
$\pi_{\Gamma}\left(T_{w}\right)=\left(\begin{array}{cc}\frac{q^{a}}{\xi}-\frac{1}{\xi q^{a}}+\xi q^{a}-\frac{\xi}{q^{a}}+q^{b}-\frac{1}{q^{b}} & \xi^{-2} \\ \xi^{2} & 0\end{array}\right) \rightsquigarrow \mathfrak{c}_{\Gamma}(w)=\left(\begin{array}{cc}\xi+\frac{1}{\xi} & 0 \\ 0 & 0\end{array}\right)$

Theorem. If such a system exists then $\mathbf{a}_{\Gamma}=\mathbf{a}(\Gamma)$ for all $\Gamma \in \Lambda$

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where $\begin{array}{llll}\tilde{A}_{1}: & \left.\begin{array}{llll}\text { a } & \infty & b \\ s_{1} & & s_{2}\end{array}\right]\end{array}$

$$
\begin{array}{ccccccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} & \rho_{\{2\}}: & T_{s_{1}} \longrightarrow & \longrightarrow \mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & \longrightarrow \mathrm{q}^{-b} & \mathrm{q}^{b} \\
T_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow \mathrm{q}^{a} & \rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow \longrightarrow-\mathrm{q}^{-b} & T_{s_{2}} \longrightarrow \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{ccccccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} & \rho_{\{2\}}: & T_{s_{1}} \longrightarrow & \longrightarrow \mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & \longrightarrow \mathrm{q}^{-b} & \mathrm{q}^{b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow \mathrm{q}^{a} & \rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow \longrightarrow-\mathrm{q}^{-b} & T_{s_{2}} \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

$$
\begin{aligned}
& \left.\begin{array}{llll}
\rho_{\emptyset}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array}\right\} \begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array} \\
& \rho_{\{1\}}: \begin{array}{ccc}
T_{s_{1}} & \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow
\end{array}-\mathrm{q}^{-b} \\
& \begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} & \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
\end{aligned}
$$

Recall that

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where $\begin{array}{lllll}\tilde{A}_{1}: & \left.\begin{array}{llll}\text { a } & \infty & b \\ s_{1} & & s_{2}\end{array}\right]\end{array}$

$$
\begin{aligned}
& \begin{array}{llll}
\rho_{\emptyset}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array} \left\lvert\, \begin{array}{lllll}
& \rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}\right. \\
& \begin{array}{cccc}
\rho_{\{1\}}: & T_{s_{1}} & \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array} \\
& \rho_{\{1,2\}}: \begin{array}{ccc}
T_{s_{1}} & \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \\
\mathrm{q}^{b}
\end{array}
\end{aligned}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{\mathrm{e}}\right)\right)=0$:

$$
\begin{aligned}
& \left.\begin{array}{llll}
\rho_{\emptyset}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array}\right\} \begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array} \\
& \begin{array}{cccc}
\rho_{\{1\}}: & T_{s_{1}} & \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array} \\
& \begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} & \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
\end{aligned}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{\mathrm{e}}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{rlll}
\hline \rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b} \\
\hline
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} & \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Next we look at $\max \left\{\operatorname{deg}_{q}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{rlll}
\hline \rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b} \\
\hline
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} & \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:

$$
\rho_{\emptyset} \text { is bounded by } 0 \text { and } \Gamma_{2} \text {-balanced }
$$

Next we look at $\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$$
\left(s_{1} s_{2}\right)^{n} \quad\left(s_{2} s_{1}\right)^{n} \quad\left(s_{1} s_{2}\right)^{n} s_{1} \quad\left(s_{2} s_{1}\right)^{n} s_{2}
$$

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{cccc}
\hline \rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} & \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced
Next we look at $\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$$
\varliminf_{n(b-a)}^{\left(s_{1} s_{2}\right)^{n}}\left(s_{2} s_{1}\right)^{n} \quad\left(s_{1} s_{2}\right)^{n} s_{1} \quad\left(s_{2} s_{1}\right)^{n} s_{2}
$$

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{cccc}
\hline \rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Next we look at $\max \left\{\operatorname{deg}_{\mathrm{q}}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$$
{\underset{n}{\downarrow} \stackrel{\bigsqcup}{1}_{(b-a)}^{\left(s_{2}\right)^{n}}}_{\substack{\left(s_{2} s_{1}\right)^{n}}}^{n(b-a)} \quad\left(s_{1} s_{2}\right)^{n} s_{1} \quad\left(s_{2} s_{1}\right)^{n} s_{2}
$$

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Next we look at $\max \left\{\operatorname{deg}_{q}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow & -\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Next we look at $\max \left\{\operatorname{deg}_{q}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$$
\bigsqcup_{n(b-a)}^{\left(s_{1} s_{2}\right)^{n}} \stackrel{\downarrow}{n(b-a)}_{\left(s_{2} s_{1}\right)^{n}}^{-a+n(b-a)} \stackrel{\downarrow}{n}_{\left(s_{1} s_{2}\right)^{n} s_{1}}^{b+n(b-a)}
$$

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced
Next we look at $\max \left\{\operatorname{deg}_{q}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$\rho_{\{2\}}$ is bounded by b

Consider the 4 one dimensional representations of $\mathcal{H}\left(\tilde{A}_{1}\right)$ where \tilde{A}_{1} :

$$
\begin{array}{cccc}
\rho_{\emptyset}: & T_{s_{1}} \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & -\mathrm{q}^{-b} \\
\rho_{\{1\}}: & T_{s_{1}} \longrightarrow \longrightarrow & \mathrm{q}^{a} \\
& T_{s_{2}} \longrightarrow & -\mathrm{q}^{-b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{2\}}: & T_{s_{1}} & \longrightarrow-\mathrm{q}^{-a} \\
& T_{s_{2}} & \longrightarrow & \mathrm{q}^{b}
\end{array}
$$

$$
\begin{array}{llll}
\rho_{\{1,2\}}: & T_{s_{1}} \longrightarrow \mathrm{q}^{a} \\
& T_{s_{2}} & \longrightarrow \mathrm{q}^{b}
\end{array}
$$

Recall that

We have $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{w}\right)\right)<0$ for all $w \neq \mathrm{e}$ and $\operatorname{deg}\left(\rho_{\emptyset}\left(T_{e}\right)\right)=0$:
ρ_{\emptyset} is bounded by 0 and Γ_{2}-balanced

Next we look at $\max \left\{\operatorname{deg}_{q}\left(\rho_{\{2\}}\left(T_{w}\right)\right)\right\}$ (in the case $a-b>0$)

$\rho_{\{2\}}$ is bounded by band Γ_{1}-balanced

Translated weight and direction

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
s_{2} s_{1} s_{2} s_{1}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
s_{2} s_{1} s_{2} s_{1}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
s_{2} s_{1} s_{2} s_{1}=t^{2}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{aligned}
& s_{2} s_{1} s_{2} s_{1}=t^{2} \\
& s_{1} s_{2} s_{1} s_{2} s_{1}
\end{aligned}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{aligned}
& s_{2} s_{1} s_{2} s_{1}=t^{2} \\
& s_{1} s_{2} s_{1} s_{2} s_{1}
\end{aligned}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{aligned}
& s_{2} s_{1} s_{2} s_{1}=\mathrm{t}^{2} \\
& s_{1} s_{2} s_{1} s_{2} s_{1}
\end{aligned}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{gathered}
s_{2} s_{1} s_{2} s_{1}=\mathrm{t}^{2} \\
s_{1} s_{2} s_{1} s_{2} s_{1}=\mathrm{t}^{-3}
\end{gathered}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{gathered}
s_{2} s_{1} s_{2} s_{1}=\mathrm{t}^{2} \\
s_{1} s_{2} s_{1} s_{2} s_{1}=\mathrm{t}^{-3}
\end{gathered}
$$

Translated weight and direction

$\mathrm{t}=s_{2} s_{1}$ is a translation
$B=\left\{e, s_{2}\right\}$ is a fundamental domain for t
w can be written as $w=t^{n} u$ where $u \in \mathrm{~B}, n \in \mathbb{Z}$:

$$
\begin{aligned}
s_{2} s_{1} s_{2} s_{1} & =t^{2} \\
s_{1} s_{2} s_{1} s_{2} s_{1} & =t^{-3} s_{2}
\end{aligned}
$$

translated weight of w (in \mathbb{Z}) direction of w (in B)

$$
w=t^{\mathrm{wt}(w)} \theta(w)^{\searrow}
$$

Positively folded alcove paths

Positively folded alcove paths
A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

Positively folded alcove paths
A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}$

Positively folded alcove paths
A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=\mathrm{t}^{1} s_{2}$

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

A positively folded alcove path \vec{p} of shape $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}$, starting at $s_{1} s_{2}$:

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

A positively folded alcove path \vec{p} of shape $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}$, starting at $s_{1} s_{2}$:

We have end $(\vec{p})=s_{1} s_{2} s_{1}$

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

A positively folded alcove path \vec{p} of shape $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}$, starting at $s_{1} s_{2}$:

We have end $(\vec{p})=s_{1} s_{2} s_{1}=\mathrm{t}^{-2} s_{2}$

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

A positively folded alcove path \vec{p} of shape $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}$, starting at $s_{1} s_{2}$:

We have end $(\vec{p})=s_{1} s_{2} s_{1}=\mathrm{t}^{-2} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=-2, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=q^{b}-q^{-b}
$$

Positively folded alcove paths

A positively folded alcove path \vec{p} of shape $s_{2} s_{1} s_{2}$ starting at e :

We have end $(\vec{p})=s_{2} s_{1} s_{2}=t^{1} s_{2}$ and we set

$$
\mathrm{wt}(\vec{p})=1, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=1
$$

A positively folded alcove path \vec{p} of shape $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}$, starting at $s_{1} s_{2}$:

We have end $(\vec{p})=s_{1} s_{2} s_{1}=\mathrm{t}^{-2} s_{2}$ and we set

$$
w t(\vec{p})=-2, \quad \theta(\vec{p})=s_{2}, \quad \mathcal{Q}(\vec{p})=q^{b}-q^{-b}
$$

$\mathcal{P}(u ; \vec{w})=\{$ positively alcove path starting at $u\}$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}
Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}
Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{e, s_{2}\right\}
$$

Example:

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
&
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}(
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}(
$$

e

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\\
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} & \xi^{-1}
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\\
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} & \xi^{-1}
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1}
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi &
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array} \begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array} \begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{~s}_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
&
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left.\begin{array}{l}
{\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{cc}
\mathrm{e} & s_{2} \\
s_{2}
\end{array}\left(\begin{array}{c}
\mathrm{q}^{a}-\mathrm{q}^{-a} \\
\xi
\end{array}\right.} \\
\xi^{-1} \\
0
\end{array}\right)
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\mathrm{e} & s_{2} & \\
& &
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\mathrm{e} & s_{2} \\
& & \\
& &
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-\mathrm{a}} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ccc}
\mathrm{e} & s_{2} & \\
0 & 1 &
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
{\left[\pi_{0}\left(s_{1}\right)\right] } & =\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-\mathrm{a}} & \xi^{-1} \\
\xi & 0
\end{array}\right) \\
{\left[\pi_{0}\left(s_{1}\right)\right] } & =\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
0 & s_{2} & \\
& & 1
\end{array}\right)
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-\mathrm{a}} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ccc}
\mathrm{e} & s_{2} & \\
0 & 1 &
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-\mathrm{a}} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{llll}
\mathrm{e} & s_{2} & \\
1 & & 1
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-\mathrm{a}} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{llll}
\mathrm{e} & s_{2} & \\
1 & & 1
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& \left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array} \begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& \left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array} \begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2}
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{~s}_{2} \\
\mathrm{q}^{\mathrm{e}}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2}
\end{array}\right.}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & s_{2} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2}
\end{array}\right.}
\end{aligned}
$$

weight -1
weight 0
weight 1

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
0 & s_{2} \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{l}
\xi^{-1}
\end{array}\right.}
\end{aligned}
$$

weight 1

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)
$$

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\\
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)
$$

$$
\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{c}
\xi^{-1}
\end{array}\right.
$$

S_{2}

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}_{2}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi^{2}
\end{array}\right)} \\
& \left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2} \\
s_{2} \\
0 \\
0 \\
1
\end{array} \mathrm{q}^{\mathrm{b}}-\mathrm{s}_{2} \mathbf{q}^{-b}\right) \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\underset{s_{2}}{\mathrm{e}}{ }^{\mathrm{s}}{ }^{\xi^{-1}} \quad{ }^{\mathrm{e}}{ }^{-1} \mathrm{Q}_{b}^{s_{2}}}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}_{2}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi^{2}
\end{array}\right)} \\
& \left.\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2} \\
s_{2} \\
0 \\
0 \\
1
\end{array} \mathrm{q}^{\mathrm{b}}-\mathrm{s}_{2} \mathbf{q}^{-b}\right) \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\underset{s_{2}}{\mathrm{e}}{ }^{\mathrm{s}}{ }^{\xi^{-1}} \quad{ }^{\mathrm{e}}{ }^{-1} \mathrm{Q}_{b}^{s_{2}}}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{~s}_{2} \\
\mathrm{q}^{-}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{\mathrm{b}}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\underset{s_{2}}{\mathrm{e}}\left(\begin{array}{cc}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b}+\mathrm{Q}_{\mathrm{a}}
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{q}^{a}-\mathrm{q}^{-a} & s_{2} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b}+\mathrm{Q}_{a}
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e}_{2} & 1 \\
0 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b}+\mathrm{Q}_{a}
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\begin{aligned}
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{~s}_{2} \\
\mathrm{q}^{-}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{\mathrm{b}}-\mathrm{q}^{-b}
\end{array}\right)} \\
& {\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\underset{s_{2}}{\mathrm{e}}\left(\begin{array}{cc}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b}+\mathrm{Q}_{\mathrm{a}} \\
& \xi
\end{array}\right)}
\end{aligned}
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{v}), \theta(\vec{p})=\mathrm{v}} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left.\begin{array}{l}
{\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\mathrm{q}^{a}-\mathrm{q}^{-a} & \xi^{-1} \\
\xi & 0
\end{array}\right)} \\
{\left[\pi_{0}\left(s_{1}\right)\right]=\begin{array}{c}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
0 & s_{2} \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)} \\
{\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{c}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b} \\
0 & \xi
\end{array}+\mathrm{Q}_{a}\right.}
\end{array}\right) .
$$

A two-dimensional Γ_{0}-balanced representation of \tilde{A}_{1}

Let π_{0} be the 2×2 matrix representation over $R[\xi]$ defined by

$$
\left[\pi_{0}(w)\right]_{u, v}=\sum_{\vec{p} \in \mathcal{P}(u ; \vec{w}), \theta(\vec{p})=v} \mathcal{Q}(\vec{p}) \cdot \xi^{\mathrm{wt}(\vec{p})} \text { where } u, v \in\left\{\mathrm{e}, s_{2}\right\}
$$

Example:

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & \mathrm{q}^{\mathrm{a}}-\mathrm{q}^{-a} \\
\xi & \xi^{-1} \\
\xi
\end{array}\right)
$$

$$
\left[\pi_{0}\left(s_{1}\right)\right]=\begin{gathered}
\mathrm{e} \\
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
s_{2} \\
0 & 1 \\
1 & \mathrm{q}^{b}-\mathrm{q}^{-b}
\end{array}\right)
$$

$$
\left[\pi_{0}\left(s_{1} s_{2}\right)\right]=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\xi^{-1} & \xi^{-1} \mathrm{Q}_{b}+\mathrm{Q}_{\mathrm{a}} \\
0 & \xi
\end{array}\right)
$$

weight -1

weight -1
weight 0

Kazhdan-Lusztig cell decomposition

$$
a>b
$$

Kazhdan-Lusztig cell decomposition
$a>b$

Cell factorisation :

$$
\forall w \in \square, w=u^{-1} \cdot s_{1} \cdot t^{n} \cdot v \quad \text { where } u, v \in \mathrm{~B}=\left\{\mathrm{e}, s_{2}\right\}
$$

Kazhdan-Lusztig cell decomposition

$a>b$

Cell factorisation :

$$
\forall w \in \square, w=u^{-1} \cdot s_{1} \cdot t^{n} \cdot v \quad \text { where } u, v \in B=\left\{e, s_{2}\right\}
$$

Kazhdan-Lusztig cell decomposition

$a>b$

Cell factorisation :

$$
\forall w \in \square, w=u^{-1} \cdot s_{1} \cdot t^{n} \cdot v \quad \text { where } u, v \in B=\left\{e, s_{2}\right\}
$$

Kazhdan-Lusztig cell decomposition

$a>b$

Cell factorisation :

$$
\begin{aligned}
\forall w \in \square, w & =u^{-1} \cdot s_{1} \cdot t^{n} \cdot v \quad \text { where } u, v \in \mathrm{~B}=\left\{\mathrm{e}, s_{2}\right\} \\
& =\mathrm{u}_{w}^{-1} \cdot s_{1} \cdot t^{n} \cdot \mathrm{v}_{w}
\end{aligned}
$$

Kazhdan-Lusztig cell decomposition

$a>b$

Cell factorisation :

$$
\begin{aligned}
\forall w \in \square, w & =u^{-1} \cdot s_{1} \cdot t^{n} \cdot v \quad \text { where } u, v \in \mathrm{~B}=\left\{\mathrm{e}, s_{2}\right\} \\
& =\mathrm{u}_{w}^{-1} \cdot s_{1} \cdot t^{n} \cdot \mathrm{v}_{w}
\end{aligned}
$$

We have

$$
\begin{aligned}
& w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \mathrm{u}_{w}=\mathrm{u}_{w^{\prime}} \\
& w \sim_{\mathcal{L}} w^{\prime} \Longleftrightarrow \mathrm{v}_{w}=\mathrm{v}_{w^{\prime}}
\end{aligned}
$$

Leading matrices associated to π_{0}
Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}
$$

e

Leading matrices associated to π_{0}
Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} & \mathrm{~s}_{2} \\
s_{2}
\end{array}\left(\begin{array}{l}
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

Leading matrices associated to π_{0}
Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{c}
\mathrm{s}_{2} \\
\end{array}\right.
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}(
$$ e

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}(
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}(
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall :

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $w=s_{1} s_{2} s_{1} s_{2} s_{1}$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $w=s_{1} s_{2} s_{1} s_{2} s_{1}$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{ll}
\mathrm{e} & s_{2} \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{\uparrow} \rightsquigarrow \xi^{-2}\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right)$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{ccc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\xi^{-2} & & \\
& 0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{1} \rightsquigarrow \xi^{-2}\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right)$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{ccc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\xi^{-2} & & \\
& 0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{1}$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{ccc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\xi^{-2} & & \\
& 0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{1}$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{ccc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{lll}
\xi^{-2} & & \\
& 0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{1} \rightsquigarrow\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right)$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\xi^{-2}+1 & \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=s_{1} s_{2} s_{1} s_{2} s_{1} \rightsquigarrow\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right)$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\binom{\xi^{-2}+1}{0}
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall : $\quad w=\underset{\uparrow}{s_{1} s_{2} s_{1} s_{2} s_{1}}$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\xi^{-2}+1 & \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall :

$$
w=\underset{\uparrow}{s_{1} s_{2} s_{1} s_{2} s_{1}}
$$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\binom{\xi^{-2}+1}{0}
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall :

$$
w=\underset{\uparrow}{s_{1} s_{2} s_{1} s_{2} s_{1} \rightsquigarrow \xi^{2}\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right) .}
$$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot \mathrm{t}^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{array}{cc}
\mathrm{e} \\
s_{2}
\end{array}\left(\begin{array}{cc}
\xi^{-2}+1+\xi^{2} & \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall :

$$
w=\underset{\uparrow}{s_{1} s_{2} s_{1} s_{2} s_{1} \rightsquigarrow \xi^{2}\left(\mathrm{q}^{a}-\mathrm{q}^{-a}\right) .}
$$

Leading matrices associated to π_{0}

Let $w=s_{1} s_{2} s_{1} s_{2} s_{1}=s_{1} \cdot t^{2}$, we want compute

$$
\mathfrak{c}_{\pi_{0}}(w)=\begin{gathered}
\mathrm{e} \\
s_{2}
\end{gathered}\left(\begin{array}{cc}
\mathrm{e} & s_{2} \\
\xi^{-2}+1+\xi^{2} & 0 \\
0 & 0
\end{array}\right)
$$

Let $\vec{p} \in \mathcal{P}_{\mathrm{u}}(\mathrm{v} ; w)$ be a path that will contribute to $\mathfrak{c}_{\pi_{0}}(w)$:

- to reach the bound, \vec{p} needs to fold on an s_{1}-wall
- cannot fold if it starts on s_{2}
- \vec{p} can fold on $3 s_{1}$-wall :

Leading matrices associated with π_{0}

$$
\mathfrak{c}_{\pi_{0}}\left(\mathrm{u}^{-1} \cdot \boldsymbol{s}_{1} \cdot t^{n} \cdot \mathrm{v}\right)=\mathfrak{s}_{n}(\xi) E_{\mathrm{u}, \mathrm{v}}
$$

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w}
$$

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }^{\text {Spec }_{q^{-1}}=0}}{\Longrightarrow}
$$

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and } \operatorname{Spec}_{q^{-1}=0}}{\Longrightarrow} \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1}} \mathfrak{c}_{\pi_{0}}(w)
$$

Back to Lusztig's conjectures
P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow} \Longrightarrow_{\operatorname{pec}_{q^{-1}=0}} \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w-1} \mathfrak{c}_{\pi_{0}}(w) \\
\Longrightarrow \quad x, y \in \Gamma_{0}
\end{gathered}
$$

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow}{ }_{\text {pec }}^{q^{-1}=0} \\
\\
\Longrightarrow \quad \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1}} \mathfrak{c}_{\pi_{0}}(w) \\
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{x}} \cdot \mathrm{v}_{x} \\ y=\mathrm{u}_{y}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{y}} \cdot \mathrm{v}_{y} \\ z=\mathrm{u}_{z}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{z}} \cdot \mathrm{v}_{z}\end{array}\right.$

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow}{ }_{\text {spec }}^{q^{-1}=0} \\
\Longrightarrow \quad x, y \in \Gamma_{0}
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{x}} \cdot \mathrm{v}_{x} \\ y=u_{y}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{y}} \cdot \mathrm{v}_{y} \\ z=\mathrm{u}_{z}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{z}} \cdot \mathrm{v}_{z}\end{array} \quad\right.$ and recall $\quad \begin{array}{l}w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \mathrm{u}_{w}=\mathrm{u}_{w^{\prime}} \\ \mathrm{L}\end{array} \mathrm{w}^{\prime} \Longleftrightarrow \Longleftrightarrow \mathrm{v}_{w}=\mathrm{v}_{w^{\prime}}$

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow \quad} \quad \mathfrak{c}_{\operatorname{pec}_{q^{-1}}=0}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w-1} \mathfrak{c}_{\pi_{0}}(w) \\
\Longrightarrow \quad x, y \in \Gamma_{0}
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot t^{n_{x}} \cdot v_{x} \\ y=u_{y}^{-1} \cdot s_{1} \cdot t^{n_{y}} \cdot v_{y} \\ z=u_{z}^{-1} \cdot s_{1} \cdot t^{n_{z}} \cdot v_{z}\end{array} \quad\right.$ and recall $\quad \begin{array}{l}w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \sim_{\mathcal{L}} w^{\prime} \Longleftrightarrow u_{w}=u_{w^{\prime}} \\ w v_{w}=v_{w^{\prime}}\end{array}$

$$
\mathfrak{s}_{n_{x}}(\xi) \mathfrak{s}_{n_{y}}(\xi) E_{u_{x}, v_{x}} E_{u_{y}, v_{y}}=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1} \mathfrak{s}_{n_{w}}}(\xi) E_{u_{w}, v_{w}}
$$

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow}{\underset{\text { pece}}{q^{-1}=0}}^{\Longrightarrow} \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1}} \mathfrak{c}_{\pi_{0}}(w) \\
\Longrightarrow \quad x, y \in \Gamma_{0}
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot t^{n_{x}} \cdot v_{x} \\ y=u_{y}^{-1} \cdot s_{1} \cdot t^{n_{y}} \cdot v_{y} \\ z=u_{z}^{-1} \cdot s_{1} \cdot t^{n_{z}} \cdot v_{z}\end{array} \quad\right.$ and recall $\quad \begin{array}{l}w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \sim_{\mathcal{L}} w^{\prime} \Longleftrightarrow u_{w}=u_{w^{\prime}} \\ w v_{w}=v_{w^{\prime}}\end{array}$

$$
\mathfrak{s}_{n_{x}}(\xi) \mathfrak{s}_{n_{y}}(\xi) E_{\mathrm{u}_{x}, \mathrm{v}_{x}} E_{\mathrm{u}_{y}, \mathrm{v}_{y}}=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1} \mathfrak{s}_{n_{w}}}(\xi) E_{\mathrm{u}_{w}, \mathrm{v}_{w}}
$$

- The RHS is non-zero so that $v_{x}=u_{y}$ i.e. $x \sim_{\mathcal{L}} y^{-1}$.

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow \quad \underset{\sec _{q^{-1}}=0}{ }} \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1}} \mathfrak{c}_{\pi_{0}}(w) \\
\Longrightarrow \quad x, y \in \Gamma_{0}
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{x}} \cdot \mathrm{v}_{x} \\ y=u_{y}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{y}} \cdot \mathrm{v}_{y} \\ z=\mathrm{u}_{z}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{z}} \cdot \mathrm{v}_{z}\end{array} \quad\right.$ and recall $\quad \begin{array}{l}w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \\ w \sim_{\mathcal{L}} w^{\prime}\end{array} \Longleftrightarrow \mathrm{u}_{w}=\mathrm{u}_{w^{\prime}}$

$$
\mathfrak{s}_{n_{x}}(\xi) \mathfrak{s}_{n_{y}}(\xi) E_{\mathrm{u}_{x}, \mathrm{v}_{x}} E_{\mathrm{u}_{y}, \mathrm{v}_{y}}=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1} \mathfrak{s}_{n_{w}}}(\xi) E_{\mathrm{u}_{w}, \mathrm{v}_{w}}
$$

- The RHS is non-zero so that $v_{x}=u_{y}$ i.e. $x \sim_{\mathcal{L}} y^{-1}$.
- For $E_{\mathrm{u}_{z}, v_{z}}$ to appear on the RHS, must have $u_{z}=u_{x}$ and $v_{z}=v_{y}$:

Back to Lusztig's conjectures

P8: if $\gamma_{x, y, z^{-1}} \neq 0$ then $x \sim_{\mathcal{R}} z, y \sim_{\mathcal{L}} z$ and $x \sim_{\mathcal{L}} y^{-1}$
Let $z \in \Gamma_{0}$ and suppose that $\gamma_{x, y, z^{-1}} \neq 0$.

$$
\begin{gathered}
C_{x} C_{y}=\sum_{w \in W} h_{x, y, w} C_{w} \underset{\pi_{0} \text { and }}{\Longrightarrow \quad} \underset{\operatorname{spec}_{q^{-1}=0}}{\Longrightarrow} \mathfrak{c}_{\pi_{0}}(x) \mathfrak{c}_{\pi_{0}}(y)=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1}} \mathfrak{c}_{\pi_{0}}(w) \\
\Longrightarrow \quad y \in \Gamma_{0}
\end{gathered}
$$

Write $\left\{\begin{array}{l}x=u_{x}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{x}} \cdot \mathrm{v}_{x} \\ y=u_{y}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{y}} \cdot \mathrm{v}_{y} \\ z=\mathrm{u}_{z}^{-1} \cdot s_{1} \cdot \mathrm{t}^{n_{z}} \cdot \mathrm{v}_{z}\end{array} \quad\right.$ and recall $\quad \begin{array}{l}w \sim_{\mathcal{R}} w^{\prime} \Longleftrightarrow \\ w \sim_{\mathcal{L}} w^{\prime}\end{array} \Longleftrightarrow \mathrm{u}_{w}=\mathrm{u}_{w^{\prime}}$

$$
\mathfrak{s}_{n_{x}}(\xi) \mathfrak{s}_{n_{y}}(\xi) E_{\mathrm{u}_{x}, \mathrm{v}_{x}} E_{\mathrm{u}_{y}, \mathrm{v}_{y}}=\sum_{w \in \Gamma_{0}} \gamma_{x, y, w^{-1} \mathfrak{s}_{n_{w}}}(\xi) E_{\mathrm{u}_{w}, \mathrm{v}_{w}}
$$

- The RHS is non-zero so that $v_{x}=u_{y}$ i.e. $x \sim_{\mathcal{L}} y^{-1}$.
- For $E_{\mathrm{u}_{z}, v_{z}}$ to appear on the RHS, must have $u_{z}=u_{x}$ and $v_{z}=v_{y}$:

$$
x \sim_{\mathcal{R}} z \quad \text { and } \quad y \sim_{\mathcal{L}} z
$$

