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We have L(w) = #s1 · a+#s2 · b.

• The Hecke algebra H is defined over R = Z[q, q−1] with basis (Tw )w∈W

TwTs =

{

Tws if ℓ(ws) > ℓ(w)

Tws + (qL(s) − q−L(s))Tw if ℓ(ws) < ℓ(w)

 Ts is invertible with inverse T−1
s = Ts − (qL(s) − q−L(s))

 we have(Ts − qL(s))(Ts + q−L(s)) = 0
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The -̄involution q→ q−1 on R extends to H:

∑

awTw 7−→
∑

awT
−1
w−1

There exists a unique basis (Cw )w∈W that satisfies

• Cw = Cw

• Cw = Tw +
∑

y∈W ,ℓ(y)<ℓ(w)

Py,wTy where Py,w ∈ q−1
Z[q−1]

Example: If s ∈ S with L(s) = a we have Cs = Ts + q−a. Indeed

C s = T s + q−a = T−1
s + qa = (Ts − (qa − q−a)) + qa = Cs

Kazhdan-Lusztig basis
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Let hx,y,z be the structure constants associated to the KL-basis:

CxCy =
∑

z∈W

hx,y,zCz

Define a : W −→ N by

a(z) = min
{
n ∈ N | q−nhx,y,z ∈ Z[q−1] for all x , y ∈W

}

= max{degq(hx,y,z ) | x , y ∈W )}

Let γx,y,z−1 ∈ Z be such that

hx,y,z = γx,y,z−1qa(z) + lower powers

If γx,y,z−1 6= 0 then z ≤R x and z ≤L y

Careful! One may have hx ,y ,z 6= 0 with γx ,y ,z−1 = 0

Lusztig a-function
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15 conjectures known as P1–P15.

P4. if z ≤LR z ′ then a(z) ≥ a(z ′)

P7. γx,y,z = γz,x,y = γy,z,x

P8. if γx,y,z−1 6= 0 then x ∼R z , y ∼L z and x ∼L y−1

P9. If z ′ ≤L z and a(z ′) = a(z), then z ′ ∼L z

P14. For each z ∈ W we have z ∼LR z−1.
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State of the art

Lusztig conjectures are known to hold for

• the equal parameter case where there is a geometric interpretation
and some positivity properties (Lusztig, Elias-Williamson)

• the quasisplit case where a geometric interpretation is also
available (Lusztig, Elias-Williamson)

• finite dihedral type and infinite dihedral type for arbitrary
parameters (Geck, Lusztig)

• universal Coxeter groups for arbitrary parameters (Shi-Yang)

• type Bn in the “asymptotic” case (Bonnafé, Geck, Iancu)

• F4 for arbitrary parameters, Bn for n ≤ 5 (Geck)

Theorem. (G.,Parkinson 2018)

Lusztig conjectures P1–P15 holds in affine Weyl groups of
rank 2 for any choices of parameters.
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A family of matrix representations (πΓ)Γ∈Λ of H defined over a
Z[q, q−1]-polynomial ring such that (among other things)

• πΓ(Cw ) = 0 whenever w <LR Γ or if w is not comparable to Γ
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A positively folded alcove path ~p of shape s2s1s2 starting at e:

• •• •• •• •• •• ••
e s2s1s2

We have end(~p) = s2s1s2 = t1s2 and we set

wt(~p) = 1, θ(~p) = s2, Q(~p) = 1

A positively folded alcove path ~p of shape s1s2s1s2s1s2, starting at s1s2:

• •• •• •• •• •• ••
es1s2

We have end(~p) = s1s2s1 = t−2s2

Positively folded alcove paths



A positively folded alcove path ~p of shape s2s1s2 starting at e:

• •• •• •• •• •• ••
e s2s1s2

We have end(~p) = s2s1s2 = t1s2 and we set

wt(~p) = 1, θ(~p) = s2, Q(~p) = 1

A positively folded alcove path ~p of shape s1s2s1s2s1s2, starting at s1s2:

• •• •• •• •• •• ••
es1s2

We have end(~p) = s1s2s1 = t−2s2 and we set

wt(~p) = −2, θ(~p) = s2, Q(~p) = qb − q−b

Positively folded alcove paths



A positively folded alcove path ~p of shape s2s1s2 starting at e:

• •• •• •• •• •• ••
e s2s1s2

We have end(~p) = s2s1s2 = t1s2 and we set

wt(~p) = 1, θ(~p) = s2, Q(~p) = 1

A positively folded alcove path ~p of shape s1s2s1s2s1s2, starting at s1s2:

• •• •• •• •• •• ••
es1s2

We have end(~p) = s1s2s1 = t−2s2 and we set

wt(~p) = −2, θ(~p) = s2, Q(~p) = qb − q−b

P(u; ~w) = {positively alcove path starting at u}

Positively folded alcove paths



A two-dimensional Γ0-balanced representation of Ã1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

A two-dimensional Γ0-balanced representation of Ã1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

A two-dimensional Γ0-balanced representation of Ã1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
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~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e
s2

A two-dimensional Γ0-balanced representation of Ã1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e
s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:
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e s2
( )

e
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A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e ξ-1
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A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e ξ-1

s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
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~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =
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e qa − q−a ξ-1
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A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
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e qa − q−a ξ-1
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A two-dimensional Γ0-balanced representation of Ã1
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• •• •• •
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by
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Example:
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e
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A two-dimensional Γ0-balanced representation of Ã1
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
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e
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A two-dimensional Γ0-balanced representation of Ã1

s2e
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =

e s2
( )
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A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}
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[π0(s1)] =
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A two-dimensional Γ0-balanced representation of Ã1
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s2e
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weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by
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e s2
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Example:
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v
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Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =

e s2
( )

e 0 1
s2 1 qb − q−b

[π0(s1s2)] =

e s2
( )

e
s2

A two-dimensional Γ0-balanced representation of Ã1
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[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v
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Example:
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:
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( )

e 0 1
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[π0(s1s2)] =
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s2e

• •• •• •
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s2e

• •• •• •
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s2e

• •• •• • •
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0
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( )

e 0 1
s2 1 qb − q−b

[π0(s1s2)] =
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e ξ−1 ξ−1Qb
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s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• •

weight 0weight -1 weight 1
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• •• •• • •
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =
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( )

e 0 1
s2 1 qb − q−b

[π0(s1s2)] =
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A two-dimensional Γ0-balanced representation of Ã1
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =
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( )

e 0 1
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s2
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• •• •• •
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Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =

e s2
( )

e 0 1
s2 1 qb − q−b

[π0(s1s2)] =

e s2
( )

e ξ−1 ξ−1Qb + Qa

s2

A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• • •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =

e s2
( )

e 0 1
s2 1 qb − q−b

[π0(s1s2)] =

e s2
( )

e ξ−1 ξ−1Qb + Qa
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A two-dimensional Γ0-balanced representation of Ã1

s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• •

weight 0weight -1 weight 1

s2e

• •• •• • •

weight 0weight -1 weight 1



Let π0 be the 2× 2 matrix representation over R[ξ] defined by

[π0(w)]u,v =
∑

~p∈P(u;~w),θ(~p)=v

Q(~p) · ξwt(~p) where u, v ∈ {e, s2}

Example:

[π0(s1)] =

e s2
( )

e qa − q−a ξ-1

s2 ξ 0

[π0(s1)] =
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( )
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a > b
s2e s2s1s1

• •• •• •• •• • •
w1w2

︸ ︷︷ ︸

elements of the form s2 · s1 · t
n · v

︸ ︷︷ ︸
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cπ0(w) =

e s2( )
e
s2

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute

cπ0(w) =

e s2( )
e
s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute

cπ0(w) =

e s2( )
e
s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute
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cπ0(w) =

e s2( )
e
s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• ~p can fold on 3 s1-wall : w = s1s2s1s2s1
↑

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute
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↑
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Let w = s1s2s1s2s1 = s1 · t
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cπ0(w) =

e s2( )
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Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :
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• cannot fold if it starts on s2

• ~p can fold on 3 s1-wall : w = s1
↑
s2s1s2s1

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute

cπ0(w) =

e s2( )
e ξ−2 + 1
s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• ~p can fold on 3 s1-wall : w = s1
↑
s2s1s2s1  ξ2(qa − q−a)

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute

cπ0(w) =

e s2( )
e ξ−2 + 1 + ξ2

s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• ~p can fold on 3 s1-wall : w = s1
↑
s2s1s2s1  ξ2(qa − q−a)

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated to π0

Let w = s1s2s1s2s1 = s1 · t
2, we want compute

cπ0(w) =

e s2( )
e ξ−2 + 1 + ξ2 0
s2 0 0

Let ~p ∈ Pu(v;w) be a path that will contribute to cπ0(w) :

• to reach the bound, ~p needs to fold on an s1-wall

• cannot fold if it starts on s2

• ~p can fold on 3 s1-wall : w = s1
↑
s2s1s2s1  ξ2(qa − q−a)

• •• •• •• •• •• • •

weight 0weight −2 weight 2



Leading matrices associated with π0

cπ0(e · s1 · t
2 · e) cπ0(e · s1 · t

2 · s2)

  

e s2
( )

e ξ−2 + 1 + ξ2 0

s2 0 0

e s2
( )

e 0 ξ−2 + 1 + ξ2

s2 0 0

e s2
( )

e 0 0

s2 ξ−2 + 1 + ξ2 0

e s2
( )

e 0 0

s2 0 ξ−2 + 1 + ξ2

  

cπ0(s2 · s1 · t
2 · e) cπ0(s2 · s1 · t

2 · s2)



Leading matrices associated with π0

cπ0(e · s1 · t
2 · e) cπ0(e · s1 · t

2 · s2)

  

e s2
( )

e s2(ξ) 0

s2 0 0

e s2
( )

e 0 s2(ξ)

s2 0 0

e s2
( )

e 0 0

s2 s2(ξ) 0

e s2
( )

e 0 0

s2 0 s2(ξ)

  

cπ0(s2 · s1 · t
2 · e) cπ0(s2 · s1 · t

2 · s2)



Leading matrices associated with π0

cπ0(e · s1 · t
n · e) cπ0(e · s1 · t

n · s2)

  

e s2
( )

e sn(ξ) 0

s2 0 0

e s2
( )

e 0 sn(ξ)

s2 0 0

e s2
( )

e 0 0

s2 sn(ξ) 0

e s2
( )

e 0 0

s2 0 sn(ξ)

  

cπ0(s2 · s1 · t
n · e) cπ0(s2 · s1 · t

n · s2)



Leading matrices associated with π0

cπ0(e · s1 · t
n · e) cπ0(e · s1 · t

n · s2)

  

e s2
( )

e sn(ξ) 0

s2 0 0

e s2
( )

e 0 sn(ξ)

s2 0 0

e s2
( )

e 0 0

s2 sn(ξ) 0

e s2
( )

e 0 0

s2 0 sn(ξ)

  

cπ0(s2 · s1 · t
n · e) cπ0(s2 · s1 · t

n · s2)

cπ0(u
−1 · s1 · t

n · v) = sn(ξ)Eu,v
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Let z ∈ Γ0 and suppose that γx,y,z−1 6= 0.

CxCy =
∑

w∈W

hx,y,wCw =⇒
π0 and Specq-1=0
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x ∼R z and y ∼L z


