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e The Hecke algebra # is defined over R = Z[q,q~!] with basis (Tw)wew

Toe if {(ws) > {(w)
TW TS pr— -
Tws + (qL(s) - qu(S))TW if g(WS) < é(W)

~~ Ty is invertible with inverse T; 1 = T, — (q1(9) — q=L(5))

~ we have(T; — g-C)(Ts + gLy =0
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Kazhdan-Lusztig basis
The -involution g = q~* on R extends to #:

> awTwr— > 3, T4
There exists a unique basis (C, )wew that satisfies
° ?W - CW

e Cp=T,+ Z Py wT, where P, ,, € q~*Z[q7?]
yEW L(y)<L(w)

Example: If s € S with L(s) = a we have C; = Ts +q 2. Indeed

Co=To+q =T, '+¢ =(Ts—(@—q ) +d° =G
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Define a pre-order by extending:

x<py <= 3heMwith hC, = a,C, and a, # 0

Define the associated equivalence relation by
x~erYy &= x<cry and y <;px

The equivalence classes are the two-sided cells of W.

One can define <, ~%, <, and ~/ similarly.
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Lusztig a-function

Let hy,y . be the structure constants associated to the KL-basis:

GG = hey:C
zeW

Definea: W — N by

a(z) = min {n eN|q "he,,, € Zlq M for all x,y € W}
= maX{degq(hx,y,z) | X,y € W)}

Let 7., ,—1 € Z be such that
hey,z = Vxy,z—1 qa(z) + lower powers

If Vx,y,z=1 #0thenz<g xand z<,y

Careful! One may have hy, , # 0 with v, ,-1 =0
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15 conjectures known as P1-P15.

P4. if z <;r z’ then a(z) > a(Z’)

PT. Yxyz = Vzxy = Vy.zx

P8. if v,y .1 #0then x ~g z, y ~z zand x ~p y !

P9. If 2 </ z and a(Zz’) = a(z), then 2/ ~ z

P14. For each z € W we have z ~,y z7 1.
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State of the art

Lusztig conjectures are known to hold for

e the equal parameter case where there is a geometric interpretation
and some positivity properties (LUSZTIG, ELIAS-WILLIAMSON)

e the quasisplit case where a geometric interpretation is also
available (LuszTiG, ELIAS-WILLIAMSON)

o finite dihedral type and infinite dihedral type for arbitrary
parameters (GECK, LUSZTIG)

o universal Coxeter groups for arbitrary parameters (SHI-YANG)
e type B, in the “asymptotic” case (BONNAFE, GECK, IANCU)

e F, for arbitrary parameters, B, for n <5 (GECK)

Theorem. (G.,PARKINSON 2018)

Lusztig conjectures P1-P15 holds in affine Weyl groups of
rank 2 for any choices of parameters.
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Balanced system of cell representations
A family of matrix representations (), of H defined over a
Z[q,q~!]-polynomial ring such that (among other things)

o 7r(C,) = 0 whenever w <% I or if w is not comparable to I’
o ar = max{degq ([rr(Tw)l;,) | w e W} is well-defined
Set  ¢r(w) = Spec‘rlz(J (q_arwr(TW)>
o cr(w)#0ifand only if w e T.
o the leading matrices cr(w) (w € I') are free over Z
ear<apifl"<grTl
Example: If ar = a and mr is defined over Z[q,q~!][¢]
7 (Ta) = ( et ) - er(w) = (53 % 3)

¢ 0

[ Theorem. If such a system exists then ar = a(I') for all T € A
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A positively folded alcove path p of shape s>s;s; starting at e:
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wi(B) =1, 6(F)=s:, Q(F)=1
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Let mp be the 2 X 2 matrix representation over R[&] defined by
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Leading matrices associated with g

Cro(e 51712 - )

$

e
e (241482
sz< 0

2

Cro(e - 5112+ 5)

$

e S2

e [0 &£2414¢2
S 0 0

e 0
) 572+1+52

Cro(s2- 512 €)

2

y

e S2

e (0 0
5 \0 €241+

§
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S e 2
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