Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash

Marion CHOMMAUX

LMA, Université de Poitiers, France

November 8, 2018

Introduction

- F : local non-archimedean local field, $\operatorname{char}(F) \neq 2$
- E / F : quadratic extension and $N_{E / F}$ its norm map
- D : central division F-algebra of dimension d^{2}

For $n \geq 1, \mathcal{M}_{n}(D)$ is a central simple F-algebra of dimension $n^{2} d^{2}$. E is embedded in $\mathcal{M}_{n}(D)$ as an F-subalgebra if and only if $n d$ is even.

- For nd even, $C_{\mathcal{M}_{n}(D)}(E)$: centralizer of E in $\mathcal{M}_{n}(D)$
- If d is even, $C_{\mathcal{M}_{n}(D)}(E)=\mathcal{M}_{n}\left(C_{D}(E)\right)$.
- If d is odd and n is even, $C_{\mathcal{M}_{n}(D)}(E)=\mathcal{M}_{\frac{n}{2}}\left(D \otimes_{F} E\right)$.

Introduction

Definition

For G a locally profinite group, a representation $\pi: G \rightarrow G L_{\mathbb{C}}(V)$ is said to be smooth if $\operatorname{Stab}_{G}(v)=\{g \in G \mid \pi(g) \cdot v=v\}$ is open for all v in V.

All representations are considered smooth on complex vector spaces.

Introduction

- $G=G L(n, D)$ and $N_{r d, F}$ its reduced norm
- $H=\left(C_{\mathcal{M}_{n}(D)}(E)\right)^{\times}$
- For χ a character of F^{*}, we set $\tilde{\chi}=\chi \circ N_{r d, F}$.

Definition

For χ a character of F^{*}, we denote $\operatorname{St}(\chi)=\operatorname{St}(n, \chi)$ the Steinberg representation of G :

$$
\operatorname{St}(\chi)=\operatorname{ind}_{P_{\emptyset}}^{G}(\tilde{\chi}) / \sum_{P} \operatorname{ind}_{P}^{G}(\tilde{\chi})
$$

where P_{\emptyset} denotes the minimal standard parabolic subgroup of G and the standard parabolic subgroups P in the sum correspond to a partition of n with all elements equal to 1 except one of them which is equal to 2.

Introduction

Definition

A representation (π, V) of G is said to be H-distinguished if $\operatorname{Hom}_{H}(\pi, \mathbb{1}) \neq\{0\}$ or equivalently if there exists a non-zero linear form L on V such that

$$
L(\pi(h) \cdot v)=L(v) \forall v \in V, \forall h \in H
$$

Introduction

Questions:
According to χ, when is the Steinberg representation $\operatorname{St}(\chi)$ H-distinguished ?

Does it satisfy the conjecture of Prasad and Takloo-Bighash?

Case d even

Preliminaries

- As F is of characteristic not 2 , there exists $\delta \in E$ with $\delta^{2} \in F$ such that $E=F[\delta]$.
- As E is quadratic and d (the index of D) is even, E can be seen as a subfield of D.
- $C_{D}(E)$, the centralizer of E in D, is a central division E-algebra of dimension $\frac{d^{2}}{4}$ and $C_{D}(E)=D^{i n t(\delta)}$.
- $C_{\mathcal{M}_{n}(D)}(E)=\mathcal{M}_{n}\left(C_{D}(E)\right)=\mathcal{M}_{n}\left(D^{\text {int }(\delta)}\right)$.
- We set $\sigma=\operatorname{int}(\delta)$ which is an involution of $G=G L(n, D)$. Then, $H=\left(C_{\mathcal{M}_{n}(D)}(E)\right)^{\times}=G^{\sigma}$.

Case d even

Let P be a standard parabolic subgroup of G, associated to a partition $\bar{n}=\left(n_{1}, \ldots, n_{r}\right)$ of n.

$$
P=\left(\right)
$$

with $A_{1} \in G L\left(n_{1}, D\right), \ldots, A_{r} \in G L\left(n_{r}, D\right)$.

Case d even

Representatives of $P \backslash G / H$

Proposition

We have a finite (and explicit) set of representatives of the double cosets $P \backslash G / H$.

We set $u_{1}=\left(\begin{array}{lll} & & 1 \\ 1 & .\end{array}\right)$ the representative of the open double coset $P_{\emptyset} u_{1} H$.

Case d even
 Distinction of $\operatorname{St}(\chi)$

Theorem

Suppose that $S t(\chi)$ is H -distinguished. Then, ind ${ }_{P_{\emptyset}}^{G}(\tilde{\chi})$ is H-distinguished, $\chi^{2}=1$ if n is even and $\chi \circ N_{E / F}=1$ otherwise. Moreover, only the open orbit $P_{\emptyset} u_{1} H$ supports a H-equivariant linear form and $\operatorname{dim}\left(\operatorname{Hom}_{H}(\operatorname{St}(\chi, 1))\right)=1$.

Some elements of the proof:

- Short exact sequence:
$0 \longrightarrow \sum_{P} \operatorname{ind}_{P}^{G}(\tilde{\chi}) \longrightarrow \operatorname{ind}_{P_{\emptyset}}^{G}(\tilde{\chi}) \longrightarrow \operatorname{St}(\chi) \longrightarrow 0$
- We have a filtration of H -modules:

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{r-1} \subset V_{r}=\operatorname{ind}_{P_{\varnothing}}^{G}(\tilde{\chi})
$$

with $V_{s}=\mathcal{C}_{c}^{\infty}\left(P_{\emptyset} \backslash \bigcup_{i=1}^{s} P_{\emptyset} u_{i} H, \tilde{\chi}\right)$ such that $\operatorname{Hom}_{H}\left(V_{i+1} / V_{i}, \mathbb{C}\right)=0$ for $i \geq 1$ and $\operatorname{dim}\left(\operatorname{Hom}_{H}\left(V_{1}, \mathbb{C}\right)\right)=1$.

Case d even
 Distinction of $\operatorname{St}(\chi)$

Theorem (C.)

- If n is odd, $S t(\chi)$ is H -distinguished if and only if $\chi \circ N_{E / F}=1$.
- If n is even, $\operatorname{St}(\chi)$ is H -distinguished if and only if $\chi^{2}=1$ and $\chi \circ N_{E / F} \neq 1$.

Case d odd and n even

Preliminaries

- $n=2 m$
- $D \otimes_{F} E$ is a central division E-algebra of dimension d^{2}. Then, $D \otimes_{F} E$ is 2-dimensional over D so there exists $\delta \in\left(D \otimes_{F} E\right) \backslash D$ such that $D \otimes_{F} E=D \bigoplus \delta D$ as a right- D-vector space.
- Let $\left(e_{1}, \ldots, e_{m}\right)$ be the canonical basis of $\left(D \otimes_{F} E\right)^{m}$. Then, $\left(D \otimes_{F} E\right)^{m}$ identifies with $D^{2 m}$ via the basis $\mathcal{B}=\left(e_{1} \ldots, e_{m}, \delta e_{m}, \ldots, \delta e_{1}\right)$ of $D^{2 m}$.

Case d odd and n even

Preliminaries

- An application $u \in \operatorname{End}\left(\left(D \otimes_{F} E\right)^{m}\right)_{D}$ is right- $D \otimes_{F} E$-linear if and only if u commutes with the multiplication by δ whose matrix in \mathcal{B} is

Case d odd and n even

Preliminaries

- $E \longrightarrow \mathcal{M}_{n}(D)$

- $g \in C_{\mathcal{M}_{n}(D)}(E)$ if and only if $g \in \mathcal{M}_{m}\left(D \otimes_{F} E\right)$ so $H=\left(C_{\mathcal{M}_{n}(D)}(E)\right)^{\times}=G L\left(m, D \otimes_{F} E\right)=G^{\sigma}$ with $\sigma=\operatorname{int}_{U_{\Delta}}$.

Case d odd and n even

Distinction of $\operatorname{St}(\chi)$

Theorem (C.)
 $S t(\chi)$ is H-distinguished if and only if $\chi^{2}=1$ and $\chi \circ N_{E / F} \neq 1$.

A conjecture of Prasad and Takloo-Bighash

Some definitions and correspondences

Definition

Let G be a locally profinite group, (π, V) a smooth irreducible representation of G with unitary central character and $\left(\pi^{\tau}, V^{Y}\right)$ its contragredient. π is said to be square integrable if there exists $v \in V, v^{`} \in V^{\vee}$ such that $g \mapsto\left|<v^{\check{\prime}}, \pi(g) \cdot v>\right|^{2}$ is a function of $Z \backslash G$ which is integrable on $Z \backslash G$.

A conjecture of Prasad and Takloo-Bighash

 Some definitions and correspondences
The Jacquet-Langlands correspondence

For D a central division F-algebra of dimension d^{2}, there is a bijection:

$$
\left\{\begin{array}{c}
\text { equivalent classes } \\
\text { of square integrable } \\
\text { representations of } G L(n, D)
\end{array}\right\} \xrightarrow{\Delta L}\left\{\begin{array}{c}
\text { equivalent classes } \\
\text { of square integrable } \\
\text { representations of } G L(n d, F)
\end{array}\right\}
$$

A conjecture of Prasad and Takloo-Bighash

 Some definitions and correspondences
The local Langlands correspondence

There is a bijection

$$
\left\{\begin{array}{c}
\text { equivalent classes of } \\
\text { irreducible representations } \\
\text { of } G L(n, F)
\end{array}\right\} \xrightarrow{C L L}\left\{\begin{array}{c}
\text { equivalent classes of } n \text {-dimensional } \\
\text { semisimple representations } \\
\text { of the Weil-Deligne group of } F: \\
W_{F}^{\prime}=W_{F} \times S L(2, \mathbb{C})
\end{array}\right\}
$$

The image of an irreducible smooth representation π of $G L(n, F)$ is called the Langlands parameter of π.

A conjecture of Prasad and Takloo-Bighash

Definition

An irreducible smooth representation π of $G L(n, D)$ is said to be symplectic if the Langlands parameter Ψ of $J L(\pi)$ satisfies: there exists $<\cdot, \cdot>$ a nondegenerate alternating bilinear form on \mathbb{C}^{n} such that $\left.\forall w \in W_{F}^{\prime}, \forall v, v^{\prime} \in \mathbb{C}^{n},<\Psi(w) \cdot v, \Psi(w) \cdot v^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle$.

A conjecture of Prasad and Takloo-Bighash

 The conjecture- $B C_{E}$: the base change to E

Conjecture of Prasad and Takloo-Bighash, 2011

Let π be a square integrable representation of $G=G L(n, D)$. Then, π is H -distinguished if and only if it is symplectic and $\epsilon\left(\frac{1}{2}, B C_{E}(\pi)\right)=(-1)^{n}$.

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$

$$
\begin{gathered}
\text { St }(n, \chi) \\
\text { rep. of } G L(n, D)
\end{gathered}
$$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$
$\underset{\text { rep. of } G L(n, D)}{\operatorname{St}(n, \chi)} \xrightarrow{J L} \xrightarrow[\text { rep. of } G L(n d, F)]{ } \begin{gathered}\operatorname{St}(n d, \chi)\end{gathered}$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$
$\underset{\text { rep. of } G L(n, D)}{S t(n, \chi)} \xrightarrow[\text { rep. of } G L(n d, F)]{ } \xrightarrow{S L} \begin{aligned} & \operatorname{SLL}(n d, \chi) \\ & \text { rep. of } W_{F}^{\prime}\end{aligned}$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$
$\underset{\text { rep. of } G L(n, D)}{S t(n, \chi)} \xrightarrow{J L} \underset{\text { rep. of } G L(n d, F)}{ } \xrightarrow{C L(n d, \chi)} \begin{array}{r}\text { rep. of } W_{F}^{\prime}\end{array}$

$$
B C_{E}
$$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$
$\underset{\text { rep. of } G L(n, D)}{S t(n, \chi)} \xrightarrow[\text { rep. of } G L(n d, F)]{ } \xrightarrow{S L} \begin{aligned} & \operatorname{SL}(n d, \chi) \\ & \text { rep. of } W_{F}^{\prime}\end{aligned}$

$$
\begin{aligned}
& \mathrm{BC}_{E} \\
& \chi_{E} \otimes S p(n d) \\
& \text { rep. of } W_{E}^{\prime}
\end{aligned}
$$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

- $S p(n)$: the unique irreducible representation of $S L(2, \mathbb{C})$ of dimension n
- $\chi_{E}:=\chi \circ N_{E / F}$
$\underset{\text { rep. of } G L(n, D)}{S t(n, \chi)} \xrightarrow{J L} \underset{\text { rep. of } G L(n d, F)}{ } \xrightarrow{C L(n d, \chi)} \begin{array}{r}\chi \otimes \operatorname{sep}(n d) \\ \text { rep. of } W_{F}^{\prime}\end{array}$
$\downarrow B C_{E}$

$$
\begin{gathered}
S t\left(n d, \chi_{E}\right) \\
\text { rep. of } G L(n d, E)
\end{gathered} \stackrel{C L L^{-1}}{\longleftarrow} \chi_{E} \otimes S p(n d)
$$

A conjecture of Prasad and Takloo-Bighash

The conjecture in the Steinberg case

Theorem (C.)

St (n, χ) is H -distinguished if and only if it is symplectic and $\epsilon\left(\frac{1}{2}, B C_{E}(S t(n, \chi))\right)=(-1)^{n}$.

