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The stable Kronecker coefficients equal dimensions of homo-
morphism spaces for path-theoretic Ps(n)-modules:

E()H K, V) = dimC(HomPs(n)(AS(:u’)? AS(V \ )‘)))

e Oscillating/up-down tableaux hold a distinguished position
in the study of tensor product decompositions.

o Never been used to calculate Kronecker coefficients.

e The oscillating tableaux in Ps(n)-branching graph give a new
combinatorial viewpoint for stable Kronecker coefficients.

e Plus we benefit from the extra Ps(n)-structure.
e We can define local operators on paths.

e And hence calculate g(\, p, ) via combinatorial resolutions.
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This lecture

e last lecture we saw that

c(\, p, v) = dimg(Homee, (As(1), As(v \ N)))

equals the number of p-orbits of paths in Young's graph sat-
isfying semistandard and lattice permutation conditions.

e We think of Young's graph as a subgraph of the branching
graph of Ps(n)

e Today, we shall consider the wider graph.

e We put a restriction on the triple (A, i, v) so that all u-
tableaux of shape v\ A trivially satisfy the semistandard
condition, this simplification allows us to fully understand
the lattice permutation condition.

e And so we generalise one half of the Littlewood—Richardson
rule to the Ps(n)-branching graph.

e And hence solve one half of the stable Kronecker problem.
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Let A € V,_s and v € Y,. A skew Kronecker tableau of
shape v\ A\ and degree s is a path t of the form
A=t0) = t(3) = t1) > o t(s—3) = t(s) = v
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Let t € Stds(v \ A). For 1 < k < s consider the steps

otk —1) =5tk — 1) T r(k) =25 t(k+ 1) TS t(k+1) -

We let s be the path which differs from t only by swapping the
“added” steps and the “removed” steps at this point, as follows:

s(k—1) —% s(k—3 Jrﬂ)s(k)_—Et>s(k—i-%)ﬂ>s(k+1)---

For a fixed 1 < k < s and t € Stds(v \ \), we denote the
above path by tx«kt1-

We say that (\,v,s) is a co-Pieri triple if ty. k11 exists for
all 1 < k <sandteStds(r\\).




((22,1),(1),4) is not a co-Pieri triple. Let k =2 and t as follows
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Action on skew modules

Let (A, v, s) be a co-Pieri triple. Given t € Stds(v \ \), we
have that
Sk(t) = therkt1




The action of s; on the co-Pieri triple ((4,2), (4,2),2).
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The action of s; on the co-Pieri triple ((4,2),(4,2),2).
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Section 1

Semistandard Kronecker tableaux
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. k.
o For1 <k <swewrites~tifs=ty i1

e We write s & t if there exists a sequence of standard Kro-

necker tableaux ty,tp,...,ty € Stds(v \ A) such that
k k kg
S=1t; Sty thrBts, ... tyg_1 ~ tg=t

for ki, ..., kg—1 & {p1, 1 + pa, ... }.

e We define a semistandard tableau of weight 1 to be an
equivalence class of tableau under K.

e By definition of a co-Pieri triple tyx+1 € Std(v \ A) for
allt € T and all 1 < k < s. Therefore the semistandard
condition goes through as before.
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Theorem* [B., De Visscher, Enyang]

The Ps(n)-module

Homp, (,,)(mdpug()n)xpuz(n) (C), As(r\ N))

has basis
C{oT | T €SStds(v \ A, 1)}
where @ is determined by

pr(th) => t.

teT
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The lattice permutation condition
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e The definition of the reverse reading word of both a semistandard
tableau and of a lattice permutation is identical to what we have
already seen for the Littlewood—Richardson case.

e With one exception. We need to extend the dominance ordering
on Young's subgraph to the rest of the branching graph for Ps(n).

e Fortunately the answer is already given to us from the cellular
structure of Ps(n) — no thinking required!!

We order steps in the branching graph as follows,

move-up dummy move-down
(—Ep,+€q) < (_5ta+5t) < (_5ua+5v)
mt(p,q) d(t) ml(u,v)

for p > g and u < v. We can refine this to a total ordering.
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Theorem* [B., De Visscher, Enyang]

For (\,v,s) a co-Pieri triple and p = s, we have that

g(A, v, p) = [Latts(v \ A, p)|

Some examples we can calculate with this theorem.
e 5((6,2),(7,4),(2,2)) = 3 from previous slide.
e (\,v,u) with X and v both 1-line partitions
e \=v=(dl,d({—1),...,2d,d) for any £,d > 1, |u| < d.

e the two skew partitions A\ (A\ v) and v\ (AN v) have no two
boxes in the same column and

1l = max{|A\ (AN w)] v e (Anv)l}.
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Recall from the first lecture the following graph.
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Recall from the first lecture the following graph.
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° 5((2%,1),(1),v)) = g((n—5,2%,1),(n—|v|,v),(n—-1))
for n > 7 is equal to the number of paths from A to v.




Recall from the first lecture the following graph.
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* 5((2%,1),(1),v)) = g((n—5,2%,1), (n—|v|,v), (n—1))
for n > 7 is equal to the number of paths from A to v.
e Since s = 1 there are no symmetric group generators

here, and so all these paths satisfy the semistandard and
lattice permutation conditions trivially.
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Let A = (4,2) = v as in our earlier example. The semistan-
dard tableaux of weight (2) are
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Let A = (4,2) = v as in our earlier example. The semistan-
dard tableaux of weight (2) are

{d(1)od(1)} {d(2)0d(2)} {d(1)0d(2),d(2)0d(1)}
{m1(2,1) o m|(1,2), m{(1,2) o m1(2,1)}

{r(1)oa(1),a(1)or(1)} {r(2)oca(2),a(2)or(2)}

and all steps occur in the first frame.




Let A = (4,2) = v as in our earlier example. The semistan-
dard tableaux of weight (2) are

{d(1)od(1)} {d(2)0d(2)} {d(1)0d(2),d(2)0d(1)}
{m1(2,1) o m|(1,2), m{(1,2) o m1(2,1)}

{r(1)oa(1),a(1)or(1)} {r(2)oca(2),a(2)or(2)}

and all steps occur in the first frame. All steps in the first
frame are good and so

E()‘a v, (2)) =6
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Let A = (4,2) = v as in our earlier example. The following
two semistandard tableaux of weight (12)
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[ d(21) dgl) ]
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have reverse reading words

[d(21) dgl)] [mT(12,1) m¢(21,2)




Let A = (4,2) = v as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)od(1)} {m1(2,1)om|(1,2)} {ml(1,2)om?(2,1)}

have reverse reading words

[d(21) dgl)] [mT(12,1) m¢(21,2)] [m¢(21,2) mT(lz, 1)




Let A = (4,2) = v as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)od(1)} {mt(2,1)omi(1,2)} {mi(L,2)om(2,1)}
have reverse reading words

[d(21) dgl)] {mT(12,1) m¢(21,2)] [m¢(21,2) mT(lz, 1)

and so only one satisfies the lattice permutation property.
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Let A = (7) and v = (6) and p = (4,3,1). The three
elements of S € Lattg(v \ A, ) from previous slide have
read(S) equal to one of the following

( r(1) r(1) f(l)‘ d(1) d(1) d(1)
11 1|2 2 2

( r(1) r(1) r(1)

3 1

a(1) a(1) )

d(1) d(1) df

3(31) 3(21) )

1 1 1 2 2 1
( r(1) r(1) r(1) r(l)‘ d(1) | a(1) a(1) a(1) )
1 1 1 2 3 2 2
Therefore

g((n—17,7),(n—6,6),(n—8,4,3,1)) =3

for n > 15.




THE END!



We now explain the * which occurred on some definitions and theorems.
The partition algebra module

Homp, () (As(p), As(v\ N))

doesn't just see the Kronecker coefficients g(A, v, 1) for u b s. It also
sees those for p a partition of s — 1, s — 2, etc. This can be taken care of
by identifying tableaux

Std%(v \ A) C Stds(r\ \)

SStd2(v \ A) C SStds(v \ A) Latt?(v\ \) C Latts(v \ \)

which discard the “offending tableaux” in a way made precise in [B., De
Visscher, Enyang]. However, it has a technical flavour which makes for a
boring talk. Notice that in the pictures which claim to give “all tableaux”
of a given shape, we actually don't include all tableaux. For example,
no-where in the talk does the obvious tableau

—&p+€—€0t+Eo---

appear. We only picture Std2(v \ \).
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