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The Partition algebra and the

Kronecker coefficients III:

Co-Pieri rule for stable Kronecker coefficients



Recap

The stable Kronecker coefficients equal dimensions of homo-
morphism spaces for path-theoretic Ps(n)-modules:

g(λ, µ, ν) = dimC(HomPs(n)(∆s(µ),∆s(ν \ λ)))

• Oscillating/up-down tableaux hold a distinguished position
in the study of tensor product decompositions.

• Never been used to calculate Kronecker coefficients.

• The oscillating tableaux in Ps(n)-branching graph give a new
combinatorial viewpoint for stable Kronecker coefficients.

• Plus we benefit from the extra Ps(n)-structure.

• We can define local operators on paths.

• And hence calculate g(λ, µ, ν) via combinatorial resolutions.
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This lecture

• Last lecture we saw that

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

equals the number of µ-orbits of paths in Young’s graph sat-
isfying semistandard and lattice permutation conditions.

• We think of Young’s graph as a subgraph of the branching
graph of Ps(n)

• Today, we shall consider the wider graph.

• We put a restriction on the triple (λ, µ, ν) so that all µ-
tableaux of shape ν \ λ trivially satisfy the semistandard
condition, this simplification allows us to fully understand
the lattice permutation condition.

• And so we generalise one half of the Littlewood–Richardson
rule to the Ps(n)-branching graph.

• And hence solve one half of the stable Kronecker problem.
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Let λ ∈ Yr−s and ν ∈ Yr .

A skew Kronecker tableau of
shape ν \ λ and degree s is a path t of the form

λ = t(0)→ t(12)→ t(1)→ · · · → t(s − 1
2)→ t(s) = ν.
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Let t ∈ Stds(ν \ λ). For 1 ≤ k ≤ s consider the steps

· · · t(k−1)
−εt−−→ t(k− 1

2)
+εu−−→ t(k)

−εv−−→ t(k + 1
2)

+εw−−→ t(k + 1) · · ·

We let s be the path which differs from t only by swapping the
“added” steps and the “removed” steps at this point, as follows:

· · · s(k − 1)
−εv−−→ s(k − 1

2)
+εw−−→ s(k)

−εt−−→ s(k + 1
2)

+εu−−→ s(k + 1) · · ·

Definition

For a fixed 1 ≤ k ≤ s and t ∈ Stds(ν \ λ), we denote the
above path by tk↔k+1.

Definition*

We say that (λ, ν, s) is a co-Pieri triple if tk↔k+1 exists for
all 1 ≤ k ≤ s and t ∈ Stds(ν \ λ).
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((22, 1), (1), 4) is not a co-Pieri triple. Let k = 2 and t as follows
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Action on skew modules

Let (λ, ν, s) be a co-Pieri triple. Given t ∈ Stds(ν \ λ), we
have that

sk(t) = tk↔k+1



The action of s1 on the co-Pieri triple ((4, 2), (4, 2), 2).
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The action of s1 on the co-Pieri triple ((4, 2), (4, 2), 2).
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And so

g((4, 2), (4, 2), µ) =

{
6 for ν = (2)

4 for ν = (12).
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Section 1

Semistandard Kronecker tableaux



Definition*

• For 1 ≤ k < s we write s
k∼ t if s = tk↔k+1.

• We write s
µ∼ t if there exists a sequence of standard Kro-

necker tableaux t1, t2, . . . , td ∈ Stds(ν \ λ) such that

s = t1
k1∼ t2, t2

k2∼ t3, . . . , td−1
kd−1∼ td = t

for k1, . . . , kd−1 6∈ {µ1, µ1 + µ2, . . . }.
• We define a semistandard tableau of weight µ to be an

equivalence class of tableau under
µ∼.

• By definition of a co-Pieri triple tk↔k+1 ∈ Std(ν \ λ) for
all t ∈ T and all 1 ≤ k ≤ s. Therefore the semistandard
condition goes through as before.
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Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Some semistandard tableaux.

−1

+1

−0

+1

−0

+2

−0

+2

1st frame

2 steps in

2nd frame

2 steps in

−0

+1

−1

+1

−1

+2

−0

+1

−0

+1

−0

+2

+2

−0

+1

−0

+1

−1

+2



Theorem* [B., De Visscher, Enyang]

The Ps(n)-module

HomPs(n)(ind
Ps(n)
Pµ1 (n)×Pµ2 (n)...

(C),∆s(ν \ λ))

has basis

C{ϕT | T ∈ SStds(ν \ λ, µ)}

where ϕT is determined by

ϕT(tµ) =
∑
t∈T
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Section 2

The lattice permutation condition



• The definition of the reverse reading word of both a semistandard
tableau and of a lattice permutation is identical to what we have
already seen for the Littlewood–Richardson case.

• With one exception. We need to extend the dominance ordering
on Young’s subgraph to the rest of the branching graph for Ps(n).

• Fortunately the answer is already given to us from the cellular
structure of Ps(n) — no thinking required!!

Definition

We order steps in the branching graph as follows,

move-up dummy move-down
(−εp,+εq) < (−εt ,+εt) < (−εu,+εv )
m↑(p, q) d(t) m↓(u, v)

for p > q and u < v . We can refine this to a total ordering.
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Theorem* [B., De Visscher, Enyang]

For (λ, ν, s) a co-Pieri triple and µ ` s, we have that

g(λ, ν, µ) = |Latts(ν \ λ, µ)|

Some examples we can calculate with this theorem.

• g((6, 2), (7, 4), (2, 2)) = 3 from previous slide.

• (λ, ν, µ) with λ and ν both 1-line partitions

• λ = ν = (d`, d(`− 1), . . . , 2d , d) for any `, d ≥ 1, |µ| ≤ d .

• the two skew partitions λ \ (λ \ ν) and ν \ (λ∩ ν) have no two
boxes in the same column and

|µ| = max{|λ \ (λ ∩ ν)|, |ν 	 (λ ∩ ν)|}.
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Example

Recall from the first lecture the following graph.

• g((22, 1), (1), ν)) = g((n−5, 22, 1), (n−|ν|, ν), (n−1))
for n ≥ 7 is equal to the number of paths from λ to ν.

• Since s = 1 there are no symmetric group generators
here, and so all these paths satisfy the semistandard and
lattice permutation conditions trivially.
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Recall our earlier example of a co-Pieri triple

And so

g((4, 2), (4, 2), µ) =

{
6 for ν = (2)

4 for ν = (12).



Example

Let λ = (4, 2) = ν as in our earlier example. The semistan-
dard tableaux of weight (2) are

{d(1) ◦ d(1)}

{d(2) ◦ d(2)} {d(1) ◦ d(2), d(2) ◦ d(1)}

{m↑(2, 1) ◦m↓(1, 2),m↓(1, 2) ◦m↑(2, 1)}

{r(1) ◦ a(1), a(1) ◦ r(1)} {r(2) ◦ a(2), a(2) ◦ r(2)}

and all steps occur in the first frame. All steps in the first
frame are good and so

g(λ, ν, (2)) = 6
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Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)}

{m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)}

{m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

]

[
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

]

[
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]

and so only one satisfies the lattice permutation property.



Example

Let λ = (4, 2) = ν as in our earlier example. The following
two semistandard tableaux of weight (12)

{d(1)◦d(1)} {m↑(2, 1)◦m↓(1, 2)} {m↓(1, 2)◦m↑(2, 1)}

have reverse reading words[
d(1) d(1)

2 1

] [
m↑(2, 1) m↓(1, 2)

1 2

] [
m↓(1, 2) m↑(2, 1)

2 1

]
and so only one satisfies the lattice permutation property.



−1

+4
+1

−1 −1

+4
+1

−1

+4

[
d(1) m↓(1, 4) m↓(1, 4))
1 2 1

]

−1

+4

−1

+4

−1

+1

[
d(1) m↓(1, 4) m↓(1, 4))
2 1 1

]

−2
−3

+1+2

−2 −3

+1
+2

−1

+3

[
m↑(3, 2) m↑(2, 1) m↓(1, 3))

1 1 2

]



−1

+4
+1

−1 −1

+4
+1

−1

+4

[
d(1) m↓(1, 4) m↓(1, 4))
1 2 1

]

−1

+4

−1

+4

−1

+1

[
d(1) m↓(1, 4) m↓(1, 4))
2 1 1

]

−2
−3

+1+2

−2 −3

+1
+2

−1

+3

[
m↑(3, 2) m↑(2, 1) m↓(1, 3))

1 1 2

]



−1

+4
+1

−1 −1

+4
+1

−1

+4

[
d(1) m↓(1, 4) m↓(1, 4))
1 2 1

]

−1

+4

−1

+4

−1

+1

[
d(1) m↓(1, 4) m↓(1, 4))
2 1 1

]

−2
−3

+1+2

−2 −3

+1
+2

−1

+3

[
m↑(3, 2) m↑(2, 1) m↓(1, 3))

1 1 2

]



−1 −0

+0 +1

−1 −0

+0 +1 +0

−1

−1−0

+0+1

−1−0 −1

+0 +1 +0

−1

+1

−1

+1

−1

+1

−0

+1

−1

+0 +1

−1

+1+0

−1

+0

−1

−1−1

+0+1

−1

+1

−1

+0

−1

+0

−1

+1

−0

+1

−0

+1

−1

+1

−0

+1

−1

+1

−1

+1

−0

+1

−1

+1

−0

+1

−1

−1

−1

−1

+0

+0

+0

+0

−0

+1

−0

+1

−0

+1

−1

+1

−0

+1



−1 −0

+0 +1

−1 −0

+0 +1 +0

−1

−1−0

+0+1

−1−0 −1

+0 +1 +0

−1

+1

−1

+1

−1

+1

−0

+1

−1

+0 +1

−1

+1+0

−1

+0

−1

−1−1

+0+1

−1

+1

−1

+0

−1

+0

−1

+1

−0

+1

−0

+1

−1

+1

−0

+1

−1

+1

−1

+1

−0

+1

−1

+1

−0

+1

−1

−1

−1

−1

+0

+0

+0

+0

−0

+1

−0

+1

−0

+1

−1

+1

−0

+1



−1 −0

+0 +1

−1 −0

+0 +1 +0

−1

−1−0

+0+1

−1−0 −1

+0 +1 +0

−1

+1

−1

+1

−1

+1

−0

+1

−1

+0 +1

−1

+1+0

−1

+0

−1

−1−1

+0+1

−1

+1

−1

+0

−1

+0

−1

+1

−0

+1

−0

+1

−1

+1

−0

+1

−1

+1

−1

+1

−0

+1

−1

+1

−0

+1

−1

−1

−1

−1

+0

+0

+0

+0

−0

+1

−0

+1

−0

+1

−1

+1

−0

+1



Example

Let λ = (7) and ν = (6) and µ = (4, 3, 1). The three
elements of S ∈ Latt8(ν \ λ, µ) from previous slide have
read(S) equal to one of the following(

r(1) r(1) r(1) d(1) d(1) d(1) a(1) a(1)
1 1 1 2 2 2 3 1

)
(

r(1) r(1) r(1) d(1) d(1) d(1) a(1) a(1)
1 1 1 2 2 1 3 2

)
(

r(1) r(1) r(1) r(1) d(1) a(1) a(1) a(1)
1 1 1 1 2 3 2 2

)
Therefore

g((n − 7, 7), (n − 6, 6), (n − 8, 4, 3, 1)) = 3

for n ≥ 15.



THE END!



We now explain the ∗ which occurred on some definitions and theorems.
The partition algebra module

HomPs (n)(∆s(µ),∆s(ν \ λ))

doesn’t just see the Kronecker coefficients g(λ, ν, µ) for µ ` s. It also
sees those for µ a partition of s − 1, s − 2, etc. This can be taken care of
by identifying tableaux

Std0
s (ν \ λ) ⊂ Stds(ν \ λ)

SStd0
s (ν \ λ) ⊆ SStds(ν \ λ) Latt0s (ν \ λ) ⊆ Latts(ν \ λ)

which discard the “offending tableaux” in a way made precise in [B., De
Visscher, Enyang]. However, it has a technical flavour which makes for a
boring talk. Notice that in the pictures which claim to give “all tableaux”
of a given shape, we actually don’t include all tableaux. For example,
no-where in the talk does the obvious tableau

−ε0 + ε0 − ε0 + ε0 . . .

appear. We only picture Std0
s (ν \ λ).
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