The Partition algebra and the Kronecker coefficients III:

Co-Pieri rule for stable Kronecker coefficients

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.
- Never been used to calculate Kronecker coefficients.

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.
- Never been used to calculate Kronecker coefficients.
- The oscillating tableaux in $P_{s}(n)$-branching graph give a new combinatorial viewpoint for stable Kronecker coefficients.

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.
- Never been used to calculate Kronecker coefficients.
- The oscillating tableaux in $P_{s}(n)$-branching graph give a new combinatorial viewpoint for stable Kronecker coefficients.
- Plus we benefit from the extra $P_{s}(n)$-structure.

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.
- Never been used to calculate Kronecker coefficients.
- The oscillating tableaux in $P_{s}(n)$-branching graph give a new combinatorial viewpoint for stable Kronecker coefficients.
- Plus we benefit from the extra $P_{s}(n)$-structure.
- We can define local operators on paths.

Recap

The stable Kronecker coefficients equal dimensions of homomorphism spaces for path-theoretic $P_{s}(n)$-modules:

$$
\bar{g}(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

- Oscillating/up-down tableaux hold a distinguished position in the study of tensor product decompositions.
- Never been used to calculate Kronecker coefficients.
- The oscillating tableaux in $P_{s}(n)$-branching graph give a new combinatorial viewpoint for stable Kronecker coefficients.
- Plus we benefit from the extra $P_{s}(n)$-structure.
- We can define local operators on paths.
- And hence calculate $\bar{g}(\lambda, \mu, \nu)$ via combinatorial resolutions.

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} G_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} \mathfrak{G}_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} \mathfrak{S}_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$
- Today, we shall consider the wider graph.

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} \mathfrak{G}_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$
- Today, we shall consider the wider graph.
- We put a restriction on the triple (λ, μ, ν) so that all μ tableaux of shape $\nu \backslash \lambda$ trivially satisfy the semistandard condition,

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} \mathfrak{G}_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$
- Today, we shall consider the wider graph.
- We put a restriction on the triple (λ, μ, ν) so that all μ tableaux of shape $\nu \backslash \lambda$ trivially satisfy the semistandard condition, this simplification allows us to fully understand the lattice permutation condition.

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}^{s}{ }_{s}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$
- Today, we shall consider the wider graph.
- We put a restriction on the triple (λ, μ, ν) so that all μ tableaux of shape $\nu \backslash \lambda$ trivially satisfy the semistandard condition, this simplification allows us to fully understand the lattice permutation condition.
- And so we generalise one half of the Littlewood-Richardson rule to the $P_{s}(n)$-branching graph.

This lecture

- Last lecture we saw that

$$
c(\lambda, \mu, \nu)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C} \mathfrak{G}_{s}}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)\right)
$$

equals the number of μ-orbits of paths in Young's graph satisfying semistandard and lattice permutation conditions.

- We think of Young's graph as a subgraph of the branching graph of $P_{s}(n)$
- Today, we shall consider the wider graph.
- We put a restriction on the triple (λ, μ, ν) so that all μ tableaux of shape $\nu \backslash \lambda$ trivially satisfy the semistandard condition, this simplification allows us to fully understand the lattice permutation condition.
- And so we generalise one half of the Littlewood-Richardson rule to the $P_{s}(n)$-branching graph.
- And hence solve one half of the stable Kronecker problem.

Definition

Definition

Let $\lambda \in \mathcal{Y}_{r-s}$ and $\nu \in \mathcal{Y}_{r}$. A skew Kronecker tableau of shape $\nu \backslash \lambda$ and degree s is a path t of the form

$$
\lambda=\mathrm{t}(0) \rightarrow \mathrm{t}\left(\frac{1}{2}\right) \rightarrow \mathrm{t}(1) \rightarrow \cdots \rightarrow \mathrm{t}\left(s-\frac{1}{2}\right) \rightarrow \mathrm{t}(\mathrm{~s})=\nu .
$$

	1
2	3
4	
	1
2	4
3	
	2
1	3
4	
	2
1	4
3	
	3
1	4
2	

Let $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$. For $1 \leq k \leq s$ consider the steps

$$
\cdots \mathrm{t}(k-1) \xrightarrow{-\varepsilon_{t}} \mathrm{t}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{t}(k) \xrightarrow{-\varepsilon_{v}} \mathrm{t}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{t}(k+1) \cdots
$$

Let $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$. For $1 \leq k \leq s$ consider the steps
$\cdots \mathrm{t}(k-1) \xrightarrow{-\varepsilon_{t}} \mathrm{t}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{t}(k) \xrightarrow{-\varepsilon_{v}} \mathrm{t}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{t}(k+1) \cdots$
We let s be the path which differs from t only by swapping the "added" steps and the "removed" steps at this point, as follows:

Let $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$. For $1 \leq k \leq s$ consider the steps
$\cdots \mathrm{t}(k-1) \xrightarrow{-\varepsilon_{t}} \mathrm{t}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{t}(k) \xrightarrow{-\varepsilon_{v}} \mathrm{t}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{t}(k+1) \cdots$
We let s be the path which differs from t only by swapping the "added" steps and the "removed" steps at this point, as follows:
$\cdots \mathrm{s}(k-1) \xrightarrow{-\varepsilon_{v}} \mathrm{~s}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{~s}(k) \xrightarrow{-\varepsilon_{t}} \mathrm{~s}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{~s}(k+1) \cdots$

Let $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$. For $1 \leq k \leq s$ consider the steps
$\cdots \mathrm{t}(k-1) \xrightarrow{-\varepsilon_{t}} \mathrm{t}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{t}(k) \xrightarrow{-\varepsilon_{v}} \mathrm{t}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{t}(k+1) \cdots$
We let s be the path which differs from t only by swapping the "added" steps and the "removed" steps at this point, as follows:
$\cdots s(k-1) \xrightarrow{-\varepsilon_{v}} s\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{~s}(k) \xrightarrow{-\varepsilon_{t}} \mathrm{~s}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{~s}(k+1) \cdots$

Definition

For a fixed $1 \leq k \leq s$ and $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$, we denote the above path by $\mathrm{t}_{k \leftrightarrow k+1}$.

Let $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$. For $1 \leq k \leq s$ consider the steps
$\cdots \mathrm{t}(k-1) \xrightarrow{-\varepsilon_{t}} \mathrm{t}\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{t}(k) \xrightarrow{-\varepsilon_{v}} \mathrm{t}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{t}(k+1) \cdots$
We let s be the path which differs from t only by swapping the "added" steps and the "removed" steps at this point, as follows:

$$
\cdots s(k-1) \xrightarrow{-\varepsilon_{v}} s\left(k-\frac{1}{2}\right) \xrightarrow{+\varepsilon_{w}} \mathrm{~s}(k) \xrightarrow{-\varepsilon_{t}} \mathrm{~s}\left(k+\frac{1}{2}\right) \xrightarrow{+\varepsilon_{u}} \mathrm{~s}(k+1) \cdots
$$

Definition

For a fixed $1 \leq k \leq s$ and $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$, we denote the above path by $\mathrm{t}_{k \leftrightarrow k+1}$.

Definition*

We say that (λ, ν, s) is a co-Pieri triple if $\mathrm{t}_{k \leftrightarrow k+1}$ exists for all $1 \leq k \leq s$ and $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$.
$\left(\left(2^{2}, 1\right),(1), 4\right)$ is not a co-Pieri triple. Let $k=2$ and t as follows

N	-		ω	-		+	\vdash	-		ω	N		-	N		
	-	ω		ค	N			ω	N		-	\mapsto		ω	\vdash	-

Action on skew modules

Let (λ, ν, s) be a co-Pieri triple. Given $\mathrm{t} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$, we have that

$$
s_{k}(\mathrm{t})=\mathrm{t}_{k \leftrightarrow k+1}
$$

The action of s_{1} on the co-Pieri triple $((4,2),(4,2), 2)$.

The action of s_{1} on the co-Pieri triple $((4,2),(4,2), 2)$.

The action of s_{1} on the co-Pieri triple $((4,2),(4,2), 2)$.

And so

$$
\bar{g}((4,2),(4,2), \mu)= \begin{cases}6 & \text { for } \nu=(2) \\ 4 & \text { for } \nu=\left(1^{2}\right)\end{cases}
$$

Section 1

Semistandard Kronecker tableaux

Definition*

- For $1 \leq k<s$ we write $s \stackrel{k}{\sim} \mathrm{t}$ if $\mathrm{s}=\mathrm{t}_{k \leftrightarrow k+1}$.

Definition*

- For $1 \leq k<s$ we write $s \stackrel{k}{\sim} \mathrm{t}$ if $\mathrm{s}=\mathrm{t}_{k \leftrightarrow k+1}$.
- We write $\mathrm{s} \stackrel{\mu}{\sim} \mathrm{t}$ if there exists a sequence of standard Kronecker tableaux $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{d} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$ such that

$$
\begin{aligned}
& \quad \mathrm{s}=\mathrm{t}_{1} \stackrel{k_{1}}{\sim} \mathrm{t}_{2}, \mathrm{t}_{2} \stackrel{\mathrm{k}_{2}}{\sim} \mathrm{t}_{3}, \ldots, \mathrm{t}_{d-1} \stackrel{k_{d-1}}{\sim} \mathrm{t}_{d}=\mathrm{t} \\
& \text { for } k_{1}, \ldots, k_{d-1} \notin\left\{\mu_{1}, \mu_{1}+\mu_{2}, \ldots\right\} .
\end{aligned}
$$

Definition*

- For $1 \leq k<s$ we write $s \stackrel{k}{\sim} \mathrm{t}$ if $\mathrm{s}=\mathrm{t}_{k \leftrightarrow k+1}$.
- We write $\mathrm{s} \stackrel{\mu}{\sim} \mathrm{t}$ if there exists a sequence of standard Kronecker tableaux $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{d} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$ such that

$$
\mathrm{s}=\mathrm{t}_{1} \stackrel{k_{1}}{\sim} \mathrm{t}_{2}, \mathrm{t}_{2} \stackrel{k_{2}}{\sim} \mathrm{t}_{3}, \ldots, \mathrm{t}_{d-1} \stackrel{k_{d-1}}{\sim} \mathrm{t}_{d}=\mathrm{t}
$$

for $k_{1}, \ldots, k_{d-1} \notin\left\{\mu_{1}, \mu_{1}+\mu_{2}, \ldots\right\}$.

- We define a semistandard tableau of weight μ to be an equivalence class of tableau under $\stackrel{\mu}{\sim}$.

Definition*

- For $1 \leq k<s$ we write $s \stackrel{k}{\sim} \mathrm{t}$ if $\mathrm{s}=\mathrm{t}_{k \leftrightarrow k+1}$.
- We write $\mathrm{s} \stackrel{\mu}{\sim} \mathrm{t}$ if there exists a sequence of standard Kronecker tableaux $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{d} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$ such that

$$
\mathrm{s}=\mathrm{t}_{1} \stackrel{k_{1}}{\sim} \mathrm{t}_{2}, \mathrm{t}_{2} \stackrel{k_{2}}{\sim} \mathrm{t}_{3}, \ldots, \mathrm{t}_{d-1} \stackrel{k_{d-1}}{\sim} \mathrm{t}_{d}=\mathrm{t}
$$

for $k_{1}, \ldots, k_{d-1} \notin\left\{\mu_{1}, \mu_{1}+\mu_{2}, \ldots\right\}$.

- We define a semistandard tableau of weight μ to be an equivalence class of tableau under $\stackrel{\mu}{\sim}$.
- By definition of a co-Pieri triple $\mathrm{t}_{k \leftrightarrow k+1} \in \operatorname{Std}(\nu \backslash \lambda)$ for all $\mathrm{t} \in \mathrm{T}$ and all $1 \leq k \leq s$.

Definition*

- For $1 \leq k<s$ we write $s \stackrel{k}{\sim} \mathrm{t}$ if $\mathrm{s}=\mathrm{t}_{k \leftrightarrow k+1}$.
- We write $\mathrm{s} \stackrel{\mu}{\sim} \mathrm{t}$ if there exists a sequence of standard Kronecker tableaux $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{d} \in \operatorname{Std}_{s}(\nu \backslash \lambda)$ such that

$$
\mathrm{s}=\mathrm{t}_{1} \stackrel{k_{1}}{\sim} \mathrm{t}_{2}, \mathrm{t}_{2} \stackrel{k_{2}}{\sim} \mathrm{t}_{3}, \ldots, \mathrm{t}_{d-1} \stackrel{k_{d-1}}{\sim} \mathrm{t}_{d}=\mathrm{t}
$$

for $k_{1}, \ldots, k_{d-1} \notin\left\{\mu_{1}, \mu_{1}+\mu_{2}, \ldots\right\}$.

- We define a semistandard tableau of weight μ to be an equivalence class of tableau under $\stackrel{\mu}{\sim}$.
- By definition of a co-Pieri triple $\mathrm{t}_{k \leftrightarrow k+1} \in \operatorname{Std}(\nu \backslash \lambda)$ for all $\mathrm{t} \in \mathrm{T}$ and all $1 \leq k \leq s$. Therefore the semistandard condition goes through as before.

Some semistandard tableaux.
$\square \square \square$

Some semistandard tableaux.
$\square \square \square$
$-1 \mid$
$\square \square$

Some semistandard tableaux.

Some semistandard tableaux.
$\square \square \square$
$-1 \mid$
$\square \square \square$
$+1 \mid$
$\square \square \square$
$-0 \mid$
$\square \square \square$

Some semistandard tableaux.
$\square \square \square$
$-1 \mid$
$\square \square$
$+1 \mid$
$\square \square \square$
$-0 \mid$
$\square \square \square$
$+1 \mid$
$\square \square \square$

Some semistandard tableaux.
$\square \square \square$
$-1 \mid$
$\square \square \square$
$+1 \mid$
$\square \square \square$
$-0 \mid$
$\square \square \square$
$+1 \mid$
$\square \square \square$
$-0 \mid$
$\square \square \square$

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Some semistandard tableaux.

Theorem* [B., De Visscher, Enyang]
The $P_{s}(n)$-module

$$
\operatorname{Hom}_{P_{s}(n)}\left(\operatorname{ind}_{P_{\mu_{1}}(n) \times P_{\mu_{2}}(n) \ldots}^{P_{s}(n)}(\mathbb{C}), \Delta_{s}(\nu \backslash \lambda)\right)
$$

has basis

Theorem* [B., De Visscher, Enyang]
The $P_{s}(n)$-module

$$
\operatorname{Hom}_{P_{s}(n)}\left(\operatorname{ind}_{P_{\mu_{1}}(n) \times P_{\mu_{2}}(n) \ldots}^{P_{s}(n)}(\mathbb{C}), \Delta_{s}(\nu \backslash \lambda)\right)
$$

has basis

$$
\mathbb{C}\left\{\varphi_{\mathrm{T}} \mid \mathrm{T} \in \operatorname{SStd}_{s}(\nu \backslash \lambda, \mu)\right\}
$$

Theorem* [B., De Visscher, Enyang]
The $P_{s}(n)$-module

$$
\operatorname{Hom}_{P_{s}(n)}\left(\operatorname{ind}_{P_{\mu_{1}}(n) \times P_{\mu_{2}}(n) \ldots}^{P_{s}(n)}(\mathbb{C}), \Delta_{s}(\nu \backslash \lambda)\right)
$$

has basis

$$
\mathbb{C}\left\{\varphi_{\mathrm{T}} \mid \mathrm{T} \in \operatorname{SStd}_{s}(\nu \backslash \lambda, \mu)\right\}
$$

where φ_{T} is determined by

$$
\varphi_{\mathrm{T}}\left(\mathrm{t}^{\mu}\right)=\sum_{\mathrm{t} \in \mathrm{~T}} \mathrm{t} .
$$

Section 2

The lattice permutation condition

- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- Fortunately the answer is already given to us from the cellular structure of $P_{s}(n)$ - no thinking required!!
- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- Fortunately the answer is already given to us from the cellular structure of $P_{s}(n)$ - no thinking required!!

Definition

We order steps in the branching graph as follows,
move-up dummy move-down

- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- Fortunately the answer is already given to us from the cellular structure of $P_{s}(n)$ - no thinking required!!

Definition

We order steps in the branching graph as follows,

$$
\begin{array}{ccc}
\text { move-up } & \text { dummy } & \text { move-down } \\
\left(-\varepsilon_{p},+\varepsilon_{q}\right) & <\left(-\varepsilon_{t},+\varepsilon_{t}\right) & <\left(-\varepsilon_{u},+\varepsilon_{v}\right)
\end{array}
$$

- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- Fortunately the answer is already given to us from the cellular structure of $P_{s}(n)$ - no thinking required!!

Definition

We order steps in the branching graph as follows,

$$
\begin{array}{ccc}
\text { move-up } & \text { dummy } & \text { move-down } \\
\left(-\varepsilon_{p},+\varepsilon_{q}\right) & < & \left(-\varepsilon_{t},+\varepsilon_{t}\right)
\end{array}<\begin{aligned}
& \left(-\varepsilon_{u},+\varepsilon_{v}\right) \\
& m \uparrow(p, q)
\end{aligned}
$$

for $p>q$ and $u<v$.

- The definition of the reverse reading word of both a semistandard tableau and of a lattice permutation is identical to what we have already seen for the Littlewood-Richardson case.
- With one exception. We need to extend the dominance ordering on Young's subgraph to the rest of the branching graph for $P_{s}(n)$.
- Fortunately the answer is already given to us from the cellular structure of $P_{s}(n)$ - no thinking required!!

Definition

We order steps in the branching graph as follows,

$$
\begin{array}{ccc}
\text { move-up } & \text { dummy } & \text { move-down } \\
\left(-\varepsilon_{p},+\varepsilon_{q}\right) & < & \left(-\varepsilon_{t},+\varepsilon_{t}\right)
\end{array}<\begin{aligned}
& \left(-\varepsilon_{u},+\varepsilon_{v}\right) \\
& m \uparrow(p, q)
\end{aligned} d(t) \quad m \downarrow(u, v)
$$

for $p>q$ and $u<v$. We can refine this to a total ordering.

Some latticed tableaux.

Some latticed tableaux.

Some latticed tableaux.

Some latticed tableaux.

$+1 \mid$

-0|

$\begin{array}{cc}-0 \mid & \mid-0 \\ \# \square \square \square & \square \square\end{array}$
$+2 \mid$
$--\square \square \square+1$
$\left[\begin{array}{c|c|cc}d(1) & a(1) & a(2) & a(2) \\ 1 & 1 & 2 & 2\end{array}\right] \quad\left[\begin{array}{cccc}m \downarrow(1,2) & a(1) & a(1) & a(2) \\ 1 & 2 & 1 & 2\end{array}\right]$
 $+2 \mid$
$\# \Vdash \square$
\square

-0

$$
+2 \mid
$$

-0|

$+2 \mid$
$\square \square$ - - - - - 」

Some latticed tableaux.

Theorem* [B., De Visscher, Enyang]
For (λ, ν, s) a co-Pieri triple and $\mu \vdash s$, we have that

$$
\bar{g}(\lambda, \nu, \mu)=\left|\operatorname{Latt}_{\mathbf{s}}(\nu \backslash \lambda, \mu)\right|
$$

Theorem* [B., De Visscher, Enyang]

For (λ, ν, s) a co-Pieri triple and $\mu \vdash s$, we have that

$$
\bar{g}(\lambda, \nu, \mu)=\left|\operatorname{Latt}_{s}(\nu \backslash \lambda, \mu)\right|
$$

Some examples we can calculate with this theorem.

- $\bar{g}((6,2),(7,4),(2,2))=3$ from previous slide.

Theorem* [B., De Visscher, Enyang]

For (λ, ν, s) a co-Pieri triple and $\mu \vdash s$, we have that

$$
\bar{g}(\lambda, \nu, \mu)=\left|\operatorname{Latt}_{s}(\nu \backslash \lambda, \mu)\right|
$$

Some examples we can calculate with this theorem.

- $\bar{g}((6,2),(7,4),(2,2))=3$ from previous slide.
- (λ, ν, μ) with λ and ν both 1 -line partitions

Theorem* [B., De Visscher, Enyang]

For (λ, ν, s) a co-Pieri triple and $\mu \vdash s$, we have that

$$
\bar{g}(\lambda, \nu, \mu)=\left|\operatorname{Latt}_{s}(\nu \backslash \lambda, \mu)\right|
$$

Some examples we can calculate with this theorem.

- $\bar{g}((6,2),(7,4),(2,2))=3$ from previous slide.
- (λ, ν, μ) with λ and ν both 1 -line partitions
- $\lambda=\nu=(d \ell, d(\ell-1), \ldots, 2 d, d)$ for any $\ell, d \geq 1,|\mu| \leq d$.

Theorem* [B., De Visscher, Enyang]

For (λ, ν, s) a co-Pieri triple and $\mu \vdash s$, we have that

$$
\bar{g}(\lambda, \nu, \mu)=\left|\operatorname{Latt}_{s}(\nu \backslash \lambda, \mu)\right|
$$

Some examples we can calculate with this theorem.

- $\bar{g}((6,2),(7,4),(2,2))=3$ from previous slide.
- (λ, ν, μ) with λ and ν both 1 -line partitions
- $\lambda=\nu=(d \ell, d(\ell-1), \ldots, 2 d, d)$ for any $\ell, d \geq 1,|\mu| \leq d$.
- the two skew partitions $\lambda \backslash(\lambda \backslash \nu)$ and $\nu \backslash(\lambda \cap \nu)$ have no two boxes in the same column and

$$
|\mu|=\max \{|\lambda \backslash(\lambda \cap \nu)|,|\nu \ominus(\lambda \cap \nu)|\} .
$$

Example

Recall from the first lecture the following graph.

Example

Recall from the first lecture the following graph.

- $\left.\bar{g}\left(\left(2^{2}, 1\right),(1), \nu\right)\right)=g\left(\left(n-5,2^{2}, 1\right),(n-|\nu|, \nu),(n-1)\right)$ for $n \geq 7$ is equal to the number of paths from λ to ν.

Example

Recall from the first lecture the following graph.

- $\left.\bar{g}\left(\left(2^{2}, 1\right),(1), \nu\right)\right)=g\left(\left(n-5,2^{2}, 1\right),(n-|\nu|, \nu),(n-1)\right)$ for $n \geq 7$ is equal to the number of paths from λ to ν.
- Since $s=1$ there are no symmetric group generators here, and so all these paths satisfy the semistandard and lattice permutation conditions trivially.

Recall our earlier example of a co-Pieri triple

And so

$$
\bar{g}((4,2),(4,2), \mu)= \begin{cases}6 & \text { for } \nu=(2) \\ 4 & \text { for } \nu=\left(1^{2}\right)\end{cases}
$$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are
$\{d(1) \circ d(1)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are
$\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are
$\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\} \quad\{d(1) \circ d(2), d(2) \circ d(1)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are
$\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\} \quad\{d(1) \circ d(2), d(2) \circ d(1)\}$

$$
\{m \uparrow(2,1) \circ m \downarrow(1,2), m \downarrow(1,2) \circ m \uparrow(2,1)\}
$$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are
$\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\} \quad\{d(1) \circ d(2), d(2) \circ d(1)\}$

$$
\begin{aligned}
& \quad\{m \uparrow(2,1) \circ m \downarrow(1,2), m \downarrow(1,2) \circ m \uparrow(2,1)\} \\
& \{r(1) \circ a(1), a(1) \circ r(1)\}
\end{aligned}
$$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are

$$
\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\} \quad\{d(1) \circ d(2), d(2) \circ d(1)\}
$$

$$
\begin{gathered}
\{m \uparrow(2,1) \circ m \downarrow(1,2), m \downarrow(1,2) \circ m \uparrow(2,1)\} \\
\{r(1) \circ a(1), a(1) \circ r(1)\} \quad\{r(2) \circ a(2), a(2) \circ r(2)\}
\end{gathered}
$$

and all steps occur in the first frame.

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The semistandard tableaux of weight (2) are

$$
\{d(1) \circ d(1)\} \quad\{d(2) \circ d(2)\} \quad\{d(1) \circ d(2), d(2) \circ d(1)\}
$$

$$
\begin{gathered}
\{m \uparrow(2,1) \circ m \downarrow(1,2), m \downarrow(1,2) \circ m \uparrow(2,1)\} \\
\{r(1) \circ a(1), a(1) \circ r(1)\} \quad\{r(2) \circ a(2), a(2) \circ r(2)\}
\end{gathered}
$$

and all steps occur in the first frame. All steps in the first frame are good and so

$$
\bar{g}(\lambda, \nu,(2))=6
$$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight (1^{2})
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\} \quad\{m \downarrow(1,2) \circ m \uparrow(2,1)\}$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\} \quad\{m \downarrow(1,2) \circ m \uparrow(2,1)\}$
have reverse reading words
$\left[\begin{array}{cc}d(1) & d(1) \\ 2 & 1\end{array}\right]$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\} \quad\{m \downarrow(1,2) \circ m \uparrow(2,1)\}$
have reverse reading words
$\left[\begin{array}{cc}d(1) & d(1) \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}m \uparrow(2,1) & m \downarrow(1,2) \\ 1 & 2\end{array}\right]$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\} \quad\{m \downarrow(1,2) \circ m \uparrow(2,1)\}$
have reverse reading words
$\left[\begin{array}{cc}d(1) & d(1) \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}m \uparrow(2,1) & m \downarrow(1,2) \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}m \downarrow(1,2) & m \uparrow(2,1) \\ 2 & 1\end{array}\right]$

Example

Let $\lambda=(4,2)=\nu$ as in our earlier example. The following two semistandard tableaux of weight $\left(1^{2}\right)$
$\{d(1) \circ d(1)\} \quad\{m \uparrow(2,1) \circ m \downarrow(1,2)\} \quad\{m \downarrow(1,2) \circ m \uparrow(2,1)\}$
have reverse reading words
$\left[\begin{array}{cc}d(1) & d(1) \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}m \uparrow(2,1) & m \downarrow(1,2) \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}m \downarrow(1,2) & m \uparrow(2,1) \\ 2 & 1\end{array}\right]$
and so only one satisfies the lattice permutation property.

$\left[\begin{array}{ccc}d(1) & m \downarrow(1,4) & m \downarrow(1,4)) \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}d(1) & m \downarrow(1,4) & m \downarrow(1,4)) \\ 2 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}m \uparrow(3,2) & m \uparrow(2,1) & m \downarrow(1,3)) \\ 1 & 1 & 2\end{array}\right]$

Example

Let $\lambda=(7)$ and $\nu=(6)$ and $\mu=(4,3,1)$. The three elements of $\mathrm{S} \in \operatorname{Latt}_{8}(\nu \backslash \lambda, \mu)$ from previous slide have $\operatorname{read}(\mathrm{S})$ equal to one of the following

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc|ccc|cc}
r(1) & r(1) & r(1) & d(1) & d(1) & d(1) & a(1) & a(1) \\
1 & 1 & 1 & 2 & 2 & 2 & 3 & 1
\end{array}\right) \\
\left(\begin{array}{ccc|ccc|cc}
r(1) & r(1) & r(1) & d(1) & d(1) & d(1) & a(1) & a(1) \\
1 & 1 & 1 & 2 & 2 & 1 & 3 & 2
\end{array}\right) \\
\left(\begin{array}{cccc|c|cc}
r(1) & r(1) & r(1) & r(1) & d(1) & a(1) & a(1) \\
1 & 1 & 1 & 1 & 2 & 3 & 2
\end{array}\right. \\
2
\end{array}\right), ~ l
$$

Therefore

$$
g((n-7,7),(n-6,6),(n-8,4,3,1))=3
$$

for $n \geq 15$.

THE END!

We now explain the $*$ which occurred on some definitions and theorems. The partition algebra module

$$
\operatorname{Hom}_{P_{s}(n)}\left(\Delta_{s}(\mu), \Delta_{s}(\nu \backslash \lambda)\right)
$$

doesn't just see the Kronecker coefficients $g(\lambda, \nu, \mu)$ for $\mu \vdash s$. It also sees those for μ a partition of $s-1, s-2$, etc. This can be taken care of by identifying tableaux

$$
\begin{gathered}
\operatorname{Std}_{s}^{0}(\nu \backslash \lambda) \subset \operatorname{Std}_{s}(\nu \backslash \lambda) \\
\operatorname{SStd}_{s}^{0}(\nu \backslash \lambda) \subseteq \operatorname{SStd}_{s}(\nu \backslash \lambda) \quad \operatorname{Latt}_{s}^{0}(\nu \backslash \lambda) \subseteq \operatorname{Latt}_{s}(\nu \backslash \lambda)
\end{gathered}
$$

which discard the "offending tableaux" in a way made precise in [B., De Visscher, Enyang]. However, it has a technical flavour which makes for a boring talk. Notice that in the pictures which claim to give "all tableaux" of a given shape, we actually don't include all tableaux. For example, no-where in the talk does the obvious tableau

$$
-\varepsilon_{0}+\varepsilon_{0}-\varepsilon_{0}+\varepsilon_{0} \ldots
$$

appear. We only picture $\operatorname{Std}_{s}^{0}(\nu \backslash \lambda)$.

