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The Partition algebra and the

Kronecker coefficients II:

The Littlewood–Richardson rule



Section 1

The partition algebra and the stable Kronecker
coefficients



The partition algebra, Ps(n), is the C-algebra generated by
elements of the form

with product given by concatenation of diagrams (deformed by the
parameter n). For example,

= ===== n1=

CSs is a subalgebra and a quotient algebra of Ps(n).
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The branching graph of the tower of partition algebras

• Ps(n)-mod is a highest weight category.

• A vertex µ on the sth level of the following graph labels a
standard Ps(n)-module ∆s(µ).

• The paths from ∅ to µ give a basis of ∆s(µ).
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Skew representations for partition algebras

• Given λ and ν in the graph, the paths from λ to ν form a
skew representation ∆s(ν \ λ) (B., Enyang, Goodman).

• We have that

g(λ, µ, ν) = dimC(HomPs(n)(∆s(µ),∆s(ν \ λ)))

• Oscillating/up-down tableaux hold a distinguished position
in the study of tensor product decompositions.

• Never been used to calculate Kronecker coefficients.

• The oscillating tableaux in Ps(n)-branching graph give a new
combinatorial viewpoint for stable Kronecker coefficients.

• Plus we benefit from the extra Ps(n)-structure.

• We can define local operators on paths.

• And hence calculate g(λ, µ, ν) via combinatorial resolutions.
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How this simplifies for Littlewood–Richardson coeffi-
cients......
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• Recall CSs is a quotient and a subalgebra of Ps(n).

• The symmetric group branching graph is a subgraph.

• Restricting to this subgraph.....

• We obtain the classical simple and skew modules and

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))
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Recap

The stable Kronecker coefficients equal dimensions of homo-
morphism spaces for path-theoretic Ps(n)-modules:

g(λ, µ, ν) = dimC(HomPs(n)(∆s(µ),∆s(ν \ λ)))

• Oscillating/up-down tableaux hold a distinguished position
in the study of tensor product decompositions.

• Never been used to calculate Kronecker coefficients.

• The oscillating tableaux in Ps(n)-branching graph give a new
combinatorial viewpoint for stable Kronecker coefficients.

• Plus we benefit from the extra Ps(n)-structure.

• We can define local operators on paths.

• And hence calculate g(λ, µ, ν) via combinatorial resolutions.
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This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|
• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|

• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|
• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|
• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|
• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



This lecture

• We now restrict to the most well-understood part of the
branching graph

• triples (λ, µ, ν) such that |λ|+ |µ| = |ν|
• for such triples

c(λ, µ, ν) = dimC(HomCSs (∆s(µ),∆s(ν \ λ)))

• we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)

• this is done via combinatorial resolutions.

• we do this in a language which is generalisable to the
whole Ps(n) branching graph.



The Littlewood–Richardson rule

Let λ ` r − s, µ ` s and ν ` r . The multiplicities,

c(λ, ν, µ) = dimC HomCSs (∆s(µ),∆s(ν \ λ))

are equal to the number of Young tableaux of shape ν \ λ
and weight µ satisfying the following two conditions,

• the Young tableau is semistandard;

• the µ-reverse reading word of the Young tableau is a
lattice permutation.

This lecture

We unpack these terms and recast them in a manner which
can be generalised to the wider Kronecker coefficients.



The Littlewood–Richardson rule

Let λ ` r − s, µ ` s and ν ` r . The multiplicities,

c(λ, ν, µ) = dimC HomCSs (∆s(µ),∆s(ν \ λ))

are equal to the number of Young tableaux of shape ν \ λ
and weight µ satisfying the following two conditions,

• the Young tableau is semistandard;

• the µ-reverse reading word of the Young tableau is a
lattice permutation.

This lecture

We unpack these terms and recast them in a manner which
can be generalised to the wider Kronecker coefficients.



The Littlewood–Richardson rule

Let λ ` r − s, µ ` s and ν ` r . The multiplicities,

c(λ, ν, µ) = dimC HomCSs (∆s(µ),∆s(ν \ λ))

are equal to the number of Young tableaux of shape ν \ λ
and weight µ satisfying the following two conditions,

• the Young tableau is semistandard;

• the µ-reverse reading word of the Young tableau is a
lattice permutation.

This lecture

We unpack these terms and recast them in a manner which
can be generalised to the wider Kronecker coefficients.



The Littlewood–Richardson rule

Let λ ` r − s, µ ` s and ν ` r . The multiplicities,

c(λ, ν, µ) = dimC HomCSs (∆s(µ),∆s(ν \ λ))

are equal to the number of Young tableaux of shape ν \ λ
and weight µ satisfying the following two conditions,

• the Young tableau is semistandard;

• the µ-reverse reading word of the Young tableau is a
lattice permutation.

This lecture

We unpack these terms and recast them in a manner which
can be generalised to the wider Kronecker coefficients.



Section 2

Standard tableaux and representations of
symmetric groups



• The symmetric groups are controlled by the graph:

∅

• Paths from ∅ to λ in the graph are denoted Std(λ).

• This gives a nice basis

CSs = C{mst | s, t ∈ Std(λ), λ ` s}

which controls the representation theory.

• The other key ingredient (although hidden here) in this
structure is the dominance ordering B.
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Definition

Each point λ ` s in the graph labels one left and one 2-sided
ideal of the algebra. Fix any tλ ∈ Std(λ), we define

Mλ = CSsmtλtλ = indSn
Sλ1×Sλ2×...

(C)

CSBλ
s =

∑
µ.λ

CSsmtµtµCSs

Definition

We define the Specht module S(λ) to be the quotient

S(λ) = Mλ/(Mλ ∩ CSBλ
s )

and basis {ms | s ∈ Std(λ)}. This can be generalised to

S(ν \ λ) = C{ms | s ∈ Std(ν \ λ)}
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(C)

CSBλ
s =

∑
µ.λ

CSsmtµtµCSs

Definition

We define the Specht module S(λ) to be the quotient

S(λ) = Mλ/(Mλ ∩ CSBλ
s )

and basis {ms | s ∈ Std(λ)}. This can be generalised to

S(ν \ λ) = C{ms | s ∈ Std(ν \ λ)}



Action on skew modules

Given t ∈ Stds(ν \ λ), say we let tk↔k+1 denote the tableau
with k and k + 1 swapped. We have that

sk(t) =


tk↔k+1 if k ↔ k + 1 is a standard tableau

t if k & k + 1 are in same row

−t +
∑

sBt ass if k & k + 1 are in same column

Example

S((2, 2) \ (1)) =

{
1

2 3
,

2
1 3

}

s1 =

(
0 1
1 0

)
s2 =

(
1 −1
0 −1

)
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Section 3

Semistandard Young tableaux and
homomorphisms



Question

Can we give a basis of

HomCSs (M
µ,∆s(ν \ λ))

and then count how many of these homomorphisms factor
through the projection

π : Mµ → ∆s(µ).

Question

• The homomorphisms are indexed by and constructed from
SEMISTANDARD tableaux.

• Those which factor through π are counted by the semis-
tandard tableaux satisfying the LATTICE PERMUTATION
condition.
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A semistandard tableau of shape ν \ λ and weight µ is a filling of
the boxes of ν \ λ with the entries

1, . . . , 1︸ ︷︷ ︸
µ1

, 2, . . . , 2︸ ︷︷ ︸
µ2

, . . . , `, . . . , `︸ ︷︷ ︸
µ`

so that they are weakly increasing along the rows and strictly
increasing along columns.
For example the elements of SStd((32, 2) \ (2, 1), (22, 1)) are

1
1 2

2 3
,

1
1 3

2 2
,

1

2 2

1 3

,
2

1 3

1 2
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What really IS a semistandard tableaux?

We think of it as an orbit under the Sµ1 ×Sµ2 × . . . permutation
action on Std(ν \ λ).

For example, let µ = (22, 1). We identify

1
1 2

2 3
=

 1
2 3

4 5
,

2
1 3

4 5
,

1
2 4

3 5
,

2
1 4

3 5


So mapping the generator of M(µ) to the sum over these four
tableaux is a S5-homomorphism by Frobenius reciprocity.
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Definition

• For 1 ≤ k < s we write s
k∼ t if s = tk↔k+1.

• We write s
µ∼ t if there exists a sequence of standard Kro-

necker tableaux t1, t2, . . . , td ∈ Stds(ν \ λ) such that

s = t1
k1∼ t2, t2

k2∼ t3, . . . , td−1
kd−1∼ td = t

for k1, . . . , kd−1 6∈ {µ1, µ1 + µ2, . . . }.
• We define a tableau, T, of weight µ to be an equivalence

class of standard tableaux under
µ∼.

• T is semistandard if tk↔k+1 ∈ Std(ν \ λ) for all t ∈ T and
all k1, . . . , kd−1 6∈ {µ1, µ1 + µ2, . . . }.
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ϕ

(
1 2
3 4
5

)
=

1
2 3

4 5
+

2
1 3

4 5
+

1
2 4

3 5
+

2
1 4

3 5

Theorem

For T ∈ SStds(ν \ λ, µ), define

ϕT(tµ) =
∑

ϕ(t)=T

t.

We have that

{ϕT | T ∈ SStds(ν \ λ, µ)}

is a Z-basis for HomSs (M(µ),∆s(ν \ λ)).
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How can we picture this in a way that generalises to Ps(n)?

1st frame
2 steps in

2nd frame
2 steps in

3rd frame
1 step in

+2+1

+2 +1

+3 +2

+2 +3

+3

[
1

1 2
2 3

]
µ

=

{
1

2 3
4 5

,
2

1 3
4 5

,
1

2 4
3 5

,
2

1 4
3 5

}



Section 4

The lattice permutation condition



Reverse reading word

Given a semistandard tableau, S, the reverse reading word
read(S), is given by reading the entries of S from right-to-
left beginning with the first row and continuing in order down
the rows.

read

 1
1 2

2 3

 = 1, 2, 1, 3, 2
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• What meaning does the ordering defining read(S) have?

• This comes from the dominance ordering on CSs .

• We decorate the edges of the branching graph with the
corresponding row in which a node is added.

∅

+ε1 +ε2

+ε1
+ε2 +ε1 +ε3

• The dominance ordering on steps is +ε1 < +ε2 < +ε3 < . . .

• We read steps in S according to the dominance ordering and
then we refine this by recording the frames in which these
steps occur in decreasing fashion.
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Lattice permutation

Now that we have defined the reading word of a tableau, we
are ready to define the quality (good/bad) of each term in
read(S) as follows.

• All 1’s are good.

• An i + 1 is good if and only if the number of previous
good i ’s is strictly greater than the number of previous
good i + 1’s.

A sequence of positive integers is called a lattice permutation
if every term in the sequence is good.
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