


Section 1

The partition algebra and the stable Kronecker
coefficients
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The branching graph of the tower of partition algebras

e Ps(n)-mod is a highest weight category.

e A vertex p on the sth level of the following graph labels a
standard Ps(n)-module Ag(p).

e The paths from & to u give a basis of Ag(u).
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Recall C&; is a quotient and a subalgebra of Ps(n).

The symmetric group branching graph is a subgraph.

Restricting to this subgraph.....

We obtain the classical simple and skew modules and
(A, p,v) = dimg(Homee, (As(p), As(v |\ A)))
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This lecture

e We now restrict to the most well-understood part of the
branching graph

e triples (), i, v) such that [A| + |u| = |V|
e for such triples

c(A, u,v) = dime(Homee, (As(i), As(v \ A)))
e we recall the path-counting algorithm for these coeffi-
cients and its proof (due to Gordon James)
e this is done via combinatorial resolutions.

e we do this in a language which is generalisable to the
whole P¢(n) branching graph.
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The Littlewood—Richardson rule

Let A\Fr—s, ptsand v+ r. The multiplicities,
c(A, v, pu) = dimec Homee, (As(i), As(v \ A))

are equal to the number of Young tableaux of shape v\ A
and weight u satisfying the following two conditions,

e the Young tableau is semistandard;

e the p-reverse reading word of the Young tableau is a
lattice permutation.

We unpack these terms and recast them in a manner which
can be generalised to the wider Kronecker coefficients.
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Each point A - s in the graph labels one left and one 2-sided
ideal of the algebra. Fix any t* € Std()), we define

M = C&gmpaps = indS (C)

6>\1><G)\2

CEZ* =D CEmuyCEs
[

We define the Specht module S(\) to be the quotient

S(A) = MY /(M* N C&ZH)
and basis {ms | s € Std(\)}. This can be generalised to

S(w\A) =C{ms|seStd(v\\)}
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Section 3

Semistandard Young tableaux and
homomorphisms
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Can we give a basis of
HomCGS(M“, AS(V \ )\))

and then count how many of these homomorphisms factor
through the projection

7w M — Ag(p).

e The homomorphisms are indexed by and constructed from
SEMISTANDARD tableaux.

e Those which factor through m are counted by the semis-
tandard tableaux satisfying the LATTICE PERMUTATION
condition.




A semistandard tableau of shape v\ A\ and weight u is a filling of
the boxes of v\ A with the entries



A semistandard tableau of shape v\ A\ and weight u is a filling of
the boxes of v\ A with the entries

so that they are weakly increasing along the rows and strictly
increasing along columns.



A semistandard tableau of shape v\ A\ and weight u is a filling of
the boxes of v\ A with the entries

so that they are weakly increasing along the rows and strictly
increasing along columns.
For example the elements of SStd((32,2) \ (2,1),(22,1)) are

1
1]2],




A semistandard tableau of shape v\ A\ and weight u is a filling of
the boxes of v\ A with the entries

so that they are weakly increasing along the rows and strictly
increasing along columns.
For example the elements of SStd((32,2) \ (2,1),(22,1)) are

1 1
12, [1]3],




A semistandard tableau of shape v\ A\ and weight u is a filling of
the boxes of v\ A with the entries

so that they are weakly increasing along the rows and strictly
increasing along columns.
For example the elements of SStd((32,2) \ (2,1),(22,1)) are

1 1 1
12],[ T1[3],] [2]2],




A semistandard tableau of shape v\ A\ and weight u is a filling of
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What really IS a semistandard tableaux?

We think of it as an orbit under the &, x &,, X ... permutation
action on Std(v \ ).

For example, let 11 = (22,1). We identify

1 1 2
1]2] = 23], [ @3], [ [2]4], [ [1]4
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So mapping the generator of M(u) to the sum over these four
tableaux is a Gs-homomorphism by Frobenius reciprocity.
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e We write s & t if there exists a sequence of standard Kro-
necker tableaux ty,to,...,ty € Stds(v \ A) such that

k1 k2 kd—l
S=1t; ~ty, tho ~Vt3, ... ;tg1 ~ tg=t

for ki, ..., kq_1 €{,u1,u1—|—,u2,...}.
e We define a tableau, T, of weight u to be an equivalence
class of standard tableaux under £.

e T is semistandard if tyx1 € Std(r\ A) for all t € T and
all ki,... kg—1 & {pa, p1 + po, ...}
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Theorem

For T € SStds(v \ A, p1), define

er(t) = >t

e(t)=T
We have that
{1 | T €SStds(v \ A\, 1)}

is a Z-basis for Homg, (M(u), As(v \ A)).




How can we picture this in a way that generalises to Ps(n)?

1st frame

2 steps in | | 3
>N i H o

2 steps in 3 |
2nd frame) | H ﬁﬂ 1

| +W2 |
1 step in i 777777777777777 i
3rd frame{ +3 ‘ |

1 1 2 1 2
12| = 2(3] , 1/3], 2]4] , 14
2[3 " 4[5 4[5 3[5 35
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The lattice permutation condition
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left beginning with the first row and continuing in order down
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What meaning does the ordering defining read(S) have?
This comes from the dominance ordering on CG&;.

We decorate the edges of the branching graph with the
corresponding row in which a node is added.
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The dominance ordering on steps is +e1 < +e2 < +e3 < ...

We read steps in S according to the dominance ordering and
then we refine this by recording the frames in which these
steps occur in decreasing fashion.
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25tepsin§ aEs ﬁﬂ i

| | ]_
| +2/ \+3 | read 112 | =1,2,1,3,2
2 steps in ) aE= @3 l 2|3
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; +W2 !
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Lattice permutation

Now that we have defined the reading word of a tableau, we
are ready to define the quality (good/bad) of each term in
read(S) as follows.

e All 1's are good.

e An i+ 1 is good if and only if the number of previous
good i's is strictly greater than the number of previous
good i+ 1's.

A sequence of positive integers is called a lattice permutation
if every term in the sequence is good.
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And so

—_

—_

—_

WIN

—_

WIN

< +e1 | +e2 Her | +e3 Hte3 )
< +e1 | +e2 Heo | 43 HeE3 >

+€1 | +&€2 +€2 | +€3 +€3>

<+€1 +eo2 +eo | +€3 +83>

c((3%,2),(2,1),(2%,1)) = 1.
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