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The Partition algebra and the

Kronecker coefficients I:

Introduction



Section 1

Schur–Weyl duality, tensor products,

and induction and restriction
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the value of a given Kronecker coefficient.
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Problem

Provide an algorithm (in P) for deciding whether a given Kronecker
coefficient is positive.

• Quantum information theory and entanglement entropy.

• Complexity theory (e.g. Knutson–Tao).
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The following conjecture, posed by Saxl, serves as a bench-mark for our
complete lack of understanding.....

Saxl’s Conjecture

Let ρ = (k, k − 1, . . . , 2, 1), then

SC(ρ)⊗ SC(ρ)

contains all CSn-simples with non-zero multiplicity.

Has been attacked by combinatorists, complexity theorists, probabilists
and modular representation theorists. And has been verified for

• λ a hook partition or λ� ρ (Ikenmeyer).

• λ a double-hook (Bessenrodt)

• 2-adic staircases and other decomposable Specht modules
(B.–Bessenrodt–Sutton)
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Section 2

Stabilities of Kronecker coefficients



Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

Kron = {g(λ, ν, µ) | g(λ, ν, µ) > 0}

under addition of partitions,

g(λ+ α, ν + β, µ + γ) ≥ max{g(λ, ν, µ), g(α, β, γ)}

The semigroup property has been used to prove

• S(ρ)⊗4 contains all simples (Luo Sellke)

• non-existence of occurrence obstructions in GCT (Ikenmeyer et al.)

• understand rectangular Kronecker coefficients (Manivel)

• classify multiplicity-free Kronecker products (B., Bessenrodt)
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Clearly g(α, β, γ) = 1 > 0 for α = β = γ = . Therefore by the
semigroup property

{g(λ+ (n), µ+ (n), ν + (n))}n∈N

is weakly increasing.

This sequence has a stable limit called the stable
Kronecker coefficient g(λ>1, µ>1, ν>1).

Example

n SC(n − 3, 2, 1)⊗ SC(n − 1, 1)
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[n]
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Example

These stable coefficients can be thought of as the number of paths
in a special graph which we will come back to later....

[n]

[n] [n] [n]

[n] [n] [n] [n] [n] [n] [n] [n]

[n]
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• Yes! This was done by Stembridge and Sam–Snowden.
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• Do the stable limits have concrete interpretations?

• Perhaps within in the setting of a towers of algebras?

• Are the stable coefficients easier to understand?

• Can we calculate stable coefficients in terms of paths in graphs?

For g(λ>1, µ>1, ν>1) this setting is the partition algebra, Ps(n).

Ps(n) controls the representation theory of Sn as n→∞
The graph encodes induction and restriction for Ps(n).
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If we can add and multiply partitions, can we divide them?

Theorem (Knutson–Tao 1999)

The sub-semigroup

{g(λ, µ, ν) | |λ|+ |µ| = |ν|} ⊆ Kron

is closed under scaling of partitions. This results in an algorithm
(in P) for deciding positivity of these coefficients.

The Kronecker semigroup is not closed under scaling. The holes in this
scaling property correspond to the various degrees of difficulty of the
positivity problem (P ⊂ NP ∩ coNP ⊂ NP).

Klyachko’s Conjecture

The sub-semigroup of stable Kronecker coefficients is closed under
scaling.
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Section 3

The modular approach to Kronecker positivity
and Saxl’s conjecture



How does modular representation theory help?

Let p = 2. The Specht module Sk(ρ) is projective.

Therefore
Sk(ρ)⊗ Sk(ρ) = ⊕µP(µ)⊕aµ

is a direct sum of projective modules.

The projective module P(µ) has a Specht filtration.

The multiplicities [P(µ) : S(λ)] for λ ∈ Pn are given by the µth
column of the decomposition matrix.

Thus if aµ 6= 0 and dλµ 6= 0 then Saxl’s conjecture holds for λ.

We have that aµ > 0 for µ any simple Specht module.

E.g, Every block has at least one projective summand.
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Blocks of Hk
2(Sn) are labelled by ρk = (k , k − 1, k − 2, . . . , 1).

The block, B(ρk), consists of all partitions of n which can be obtained
from ρk by adding “dominoes”.

The block B(ρ5) of Hk
2(S35) contains the simple module labelled by:
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We restrict to “2-quotient separated” partitions.

For example, the
following ARE 2-q-s

×

×
×

The following partition is not 2-q-s

A partition, λ, in the block ρk is 2-q-s if (k + 3− a, a) 6∈ λ for some
1 ≤ a ≤ k + 1.
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Any 2-q-s can be written in the form

ραβ =

+2α

+
2β

=

Theorem (B. Bessenrodt Sutton)

The HC
−1(Sn)-module SC

−1(ραβ) is semisimple and decomposes as
follows

SC(ραβ) =
⊕
λ

c(λT , αT , β)SC(ρλ∅)〈|β|〉.

Conjecture: classification of decomposable Spechts (BBS)

Over C, a Specht module S(λ) is decomposable semisimple if and
only if e = 2 and λ is 2-q-s or a “near square”.
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Kronecker positivity and Saxl’s Conjecture (BBS)

The Kronecker product SC(ρk)⊗ SC(ρk) contains

all hooks (Ikenmeyer and BBS)

the staircase ρk (Bessenrodt–Boehns and BBS)

Hooked–staircases!

and many others coming from other choices of columns in the
decomposition matrix.
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Unbounding coefficients in Saxl’s tensor-square (BBS)

As k →∞, the multiplicities appearing in the decomposition of

SC(ρk)⊗ SC(ρk) = ⊕g(ρk , ρk , λ)SC(λ)

also tend to infinity.

(Best prior general lower bound was 1!)
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Section 4

Classical Schur–Weyl duality:
Classifying multiplicity-free Kronecker products



In 1999, Bessenrodt conjectured a classification of all multiplicity-free
Kronecker products.

That is, the pairs λ and µ such that

g(λ, µ, ν) = 0 or 1

for all ν ` n. For example

⊗ = + + +

is multiplicity-free (and has few homogenous components
Bessenrodt–Kleshchev).

Using Manivel’s semigroup property and Dvir recursion:

Bessenrodt’s Conjecture: (Bessenrodt B.)

If λ⊗ µ is multiplicity-free then {λ, µ} is one of the following:

• {linear, arbitrary}
• {(n − 1, 1), fat hook}
• certain pairs of 2-line partitions

• {rectangle, (n − 2, 12)} or {rectangle, (n − 2, 2)}
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