

Section 1

Schur-Weyl duality, tensor products, and induction and restriction

$$
\Phi_{n}\left(\mathfrak{S}_{r}\right)=\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(\operatorname{GL}_{n}\right)=\operatorname{End}_{\mathfrak{S}_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed	Tower of
group G_{n}	algebras D_{r}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r} r}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r} r}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

\mathfrak{S}_{n}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

$\begin{array}{cc}\cup & \cap \\ \mathfrak{S}_{n} & P_{r}^{\mathrm{kk}}(n)\end{array}$

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed
group G_{n}

Tower of algebras D_{r}

$$
\Phi_{n}\left(D_{r}\right)=\operatorname{End}_{G_{n}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right) \quad \Psi_{r}\left(G_{n}\right)=\operatorname{End}_{D_{r}}\left(\left(\mathbb{k}^{n}\right)^{\otimes r}\right)
$$

A fixed	Tower of
group G_{n}	algebras D_{r}

Tensor products

A fixed	Tower of
group G_{n}	algebras D_{r}

Tensor products
Restriction

A fixed
group G_{n}

Tower of algebras D_{r}

$$
\begin{gathered}
\mathbb{k}^{\mathfrak{S}_{r}} \\
\cap \\
B_{r}^{\mathbb{k}}(n) \\
\cap \\
P_{r}^{\mathbb{k}}(n)
\end{gathered}
$$

Tensor products

Restriction

A fixed
group G_{n}
$\mathrm{GL}_{n} \quad \checkmark$ Littlewood-Richardson rule $c(\lambda, \mu, \nu) \quad \checkmark \quad \mathbb{k} \mathfrak{S}_{r}$
$\mathrm{Sp}_{-2 n} / \mathrm{O}_{n}$
\cup
\mathfrak{S}_{n}

Tensor products

Tower of algebras D_{r}

$\mathrm{GL}_{n} \checkmark$	Littlewood-Richardson rule $c(\lambda, \mu, \nu)$	$\checkmark \mathbb{k} \mathfrak{S}_{r}$
\cup		\cap
$\mathrm{Sp}_{-2 n} / \mathrm{O}_{n}$		$B_{r}^{\mathbb{k}}(n)$
\cup		\cap
\mathfrak{S}_{n}		$P_{r}^{\mathbb{k}}(n)$

Restriction

> A fixed group G_{n}

$\mathrm{GL}_{n} \quad \checkmark$	Littlewood-Richardson rule $c(\lambda, \mu, \nu)$	\checkmark	$\mathbb{k} \mathfrak{S}_{r}$
\cup			\cap
$\mathrm{Sp}_{-2 n} / \mathrm{O}_{n} \quad \checkmark$	Littelmann paths/oscillating tableaux	\checkmark	$B_{r}^{\mathbb{k}}(n)$
\cup			\cap
\mathfrak{S}_{n}		$P_{r}^{\mathbb{k}}(n)$	

Tensor products
$\mathrm{GL}_{n} \quad \checkmark$ Littlewood-Richardson rule $c(\lambda, \mu, \nu) \quad \checkmark \mathbb{k} \mathfrak{S}_{r}$

Littelmann paths/oscillating tableaux
$\checkmark B_{r}^{\mathfrak{k}}(n)$

Restriction

> A fixed group G_{n}

Tower of
algebras D_{r}

$\mathrm{GL}_{n} \quad \checkmark$	Littlewood-Richardson rule $c(\lambda, \mu, \nu)$	\checkmark	$\mathbb{k} \mathfrak{S}_{r}$	
\cup			\cap	
$\mathrm{Sp}_{-2 n} / \mathrm{O}_{n}$	\checkmark	Littelmann paths/oscillating tableaux	\checkmark	$B_{r}^{\mathbb{k}}(n)$
\cup			\cap	
\mathfrak{S}_{n}	\times	Kronecker coefficients $g(\lambda, \mu, \nu)$	\& $P_{r}^{\mathbb{k}}(n)$	

Tensor products
Restriction

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

- One of Stanley's definitive open problems in combinatorics

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

- One of Stanley's definitive open problems in combinatorics
- Geometric complexity theory and P versus NP

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

- One of Stanley's definitive open problems in combinatorics
- Geometric complexity theory and P versus NP

Problem

Provide an algorithm (in P) for deciding whether a given Kronecker coefficient is positive.

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

- One of Stanley's definitive open problems in combinatorics
- Geometric complexity theory and P versus NP

Problem

Provide an algorithm (in P) for deciding whether a given Kronecker coefficient is positive.

- Quantum information theory and entanglement entropy.

Problem

Provide a positive combinatorial algorithm (in NP) for calculating the value of a given Kronecker coefficient.

- One of Stanley's definitive open problems in combinatorics
- Geometric complexity theory and P versus NP

Problem

Provide an algorithm (in P) for deciding whether a given Kronecker coefficient is positive.

- Quantum information theory and entanglement entropy.
- Complexity theory (e.g. Knutson-Tao).

How does $S^{\mathbb{C}}\left(2^{2}, 1\right) \otimes S(4,1)$ decompose?

	\square	\square	\#	\#	\#	\boxplus	日
-	1	1	1	1	1	1	1
\square	-1	0	1	-1	0	2	4
\boxplus	0	1	-1	1	-1	1	5
∇	1	-2	0	0	0	0	6
\#	0	1	-1	-1	1	-1	5
\#	-1	0	1	1	0	-2	4
且	1	1	1	-1	-1	-1	1
$\boxplus \otimes \square$	0	0	-1	1	0	-2	20

How does $S^{\mathbb{C}}\left(2^{2}, 1\right) \otimes S^{\mathbb{C}}(4,1)$ decompose？

	ロா	\square	\boxplus	曰	\＃	目	目
－	1	1	1	1	1	1	1
\square	－1	0	1	－1	0	2	4
\square	0	1	－1	1	－1	1	5
\square	1	－2	0	0	0	0	6
\boxplus	0	1	－1	－1	1	－1	5
E	－1	0	1	1	0	－2	4
目	1	1	1	－1	－1	－1	1
$\boxplus \otimes \square$	0	0	－1	1	0		20

How does $S^{\mathbb{C}}\left(2^{2}, 1\right) \otimes S^{\mathbb{C}}(4,1)$ decompose？

	ロா	\square	\boxplus	曰	\＃	目	目
－	1	1	1	1	1	1	1
\square	－1	0	1	－1	0	2	4
\square	0	1	－1	1	－1	1	5
\square	1	－2	0	0	0	0	6
\boxplus	0	1	－1	－1	1	－1	5
E	－1	0	1	1	0	－2	4
目	1	1	1	－1	－1	－1	1
$\boxplus \otimes \square^{\square}$	0	0	－1	1	0	－2	20

$g\left(\left(2^{2}, 1\right),(4,1), \nu\right)= \begin{cases}1 & \text { for } \nu=(3,2),\left(3,1^{2}\right),\left(2^{2}, 1\right) \text { or }\left(2,1^{3}\right) \\ 0 & \text { otherwise } .\end{cases}$

The following conjecture, posed by Saxl, serves as a bench-mark for our complete lack of understanding.....

Saxl's Conjecture

Let $\rho=(k, k-1, \ldots, 2,1)$, then

$$
S^{\mathbb{C}}(\rho) \otimes S^{\mathbb{C}}(\rho)
$$

contains all \mathbb{C}_{n}-simples with non-zero multiplicity.

The following conjecture, posed by Saxl, serves as a bench-mark for our complete lack of understanding.....

Saxl's Conjecture

Let $\rho=(k, k-1, \ldots, 2,1)$, then

$$
S^{\mathbb{C}}(\rho) \otimes S^{\mathbb{C}}(\rho)
$$

contains all \mathbb{C}_{n}-simples with non-zero multiplicity.

Has been attacked by combinatorists, complexity theorists, probabilists and modular representation theorists. And has been verified for

The following conjecture, posed by Saxl, serves as a bench-mark for our complete lack of understanding.....

Saxl's Conjecture

Let $\rho=(k, k-1, \ldots, 2,1)$, then

$$
S^{\mathbb{C}}(\rho) \otimes S^{\mathbb{C}}(\rho)
$$

contains all \mathbb{C}_{n}-simples with non-zero multiplicity.

Has been attacked by combinatorists, complexity theorists, probabilists and modular representation theorists. And has been verified for

- λ a hook partition or $\lambda \triangleright \rho$ (Ikenmeyer).

The following conjecture, posed by Saxl, serves as a bench-mark for our complete lack of understanding.....

Saxl's Conjecture

Let $\rho=(k, k-1, \ldots, 2,1)$, then

$$
S^{\mathbb{C}}(\rho) \otimes S^{\mathbb{C}}(\rho)
$$

contains all \mathbb{C}_{n}-simples with non-zero multiplicity.

Has been attacked by combinatorists, complexity theorists, probabilists and modular representation theorists. And has been verified for

- λ a hook partition or $\lambda \triangleright \rho$ (Ikenmeyer).
- λ a double-hook (Bessenrodt)

The following conjecture, posed by Saxl, serves as a bench-mark for our complete lack of understanding.....

Saxl's Conjecture

Let $\rho=(k, k-1, \ldots, 2,1)$, then

$$
S^{\mathbb{C}}(\rho) \otimes S^{\mathbb{C}}(\rho)
$$

contains all \mathbb{C}_{n}-simples with non-zero multiplicity.

Has been attacked by combinatorists, complexity theorists, probabilists and modular representation theorists. And has been verified for

- λ a hook partition or $\lambda \triangleright \rho$ (Ikenmeyer).
- λ a double-hook (Bessenrodt)
- 2-adic staircases and other decomposable Specht modules
(B.-Bessenrodt-Sutton)

Section 2

Stabilities of Kronecker coefficients

Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

$$
\text { Kron }=\{g(\lambda, \nu, \mu) \mid g(\lambda, \nu, \mu)>0\}
$$

under addition of partitions,

$$
g(\lambda+\alpha, \nu+\beta, \mu+\gamma) \geq \max \{g(\lambda, \nu, \mu), g(\alpha, \beta, \gamma)\}
$$

Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

$$
\text { Kron }=\{g(\lambda, \nu, \mu) \mid g(\lambda, \nu, \mu)>0\}
$$

under addition of partitions,

$$
g(\lambda+\alpha, \nu+\beta, \mu+\gamma) \geq \max \{g(\lambda, \nu, \mu), g(\alpha, \beta, \gamma)\}
$$

The semigroup property has been used to prove

- $S(\rho)^{\otimes 4}$ contains all simples (Luo Sellke)

Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

$$
\text { Kron }=\{g(\lambda, \nu, \mu) \mid g(\lambda, \nu, \mu)>0\}
$$

under addition of partitions,

$$
g(\lambda+\alpha, \nu+\beta, \mu+\gamma) \geq \max \{g(\lambda, \nu, \mu), g(\alpha, \beta, \gamma)\}
$$

The semigroup property has been used to prove

- $S(\rho)^{\otimes 4}$ contains all simples (Luo Sellke)
- non-existence of occurrence obstructions in GCT (Ikenmeyer et al.)

Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

$$
\text { Kron }=\{g(\lambda, \nu, \mu) \mid g(\lambda, \nu, \mu)>0\}
$$

under addition of partitions,

$$
g(\lambda+\alpha, \nu+\beta, \mu+\gamma) \geq \max \{g(\lambda, \nu, \mu), g(\alpha, \beta, \gamma)\}
$$

The semigroup property has been used to prove

- $S(\rho)^{\otimes 4}$ contains all simples (Luo Sellke)
- non-existence of occurrence obstructions in GCT (Ikenmeyer et al.)
- understand rectangular Kronecker coefficients (Manivel)

Theorem (Manivel 2011)

The non-zero Kronecker coefficients form a semigroup

$$
\text { Kron }=\{g(\lambda, \nu, \mu) \mid g(\lambda, \nu, \mu)>0\}
$$

under addition of partitions,

$$
g(\lambda+\alpha, \nu+\beta, \mu+\gamma) \geq \max \{g(\lambda, \nu, \mu), g(\alpha, \beta, \gamma)\}
$$

The semigroup property has been used to prove

- $S(\rho)^{\otimes 4}$ contains all simples (Luo Sellke)
- non-existence of occurrence obstructions in GCT (Ikenmeyer et al.)
- understand rectangular Kronecker coefficients (Manivel)
- classify multiplicity-free Kronecker products (B., Bessenrodt)

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing.

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing. This sequence has a stable limit called the stable Kronecker coefficient $\bar{g}\left(\lambda_{>1}, \mu_{>1}, \nu_{>1}\right)$.

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing. This sequence has a stable limit called the stable Kronecker coefficient $\bar{g}\left(\lambda_{>1}, \mu_{>1}, \nu_{>1}\right)$.

Example

n	$S^{\mathbb{C}}(n-3,2,1) \otimes S^{\mathbb{C}}(n-1,1)$
5	

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing. This sequence has a stable limit called the stable Kronecker coefficient $\bar{g}\left(\lambda_{>1}, \mu_{>1}, \nu_{>1}\right)$.

Example

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing. This sequence has a stable limit called the stable Kronecker coefficient $\bar{g}\left(\lambda_{>1}, \mu_{>1}, \nu_{>1}\right)$.

Example

n	$S^{\mathbb{C}}(n-3,2,1) \otimes S^{\mathbb{C}}(n-1,1)$
5	$\boxplus \oplus \boxminus \quad \oplus \boxplus \quad \oplus 日$
6	$\boxplus \oplus \square \oplus 2 \boxplus \oplus \boxplus \oplus \boxplus \quad \oplus \boxplus \quad \oplus \nexists$
7	

Clearly $g(\alpha, \beta, \gamma)=1>0$ for $\alpha=\beta=\gamma=\square$. Therefore by the semigroup property

$$
\{g(\lambda+(n), \mu+(n), \nu+(n))\}_{n \in \mathbb{N}}
$$

is weakly increasing. This sequence has a stable limit called the stable Kronecker coefficient $\bar{g}\left(\lambda_{>1}, \mu_{>1}, \nu_{>1}\right)$.

Example

n	$S^{\mathbb{C}}(n-3,2,1) \otimes S^{\mathbb{C}}(n-1,1)$
5	$\boxplus \oplus \boxminus \quad \oplus \boxplus \quad \oplus 日$
6	$\boxplus \oplus \square \oplus 2 \boxplus \oplus \square \oplus \boxplus \quad \oplus \boxplus \quad \oplus \boxplus$
7	
7+	$\square_{[n]} \oplus \mathrm{B}_{[n]} \oplus 2 \nabla_{[n]} \oplus \mathrm{B}_{[n]} \oplus \square_{[n]} \oplus \boxplus_{[n]} \oplus \nabla_{[n]} \oplus \square_{[n]}$

Example

These stable coefficients can be thought of as the number of paths in a special graph which we will come back to later....

Problem

Can we classify the stabilities in the Kronecker semigroup?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?
- Can we calculate stable coefficients in terms of paths in graphs?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?
- Can we calculate stable coefficients in terms of paths in graphs?

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?
- Can we calculate stable coefficients in terms of paths in graphs?
- For $\bar{g}(\lambda, \mu, \nu)$, this setting is the partition algebra, $P_{s}(n)$.

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?
- Can we calculate stable coefficients in terms of paths in graphs?
- For $\bar{g}(\lambda, \mu, \nu)$, this setting is the partition algebra, $P_{s}(n)$.
- The graph encodes induction and restriction for $P_{s}(n)$.

Problem

Can we classify the stabilities in the Kronecker semigroup?

- Yes! This was done by Stembridge and Sam-Snowden.

Problem

- Do the stable limits have concrete interpretations?
- Perhaps within in the setting of a towers of algebras?
- Are the stable coefficients easier to understand?
- Can we calculate stable coefficients in terms of paths in graphs?
- For $\bar{g}(\lambda, \mu, \nu)$, this setting is the partition algebra, $P_{s}(n)$.
- The graph encodes induction and restriction for $P_{s}(n)$.
- $P_{s}(n)$ controls the representation theory of \mathfrak{S}_{n} as $n \rightarrow \infty$

If we can add and multiply partitions, can we divide them?

If we can add and multiply partitions, can we divide them?

Theorem (Knutson-Tao 1999)

The sub-semigroup

$$
\{\bar{g}(\lambda, \mu, \nu)||\lambda|+|\mu|=|\nu|\} \subseteq \text { Kron }
$$

is closed under scaling of partitions. This results in an algorithm (in P) for deciding positivity of these coefficients.

If we can add and multiply partitions, can we divide them?

Theorem (Knutson-Tao 1999)

The sub-semigroup

$$
\{\bar{g}(\lambda, \mu, \nu)||\lambda|+|\mu|=|\nu|\} \subseteq \text { Kron }
$$

is closed under scaling of partitions. This results in an algorithm (in P) for deciding positivity of these coefficients.

The Kronecker semigroup is not closed under scaling.

If we can add and multiply partitions, can we divide them?

Theorem (Knutson-Tao 1999)

The sub-semigroup

$$
\{\bar{g}(\lambda, \mu, \nu)||\lambda|+|\mu|=|\nu|\} \subseteq \text { Kron }
$$

is closed under scaling of partitions. This results in an algorithm (in P) for deciding positivity of these coefficients.

The Kronecker semigroup is not closed under scaling. The holes in this scaling property correspond to the various degrees of difficulty of the positivity problem ($\mathrm{P} \subset \mathrm{NP} \cap$ coNP $\subset N P$).

If we can add and multiply partitions, can we divide them?

Theorem (Knutson-Tao 1999)

The sub-semigroup

$$
\{\bar{g}(\lambda, \mu, \nu)||\lambda|+|\mu|=|\nu|\} \subseteq \text { Kron }
$$

is closed under scaling of partitions. This results in an algorithm (in P) for deciding positivity of these coefficients.

The Kronecker semigroup is not closed under scaling. The holes in this scaling property correspond to the various degrees of difficulty of the positivity problem ($\mathrm{P} \subset \mathrm{NP} \cap$ coNP $\subset \mathrm{NP}$).

Klyachko's Conjecture

The sub-semigroup of stable Kronecker coefficients is closed under scaling.

Section 3

The modular approach to Kronecker positivity and Saxl's conjecture

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathfrak{k}}(\rho)$ is projective.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.
The projective module $P(\mu)$ has a Specht filtration.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.
The projective module $P(\mu)$ has a Specht filtration.
The multiplicities $[P(\mu): S(\lambda)]$ for $\lambda \in \mathcal{P}_{n}$ are given by the μ th column of the decomposition matrix.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.
The projective module $P(\mu)$ has a Specht filtration.
The multiplicities $[P(\mu): S(\lambda)]$ for $\lambda \in \mathcal{P}_{n}$ are given by the μ th column of the decomposition matrix.

Thus if $a_{\mu} \neq 0$ and $d_{\lambda \mu} \neq 0$ then Saxl's conjecture holds for λ.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.
The projective module $P(\mu)$ has a Specht filtration.
The multiplicities $[P(\mu): S(\lambda)]$ for $\lambda \in \mathcal{P}_{n}$ are given by the μ th column of the decomposition matrix.

Thus if $a_{\mu} \neq 0$ and $d_{\lambda \mu} \neq 0$ then Saxl's conjecture holds for λ.
We have that $a_{\mu}>0$ for μ any simple Specht module.

How does modular representation theory help?

Let $p=2$. The Specht module $S^{\mathbb{k}}(\rho)$ is projective.
Therefore

$$
S^{\mathfrak{k}}(\rho) \otimes S^{\mathfrak{k}}(\rho)=\oplus_{\mu} P(\mu)^{\oplus a_{\mu}}
$$

is a direct sum of projective modules.
The projective module $P(\mu)$ has a Specht filtration.
The multiplicities $[P(\mu): S(\lambda)]$ for $\lambda \in \mathcal{P}_{n}$ are given by the μ th column of the decomposition matrix.

Thus if $a_{\mu} \neq 0$ and $d_{\lambda \mu} \neq 0$ then Saxl's conjecture holds for λ.
We have that $a_{\mu}>0$ for μ any simple Specht module.
E.g, Every block has at least one projective summand.

Blocks of $\mathcal{H}_{2}^{\mathbb{k}}\left(\mathfrak{S}_{n}\right)$ are labelled by $\rho_{k}=(k, k-1, k-2, \ldots, 1)$.

Blocks of $\mathcal{H}_{2}^{\mathbb{k}}\left(\mathfrak{S}_{n}\right)$ are labelled by $\rho_{k}=(k, k-1, k-2, \ldots, 1)$.
The block, $B\left(\rho_{k}\right)$, consists of all partitions of n which can be obtained from ρ_{k} by adding "dominoes".

Blocks of $\mathcal{H}_{2}^{\mathbb{k}}\left(\mathfrak{S}_{n}\right)$ are labelled by $\rho_{k}=(k, k-1, k-2, \ldots, 1)$.
The block, $B\left(\rho_{k}\right)$, consists of all partitions of n which can be obtained from ρ_{k} by adding "dominoes".

The block $B\left(\rho_{5}\right)$ of $\mathcal{H}_{2}^{k}\left(\mathfrak{S}_{35}\right)$ contains the simple module labelled by:

We restrict to "2-quotient separated" partitions.

We restrict to "2-quotient separated" partitions. For example, the following ARE $2-q-s$

We restrict to "2-quotient separated" partitions. For example, the following ARE $2-q-s$

We restrict to " 2 -quotient separated" partitions. For example, the following ARE 2-q-s

The following partition is not 2-q-s

We restrict to " 2 -quotient separated" partitions. For example, the following ARE 2-q-s

The following partition is not 2-q-s

A partition, λ, in the block ρ_{k} is 2 -q-s if $(k+3-a, a) \notin \lambda$ for some $1 \leq a \leq k+1$.

Any 2-q-s can be written in the form

Any 2-q-s can be written in the form

Any 2-q-s can be written in the form

Theorem (B. Bessenrodt Sutton)

The $\mathcal{H}_{-1}^{\mathbb{C}}\left(\mathfrak{S}_{n}\right)$-module $S_{-1}^{\mathbb{C}}\left(\rho_{\beta}^{\alpha}\right)$ is semisimple and decomposes as follows

$$
S^{\mathbb{C}}\left(\rho_{\beta}^{\alpha}\right)=\bigoplus_{\lambda} c\left(\lambda^{T}, \alpha^{T}, \beta\right) S^{\mathbb{C}}\left(\rho_{\varnothing}^{\lambda}\right)\langle | \beta| \rangle .
$$

Any 2-q-s can be written in the form

Theorem (B. Bessenrodt Sutton)

The $\mathcal{H}_{-1}^{\mathbb{C}}\left(\mathfrak{S}_{n}\right)$-module $S_{-1}^{\mathbb{C}}\left(\rho_{\beta}^{\alpha}\right)$ is semisimple and decomposes as follows

$$
S^{\mathbb{C}}\left(\rho_{\beta}^{\alpha}\right)=\bigoplus_{\lambda} c\left(\lambda^{T}, \alpha^{T}, \beta\right) S^{\mathbb{C}}\left(\rho_{\varnothing}^{\lambda}\right)\langle | \beta| \rangle .
$$

Conjecture: classification of decomposable Spechts (BBS)

Over \mathbb{C}, a Specht module $S(\lambda)$ is decomposable semisimple if and only if $e=2$ and λ is $2-q-5$ or a "near square".

Kronecker positivity and Saxl's Conjecture (BBS)

The Kronecker product $S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)$ contains

Kronecker positivity and Saxl's Conjecture (BBS)

The Kronecker product $S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)$ contains all hooks (Ikenmeyer and BBS)

Kronecker positivity and Saxl's Conjecture (BBS)

The Kronecker product $S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)$ contains all hooks (Ikenmeyer and BBS) the staircase ρ_{k} (Bessenrodt-Boehns and BBS)

Kronecker positivity and Saxl's Conjecture (BBS)

The Kronecker product $S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)$ contains all hooks (Ikenmeyer and BBS) the staircase ρ_{k} (Bessenrodt-Boehns and BBS)
Hooked-staircases!

Kronecker positivity and Saxl's Conjecture (BBS)

The Kronecker product $S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)$ contains all hooks (Ikenmeyer and BBS) the staircase ρ_{k} (Bessenrodt-Boehns and BBS)
Hooked-staircases!

and many others coming from other choices of columns in the decomposition matrix.

Unbounding coefficients in Saxl's tensor-square (BBS)

As $k \rightarrow \infty$, the multiplicities appearing in the decomposition of

$$
S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)=\oplus g\left(\rho_{k}, \rho_{k}, \lambda\right) S^{\mathbb{C}}(\lambda)
$$

also tend to infinity.

Unbounding coefficients in Saxl's tensor-square (BBS)

As $k \rightarrow \infty$, the multiplicities appearing in the decomposition of

$$
S^{\mathbb{C}}\left(\rho_{k}\right) \otimes S^{\mathbb{C}}\left(\rho_{k}\right)=\oplus g\left(\rho_{k}, \rho_{k}, \lambda\right) S^{\mathbb{C}}(\lambda)
$$

also tend to infinity. (Best prior general lower bound was 1!)

Section 4

Classical Schur-Weyl duality:

Classifying multiplicity-free Kronecker products

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products.

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\boxplus \otimes \boxplus=\square+\boxplus+\square+\boxplus
$$

is multiplicity-free

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\boxplus \otimes \boxplus=\square+\square+\square+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\boxplus \otimes \boxplus=\square+\square+\square+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

Using Manivel's semigroup property and Dvir recursion:

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\boxplus \otimes \Pi=\square+\square+\boxminus+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

Using Manivel's semigroup property and Dvir recursion:

Bessenrodt's Conjecture: (Bessenrodt B.)

If $\lambda \otimes \mu$ is multiplicity-free then $\{\lambda, \mu\}$ is one of the following:

- $\{$ linear, arbitrary $\}$

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\Pi \otimes \Pi=\square+\Pi+\Xi+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

Using Manivel's semigroup property and Dvir recursion:

Bessenrodt's Conjecture: (Bessenrodt B.)

If $\lambda \otimes \mu$ is multiplicity-free then $\{\lambda, \mu\}$ is one of the following:

- \{linear, arbitrary\}
- $\{(n-1,1)$, fat hook $\}$

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\Pi \otimes \Pi=\square+\Pi+\Xi+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

Using Manivel's semigroup property and Dvir recursion:

Bessenrodt's Conjecture: (Bessenrodt B.)

If $\lambda \otimes \mu$ is multiplicity-free then $\{\lambda, \mu\}$ is one of the following:

- \{linear, arbitrary\}
- $\{(n-1,1)$, fat hook $\}$
- certain pairs of 2-line partitions

In 1999, Bessenrodt conjectured a classification of all multiplicity-free Kronecker products. That is, the pairs λ and μ such that

$$
g(\lambda, \mu, \nu)=0 \text { or } 1
$$

for all $\nu \vdash n$. For example

$$
\Pi \otimes \Pi=\square+\Pi+\Xi+\boxplus
$$

is multiplicity-free (and has few homogenous components Bessenrodt-Kleshchev).

Using Manivel's semigroup property and Dvir recursion:

Bessenrodt's Conjecture: (Bessenrodt B.)

If $\lambda \otimes \mu$ is multiplicity-free then $\{\lambda, \mu\}$ is one of the following:

- \{linear, arbitrary\}
- $\{(n-1,1)$, fat hook $\}$
- certain pairs of 2 -line partitions
- $\left\{\right.$ rectangle, $\left.\left(n-2,1^{2}\right)\right\}$ or $\{$ rectangle, $(n-2,2)\}$

