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The General Problem

e We build the model that we study on a filtered probability space (€2, F, (F;), P) satisfying the usual
conditions and supporting a standard one-dimensional (F;)-Brownian motion W. We denote by
A the family of all caglad (F;)-adapted processes A with increasing sample paths and such that
Ay > 0. We assume that all processes considered satisfy suitable integrability conditions, which we
are not going to discuss any further below.

e We consider two agents indexed by ¢ = 1,2. The two agents receive exogenous endowments in a
non-storable good that are given by (F;)-adapted continuous processes Y; > 0 such that Y1+Y5 > 0.

Under autarky, the agents consume their own endowments. Their expected utility processes are
given by

Qi,t =K [/ ui(87}/i,8> ds | Ft] ) for 7 = 17 27 (1)
t

where u; is the utility function of agent . We assume that the functions u;(t,-), t > 0, are C? and
satisfy the Inada conditions.



e The two agents may decide to pull their endowments and agree on a consumption allocation scheme
(C1, Cy) with a view to risk sharing. Such a consumption allocation should respect the resource
constraint

Ci+Cy=Y1+Y, =Y. (2)

Since the good is non-storable, relaxing this constraint to C; + Cy < Y would not improve the
agents’ optimal utilities.

We denote by C the family of all feasible consumption allocations, namely, all positive (F;)-adapted
continuous pairs (C1, Cy) respecting the resource constraint (2).

e We assume that both of the agents have limited commitment. This assumption gives rise to the
participation or sustainabilily constraints

Ui,t(Ci) Z Qi,t for all ¢ Z O, (3)

where
Ui,t<0i) =K [/ ’LLi(S, Ci,s) ds ‘ E] . (4)
t

We denote by C, C Cr the family of all admissible consumption allocations, namely, all (Cy, Cy) € Cy
that satisfy the participation constraints (3).



e The objective is to characterise the constrained-efficient allocations, namely, the solutions to the
social planner’s problem that is defined by

V = sup {ClUl,O(Cl) + CQUQ’O(OQ)}. (5)
(C1,C9)€Cy

In this problem, the constants ¢(; > 0 and (», > 0 are the Pareto weights on Agent 1 and Agent 2,
respectively.

e To solve the constrained optimisation problem defined by (5), we consider the Lagrangian

L(C1, Cay A1, Aa) = QU o(C) + QU 0(Ch)
+ Z E [/[ [(Ui,t(ci) —U;) diy] - (6)
i=1,2 0,00

The processes \; € A are such that A\;g = 0. They play the roles of (cumulative) Kuhn-Tucker
multipliers associated with the participation constraints (3).

In view of the participation constraints (3), an inspection of (5) and (6) reveals that

V= inf Sup £(017 027 )\17 )\2) < inf Sup L(Ch 027 )\17 )\2) (7)
ALA2EA (Cy,Ch)eC, ALA2EA (01, Ch)eCy



e In view of the expression

L(Cy1,Cy, A1, X) = QU1 o(Ch) + GU2(Ch)
E Uit CZ — Uz't d)\@t 8
+y U{Om[( (Ci) = Uiy) dX; ()

i=1,2
and the inequalities
V= inf sup L(C;,CoA, )< inf sup  L(Ch,Co A1, No), (9)
A, A0€A (C1,0)€Cs AL AzEA (C1,C9)€Cy

we can see that, if we find (C, C3) € Cr and A}, A5 € A such that

‘C(Cf7 057 )\TJ A;) = inf Sup ‘C’(Ch 027 )\17 )\2)7 (10)
AMA2EA (01,Ch)ec;
(C1,C3)€Cy and ) E [ / (Uie(CF) = Uiy) dX;, | =0, (11)
i=1,2 [0,00]

then (CF, C3) provides the solution to the constrained optimisation problem defined by (5).



e Using the integration by parts formula, we calculate

E [ / Ui(C) dAZ,t] ~E
0.00]
~F

We thus rewrite the Lagrangian as

/ (/ ui(s, Ci,s) dS) d)\z',t]
. [0,00[ t

/ ui(t, Ci,t))\i,t dt] . (12)
/0

L(Cy,Co, Ay, Ay) = [ / (Ars+ Aoy [Ztul(t, Cv) + (1= Z)us(t, 02,9] dt]
0

_ZEU'%M4’ (13
[0,00]

i=1,2

where

Aiﬂg = CZ + )\i,t and Zt =

Ay

— 14
A+ Aoy (14)



e Given y, z > 0, we define

u(t,y,z) = sup {zui(t,c) + (1 — 2)us(t,y — c) }.

O<ce<y
The unique value «(t,y, z) of ¢ that achieves the supremum is such that
ui(t, «lt,y, 2)) = Ult,y, 2) + (1 = 2)u.(t,y, 2)
and  us (t, y — o(t,y, z)) =u(t,y, z) — zu,(t,y, 2).

Given (A1, Ag) € A such that A; ) = (;, the consumption allocation given by

Aqg
18 Y0 Ay, Aag) = o (1Y),
i, Ye, A, Aoy) o‘(’ t’/\l,t+/\2,t)

and C;(ta }/;7 Al,t; AQ,t) — }/; — CT(L }/;7 Al,t7 A2,t)7
is feasible and maximises the Lagrangian given by (13). We define

‘](Ah AQ) = Sup E(Cla 027 Al) AQ)
(C1,C2)€Cs

—E [/ (A1e + Aoy)ult, Ys, Zy) dt] — Z E [/ Uiz d/\i,t] :
0 [0,00]

i=1,2

(15)

(16)
(17)

(18)

(19)

(20)



e Given £ € A, we define

1 - -
Vigd (A1, Ag) = %ﬁ}g J(A1+ 08, Ag) — (A1, Ag) (21)
1 — -
and VQ{J(Al, Ag) = 1(%11(’)1 g J(Al, AQ + 55) — J(Al, /\2) . (22)

Using the expressions (16)—(17) and the integration by parts, we calculate

VieJ(A1,Ag) = E / Gui(t, ¢ (t, Yy, Ay, Aay)) dt] —E [/[ [Qi,t dﬁt]
/0 0,00

-E| /[O N [Ui,t(c;(., Y, Ay Ag)) — Qm] d&] | (23)




e Now, suppose that there exists a pair (A7, Aj) that minimises the index J given by (20). This pair
is such that

Vie(N,A5) >0 forallé € Aandi=1,2. (24)
This inequality and the expression (23) imply that
(G Y, AL AS), 65(, VA7 A9) ) €, (25)

because this consumption allocation satisfies the resource constraint (2) as well as the participation
constraints (3). Furthermore,

/[ [[Um(cj(-, VAL AD) = U] day =0, (26)
0,00

i.e., the optimal Lagrange multipliers increase only when the constraints are binding.

It follows that the consumption allocation in (25) provides the solution to the constrained optimi-
sation problem defined by (5).



A Canonical (Symmetric) Application

e We now assume that
V=X and Yo=1-X, (27)
where X satisfies the SDE
dX; = p(Xy) dt + (X)) dW;, Xo =z €]0,1]. (28)

We assume that u, o are such that the SDE (28) has a unique non-explosive strong solution with
values in |0, 1|,

plr)=—p(l —2z) and o(z)=0c(l —=x) forall x €]0,1]. (29)

We denote by ¢ (resp., ©) the minimal strictly decreasing (resp., strictly increasing) p-excessive

functions of the diffusion associated with the SDE for X. These are solutions to the ODE
1

S0 (@) (@) + () (2) — 0 () = . (30)

Also, we denote by p the scale function of the diffusion associated with the SDE for X (note that
oY — p'p = Kp', for some constant K).
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e We assume that

ui(t, c) = us(t, c) = e %ulc),

for some C? utility function u that satisfies the Inada conditions and a constant ¢ > 0.

The agents’ autarky expected utility processes are then given by
Uiy =E [/ e u(X;)ds ‘ Ft] = e “T(X))
t

and Qgﬂg —E [/ G_QSU(]. — Xs) ds | E] - e—gtr(l o Xt)7
t

where
[z)=E [/OOO e %u(X;) dt] = () /Ofﬂ U(s)u(s)ds + w(aj)/ O(s)u(s)ds,
with
%) %
" T FeGm M Y T R
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(31)

(32)

(33)

(34)

(35)



e Given constants ¢; > 0 and (o > 0, the objective is to solve the problem

V = sup {g E [ /0 ) e u(C,) ds] +GE [ /O ) e *u(l —Cy) ds] } , (36)

ceC

where C is the family of all |0, 1[-valued (F;)-adapted continuous processes such that

E [ /t " e eu(0y) ds ]—"t: > e~ X,) (37)

and E [/ e Pu(l —Cy)ds | Fy| > e 9T(1 - Xy). (38)
t i
e In this case, the Lagrangian takes the form

L(C, Ay, Ao) = [ /0 e (Avs+ Agy) [Ztu((]t) (1= Z)u(l — ot)} dt]

— K [/ G_QtF(Xt) d/\l,t] —E [/ e_QtF(l — Xt) d/\g,t] y (39)
[0,00] [0,00[

where
A1y

No= G d 4= ————.
0= an t A1+ Aoy

(40)
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e Asin the general case, the first order condition for pointwise maximisation inside the first expectation

yields
Ct = «(Zy), (41)
where
«(z) = argmax{zu(c) + (1 — z)u(l — ¢) }. (42)
0<ce<1
Furthermore, we define
u(z) = max {zu(c) + (1 — 2)u(l — )}, for z > 0. (43)

O<cex1

In view of the general analysis, the problem reduces to minimising the performance criterion

J(Al, A2> — K [/ e_Qt (Al,t + Ag’t)a(Zt) dt]
0

—E [/ G_QtF(Xt> dAl,t] — K [/ €_QtF(1 - Xt) dAQ’t (44)
[0,00] [0,00]

over (A1, As). We denote by
]O,l[X}O,OO[Q > (:C7C17§2> |_>U(:C7C17C2> (45)
the value function of this singular stochastic control problem.
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e A suitable solution to the HJB equation

1

min{502(:c)wm(x, 2) + p(x)wy(z, 2) — ow(x, 2) + ul2),

w(z,z)+ (1 — 2)w,(z,2) — T'(z), w(x,z) — 2w, (z,2z) — T'(1— a:)} =0 (46)
identifies with the value function in the sense that

v(r, (1, G2) = (G + GQ)w (55’7 G il C2> : (47)

The idea for the relevant verification theorem is to start with an application of Ito’s formula to the

B A
process (e A1+ Ag)w( Xy, Au}rj\m))
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e The structure of the HJB equation

min{%aQ(x)wm(x, 2) + p(x)wy(z, 2) — ow(x, 2) + ul(2),

w(z,z)+ (1 — 2w, (x,2) — (), w(x,z) — 2w, (z,z) —T'(1— az)} =0 (48)

suggests that the state space S = ]0,1[? is partitioned into three regions 8!, 8¢ and S*. In the

open region 8¢ the function w satisfies the ODE
1

éaz(x)wm(as, 2) + p(x)w,(x, 2) — ow(zx, z) + u(z) = 0.

Inside this region, the function w is of the form

w(z, z) = A(2)p(x) + B(2)v(x) + @

In the region S*, the first agent’s participation constraint is binding and
w(ZL', Z> + (1 o Z)UJZ(CL’, Z) = F(‘CU)?
while, in the region 8?2, the second agent’s participation constraint is binding and

w(z, z) — zw,(x, z) = T(1 — x).

15

(49)

(50)

(51)

(52)



o (When perfect risk-sharing is sustainable.) We look for a point 24 € ]0, 1] and a function & : |0, z]
such that

S'={(z,2) €S| z <z and z > h(2)} (53)
and S ={(z,2) €S| z2>1—zandz <1—h(l—2)}. (54)

To determine the free-boundary function h, we use the value matching and the smooth pasting

conditions
w(z,z)+ (1 —2)w.(z,z) =T(x) and w,(x,2)+ (1 - 2)w.,(x,2)=T"(z), (55)
for x = h(z), which imply that

u(oc(z))

[B(z) + (1 — z)B’(z)}w(h(z)) + 0 F(h(z)) (56)
and  B(2) + (1 —2)B(2) = QEZ ’3)) (57)

respectively. These identities imply that A should satisfy the equation F (h z ) = (0, where
Flz, 2) = /O x%[u(s) —u(a(=)] ds. (58)

There exists z; € |0 %[ such that this equation has a unique solution h(z) € 0, 1] for all z € ]0, 2]
1
2

if and only if FI(1,5) <
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o (When perfect risk-sharing is not sustainable.) We look for a point 2z € ]%, 1[ and a function
h : ]0, 2] such that

S'={(z,2) €S| z <z and z > h(2)} (59)
and S*={(z,2) €S| z2>1—zandax <1—h(l—2z)}. (60)

For z € ]0,1 — 2], the free-boundary point h(z) is as in the previous case, namely, F'(h(z),z) = 0,
where F'is defined by (58). Note that this satisfies the ODE

where
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For z € |1 — 24, 2, we define £(z) = 1 — h(1 — z). Using the value matching and the smooth
pasting conditions along the free-boundary points h(z) and £(z), we derive the system of ODEs

W(z)=H(z0(2),h(z)) and {'(z)=L(z0(z),h(z)), (63)
where
- oc’(z)u’(oc(Z)) o(z) f; U(s)ds —(x) f; d(s)ds
Hos s = —u(wl) P@@ — b@o@ o
and
Lioz.7) = o (2)u' (1 — «f2))  ¥(2) fz QE(S) ds — p(z) f_ W(s)ds (65)
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MANY HAPPY RETURNS YURI !!!
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