Self-Enforcing Insurance Arrangements.

Mihail Zervos
Department of Mathematics
London School of Economics
Joint work with Stéphane Guibaud, SciencesPo Paris

The General Problem

- We build the model that we study on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ satisfying the usual conditions and supporting a standard one-dimensional $\left(\mathcal{F}_{t}\right)$-Brownian motion W. We denote by \mathcal{A} the family of all càglàd $\left(\mathcal{F}_{t}\right)$-adapted processes A with increasing sample paths and such that $A_{0} \geq 0$. We assume that all processes considered satisfy suitable integrability conditions, which we are not going to discuss any further below.
- We consider two agents indexed by $i=1,2$. The two agents receive exogenous endowments in a non-storable good that are given by $\left(\mathcal{F}_{t}\right)$-adapted continuous processes $Y_{i} \geq 0$ such that $Y_{1}+Y_{2}>0$. Under autarky, the agents consume their own endowments. Their expected utility processes are given by

$$
\begin{equation*}
\underline{U}_{i, t}=\mathbb{E}\left[\int_{t}^{\infty} u_{i}\left(s, Y_{i, s}\right) d s \mid \mathcal{F}_{t}\right], \quad \text { for } i=1,2, \tag{1}
\end{equation*}
$$

where u_{i} is the utility function of agent i. We assume that the functions $u_{i}(t, \cdot), t \geq 0$, are C^{2} and satisfy the Inada conditions.

- The two agents may decide to pull their endowments and agree on a consumption allocation scheme $\left(C_{1}, C_{2}\right)$ with a view to risk sharing. Such a consumption allocation should respect the resource constraint

$$
\begin{equation*}
C_{1}+C_{2}=Y_{1}+Y_{2}=: Y \tag{2}
\end{equation*}
$$

Since the good is non-storable, relaxing this constraint to $C_{1}+C_{2} \leq Y$ would not improve the agents' optimal utilities.
We denote by \mathcal{C}_{f} the family of all feasible consumption allocations, namely, all positive $\left(\mathcal{F}_{t}\right)$-adapted continuous pairs $\left(C_{1}, C_{2}\right)$ respecting the resource constraint (2).

- We assume that both of the agents have limited commitment. This assumption gives rise to the participation or sustainability constraints

$$
\begin{equation*}
U_{i, t}\left(C_{i}\right) \geq \underline{U}_{i, t} \quad \text { for all } t \geq 0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{i, t}\left(C_{i}\right)=\mathbb{E}\left[\int_{t}^{\infty} u_{i}\left(s, C_{i, s}\right) d s \mid \mathcal{F}_{t}\right] \tag{4}
\end{equation*}
$$

We denote by $\mathcal{C}_{\mathrm{a}} \subseteq \mathcal{C}_{\mathrm{f}}$ the family of all admissible consumption allocations, namely, all $\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathrm{f}}$ that satisfy the participation constraints (3).

- The objective is to characterise the constrained-efficient allocations, namely, the solutions to the social planner's problem that is defined by

$$
\begin{equation*}
V=\sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathrm{a}}}\left\{\zeta_{1} U_{1,0}\left(C_{1}\right)+\zeta_{2} U_{2,0}\left(C_{2}\right)\right\} . \tag{5}
\end{equation*}
$$

In this problem, the constants $\zeta_{1}>0$ and $\zeta_{2}>0$ are the Pareto weights on Agent 1 and Agent 2, respectively.

- To solve the constrained optimisation problem defined by (5), we consider the Lagrangian

$$
\begin{align*}
\mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right)= & \zeta_{1} U_{1,0}\left(C_{1}\right)+\zeta_{2} U_{2,0}\left(C_{2}\right) \\
& +\sum_{i=1,2} \mathbb{E}\left[\int_{[0, \infty[}\left(U_{i, t}\left(C_{i}\right)-\underline{U}_{i, t}\right) d \lambda_{i, t}\right] . \tag{6}
\end{align*}
$$

The processes $\lambda_{i} \in \mathcal{A}$ are such that $\lambda_{i, 0}=0$. They play the roles of (cumulative) Kuhn-Tucker multipliers associated with the participation constraints (3).
In view of the participation constraints (3), an inspection of (5) and (6) reveals that

$$
\begin{equation*}
V=\inf _{\lambda_{1}, \lambda_{2} \in \mathcal{A}} \sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathfrak{a}}} \mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right) \leq \inf _{\lambda_{1}, \lambda_{2} \in \mathcal{A}} \sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathfrak{f}}} \mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right) . \tag{7}
\end{equation*}
$$

- In view of the expression

$$
\begin{align*}
\mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right)= & \zeta_{1} U_{1,0}\left(C_{1}\right)+\zeta_{2} U_{2,0}\left(C_{2}\right) \\
& +\sum_{i=1,2} \mathbb{E}\left[\int_{[0, \infty[}\left(U_{i, t}\left(C_{i}\right)-\underline{U}_{i, t}\right) d \lambda_{i, t}\right] \tag{8}
\end{align*}
$$

and the inequalities

$$
\begin{equation*}
V=\inf _{\lambda_{1}, \lambda_{2} \in \mathcal{A}} \sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathrm{a}}} \mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right) \leq \inf _{\lambda_{1}, \lambda_{2} \in \mathcal{A}} \sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathrm{f}}} \mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right) \tag{9}
\end{equation*}
$$

we can see that, if we find $\left(C_{1}^{\star}, C_{2}^{\star}\right) \in \mathcal{C}_{\mathrm{f}}$ and $\lambda_{1}^{\star}, \lambda_{2}^{\star} \in \mathcal{A}$ such that

$$
\begin{gather*}
\mathcal{L}\left(C_{1}^{\star}, C_{2}^{\star}, \lambda_{1}^{\star}, \lambda_{2}^{\star}\right)=\inf _{\lambda_{1}, \lambda_{2} \in \mathcal{A}} \sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{\mathrm{f}}} \mathcal{L}\left(C_{1}, C_{2}, \lambda_{1}, \lambda_{2}\right), \tag{10}\\
\left(C_{1}^{\star}, C_{2}^{\star}\right) \in \mathcal{C}_{\mathrm{a}} \quad \text { and } \quad \sum_{i=1,2} \mathbb{E}\left[\int_{[0, \infty[}\left(U_{i, t}\left(C_{i}^{\star}\right)-\underline{U}_{i, t}\right) d \lambda_{i, t}^{\star}\right]=0, \tag{11}
\end{gather*}
$$

then $\left(C_{1}^{\star}, C_{2}^{\star}\right)$ provides the solution to the constrained optimisation problem defined by (5).

- Using the integration by parts formula, we calculate

$$
\begin{align*}
\mathbb{E}\left[\int_{[0, \infty[} U_{i, t}\left(C_{i}\right) d \lambda_{i, t}\right] & =\mathbb{E}\left[\int_{[0, \infty}\left(\int_{t}^{\infty} u_{i}\left(s, C_{i, s}\right) d s\right) d \lambda_{i, t}\right] \\
& =\mathbb{E}\left[\int_{0}^{\infty} u_{i}\left(t, C_{i, t}\right) \lambda_{i, t} d t\right] \tag{12}
\end{align*}
$$

We thus rewrite the Lagrangian as

$$
\begin{align*}
\mathcal{L}\left(C_{1}, C_{2}, \Lambda_{1}, \Lambda_{2}\right)= & \mathbb{E}\left[\int_{0}^{\infty}\left(\Lambda_{1, t}+\Lambda_{2, t}\right)\left[Z_{t} u_{1}\left(t, C_{1, t}\right)+\left(1-Z_{t}\right) u_{2}\left(t, C_{2, t}\right)\right] d t\right] \\
& -\sum_{i=1,2} \mathbb{E}\left[\int_{[0, \infty[} \underline{U}_{i, t} d \Lambda_{i, t}\right] \tag{13}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda_{i, t}=\zeta_{i}+\lambda_{i, t} \quad \text { and } \quad Z_{t}=\frac{\Lambda_{1, t}}{\Lambda_{1, t}+\Lambda_{2, t}} \tag{14}
\end{equation*}
$$

- Given $y, z>0$, we define

$$
\begin{equation*}
\widetilde{u}(t, y, z)=\sup _{0<c<y}\left\{z u_{1}(t, c)+(1-z) u_{2}(t, y-c)\right\} . \tag{15}
\end{equation*}
$$

The unique value $\alpha(t, y, z)$ of c that achieves the supremum is such that

$$
\begin{align*}
& \quad u_{1}(t, \alpha(t, y, z))=\widetilde{u}(t, y, z)+(1-z) \widetilde{u}_{z}(t, y, z) \tag{16}\\
& \text { and } \quad u_{2}(t, y-\alpha(t, y, z))=\widetilde{u}(t, y, z)-z \widetilde{u}_{z}(t, y, z) . \tag{17}
\end{align*}
$$

Given $\left(\Lambda_{1}, \Lambda_{2}\right) \in \mathcal{A}$ such that $\Lambda_{i, 0}=\zeta_{i}$, the consumption allocation given by

$$
\begin{align*}
c_{1}^{\star}\left(t, Y_{t}, \Lambda_{1, t}, \Lambda_{2, t}\right) & =\alpha\left(t, Y_{t}, \frac{\Lambda_{1, t}}{\Lambda_{1, t}+\Lambda_{2, t}}\right) \tag{18}\\
\text { and } \quad c_{2}^{\star}\left(t, Y_{t}, \Lambda_{1, t}, \Lambda_{2, t}\right) & =Y_{t}-c_{1}^{\star}\left(t, Y_{t}, \Lambda_{1, t}, \Lambda_{2, t}\right), \tag{19}
\end{align*}
$$

is feasible and maximises the Lagrangian given by (13). We define

$$
\begin{align*}
J\left(\Lambda_{1}, \Lambda_{2}\right) & :=\sup _{\left(C_{1}, C_{2}\right) \in \mathcal{C}_{f}} \mathcal{L}\left(C_{1}, C_{2}, \Lambda_{1}, \Lambda_{2}\right) \\
& =\mathbb{E}\left[\int_{0}^{\infty}\left(\Lambda_{1, t}+\Lambda_{2, t}\right) \widetilde{u}\left(t, Y_{t}, Z_{t}\right) d t\right]-\sum_{i=1,2} \mathbb{E}\left[\int_{[0, \infty[} \underline{U}_{i, t} d \Lambda_{i, t}\right] . \tag{20}
\end{align*}
$$

- Given $\xi \in \mathcal{A}$, we define

$$
\begin{align*}
\nabla_{1, \xi} J\left(\Lambda_{1}, \Lambda_{2}\right) & =\lim _{\delta \downarrow 0} \frac{1}{\delta}\left[J\left(\Lambda_{1}+\delta \xi, \Lambda_{2}\right)-J\left(\Lambda_{1}, \Lambda_{2}\right)\right] \tag{21}\\
\text { and } \quad \nabla_{2, \xi} J\left(\Lambda_{1}, \Lambda_{2}\right) & =\lim _{\delta \downarrow 0} \frac{1}{\delta}\left[J\left(\Lambda_{1}, \Lambda_{2}+\delta \xi\right)-J\left(\Lambda_{1}, \Lambda_{2}\right)\right] . \tag{22}
\end{align*}
$$

Using the expressions (16)-(17) and the integration by parts, we calculate

$$
\begin{align*}
\nabla_{i, \xi} J\left(\Lambda_{1}, \Lambda_{2}\right) & =\mathbb{E}\left[\int_{0}^{\infty} \xi_{t} u_{i}\left(t, c_{i}^{\star}\left(t, Y_{t}, \Lambda_{1, t}, \Lambda_{2, t}\right)\right) d t\right]-\mathbb{E}\left[\int_{[0, \infty[} \underline{U}_{i, t} d \xi_{t}\right] \\
& =\mathbb{E}\left[\int_{[0, \infty[}\left[U_{i, t}\left(c_{i}^{\star}\left(\cdot, Y, \Lambda_{1}, \Lambda_{2}\right)\right)-\underline{U}_{i, t}\right] d \xi_{t}\right] \tag{23}
\end{align*}
$$

- Now, suppose that there exists a pair $\left(\Lambda_{1}^{\star}, \Lambda_{2}^{\star}\right)$ that minimises the index J given by (20). This pair is such that

$$
\begin{equation*}
\nabla_{i, \xi} J\left(\Lambda_{1}^{\star}, \Lambda_{2}^{\star}\right) \geq 0 \quad \text { for all } \xi \in \mathcal{A} \text { and } i=1,2 \tag{24}
\end{equation*}
$$

This inequality and the expression (23) imply that

$$
\begin{equation*}
\left(c_{1}^{\star}\left(\cdot, Y, \Lambda_{1}^{\star}, \Lambda_{2}^{\star}\right), c_{2}^{\star}\left(\cdot, Y, \Lambda_{1}^{\star}, \Lambda_{2}^{\star}\right)\right) \in \mathcal{C}_{\mathrm{a}} \tag{25}
\end{equation*}
$$

because this consumption allocation satisfies the resource constraint (2) as well as the participation constraints (3). Furthermore,

$$
\begin{equation*}
\int_{[0, \infty}\left[U_{i, t}\left(c_{i}^{\star}\left(\cdot, Y, \Lambda_{1}^{\star}, \Lambda_{2}^{\star}\right)\right)-\underline{U}_{i, t}\right] d \Lambda_{i}^{\star}=0 \tag{26}
\end{equation*}
$$

i.e., the optimal Lagrange multipliers increase only when the constraints are binding.

It follows that the consumption allocation in (25) provides the solution to the constrained optimisation problem defined by (5).

A Canonical (Symmetric) Application

- We now assume that

$$
\begin{equation*}
Y_{1}=X \quad \text { and } \quad Y_{2}=1-X \tag{27}
\end{equation*}
$$

where X satisfies the SDE

$$
\begin{equation*}
\left.d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x \in\right] 0,1[\tag{28}
\end{equation*}
$$

We assume that μ, σ are such that the SDE (28) has a unique non-explosive strong solution with values in]0, 1 [,

$$
\begin{equation*}
\mu(x)=-\mu(1-x) \quad \text { and } \quad \sigma(x)=\sigma(1-x) \quad \text { for all } x \in] 0,1[\tag{29}
\end{equation*}
$$

We denote by φ (resp., ψ) the minimal strictly decreasing (resp., strictly increasing) ϱ-excessive functions of the diffusion associated with the SDE for X. These are solutions to the ODE

$$
\begin{equation*}
\frac{1}{2} \sigma^{2}(x) f^{\prime \prime}(x)+\mu(x) f^{\prime}(x)-\varrho f(x)=0 \tag{30}
\end{equation*}
$$

Also, we denote by p the scale function of the diffusion associated with the SDE for X (note that $\varphi \psi^{\prime}-\varphi^{\prime} \psi=K p^{\prime}$, for some constant $\left.K\right)$.

- We assume that

$$
\begin{equation*}
u_{1}(t, c)=u_{2}(t, c)=e^{-\varrho t} u(c) \tag{31}
\end{equation*}
$$

for some C^{2} utility function u that satisfies the Inada conditions and a constant $\varrho>0$. The agents' autarky expected utility processes are then given by

$$
\begin{gather*}
\underline{U}_{1, t}=\mathbb{E}\left[\int_{t}^{\infty} e^{-\varrho s} u\left(X_{s}\right) d s \mid \mathcal{F}_{t}\right]=e^{-\varrho t} \Gamma\left(X_{t}\right) \tag{32}\\
\text { and } \quad \underline{U}_{2, t}=\mathbb{E}\left[\int_{t}^{\infty} e^{-\varrho s} u\left(1-X_{s}\right) d s \mid \mathcal{F}_{t}\right]=e^{-\varrho t} \Gamma\left(1-X_{t}\right), \tag{33}
\end{gather*}
$$

where

$$
\begin{equation*}
\Gamma(x)=\mathbb{E}\left[\int_{0}^{\infty} e^{-\varrho t} u\left(X_{t}\right) d t\right]=\varphi(x) \int_{0}^{x} \Psi(s) u(s) d s+\psi(x) \int_{x}^{1} \Phi(s) u(s) d s \tag{34}
\end{equation*}
$$

with

$$
\begin{equation*}
\Phi(s)=\frac{2 \varphi(s)}{K \sigma^{2}(s) p^{\prime}(s)} \quad \text { and } \quad \Psi(s)=\frac{2 \psi(s)}{K \sigma^{2}(s) p^{\prime}(s)} \tag{35}
\end{equation*}
$$

- Given constants $\zeta_{1}>0$ and $\zeta_{2}>0$, the objective is to solve the problem

$$
\begin{equation*}
V=\sup _{C \in \mathcal{C}}\left\{\zeta_{1} \mathbb{E}\left[\int_{0}^{\infty} e^{-\varrho s} u\left(C_{s}\right) d s\right]+\zeta_{2} \mathbb{E}\left[\int_{0}^{\infty} e^{-\varrho s} u\left(1-C_{s}\right) d s\right]\right\} \tag{36}
\end{equation*}
$$

where \mathcal{C} is the family of all $] 0,1\left[\right.$-valued $\left(\mathcal{F}_{t}\right)$-adapted continuous processes such that

$$
\begin{align*}
\mathbb{E}\left[\int_{t}^{\infty} e^{-\varrho s} u\left(C_{s}\right) d s \mid \mathcal{F}_{t}\right] & \geq e^{-\varrho t} \Gamma\left(X_{t}\right) \tag{37}\\
\text { and } \quad \mathbb{E}\left[\int_{t}^{\infty} e^{-\varrho s} u\left(1-C_{s}\right) d s \mid \mathcal{F}_{t}\right] & \geq e^{-\varrho t} \Gamma\left(1-X_{t}\right) . \tag{38}
\end{align*}
$$

- In this case, the Lagrangian takes the form

$$
\begin{align*}
\mathcal{L}\left(C, \Lambda_{1}, \Lambda_{2}\right)= & \mathbb{E}\left[\int_{0}^{\infty} e^{-\varrho t}\left(\Lambda_{1, t}+\Lambda_{2, t}\right)\left[Z_{t} u\left(C_{t}\right)+\left(1-Z_{t}\right) u\left(1-C_{t}\right)\right] d t\right] \\
& -\mathbb{E}\left[\int_{[0, \infty[} e^{-\varrho t} \Gamma\left(X_{t}\right) d \Lambda_{1, t}\right]-\mathbb{E}\left[\int_{[0, \infty[} e^{-\varrho t} \Gamma\left(1-X_{t}\right) d \Lambda_{2, t}\right], \tag{39}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda_{i, 0}=\zeta_{i} \quad \text { and } \quad Z_{t}=\frac{\Lambda_{1, t}}{\Lambda_{1, t}+\Lambda_{2, t}} \tag{40}
\end{equation*}
$$

- As in the general case, the first order condition for pointwise maximisation inside the first expectation yields

$$
\begin{equation*}
C_{t}^{\star}=\alpha\left(Z_{t}\right) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(z)=\underset{0<c<1}{\arg \max }\{z u(c)+(1-z) u(1-c)\} . \tag{42}
\end{equation*}
$$

Furthermore, we define

$$
\begin{equation*}
\widetilde{u}(z)=\max _{0<c<1}\{z u(c)+(1-z) u(1-c)\}, \quad \text { for } z>0 \tag{43}
\end{equation*}
$$

In view of the general analysis, the problem reduces to minimising the performance criterion

$$
\begin{align*}
J\left(\Lambda_{1}, \Lambda_{2}\right)= & \mathbb{E}\left[\int_{0}^{\infty} e^{-\varrho t}\left(\Lambda_{1, t}+\Lambda_{2, t}\right) \widetilde{u}\left(Z_{t}\right) d t\right] \\
& -\mathbb{E}\left[\int_{[0, \infty[} e^{-\varrho t} \Gamma\left(X_{t}\right) d \Lambda_{1, t}\right]-\mathbb{E}\left[\int_{[0, \infty[} e^{-\varrho t} \Gamma\left(1-X_{t}\right) d \Lambda_{2, t}\right] \tag{44}
\end{align*}
$$

over $\left(\Lambda_{1}, \Lambda_{2}\right)$. We denote by

$$
\begin{equation*}
] 0,1[\times] 0, \infty\left[^{2} \ni\left(x, \zeta_{1}, \zeta_{2}\right) \mapsto v\left(x, \zeta_{1}, \zeta_{2}\right)\right. \tag{45}
\end{equation*}
$$

the value function of this singular stochastic control problem.

- A suitable solution to the HJB equation

$$
\begin{align*}
\min \{ & \frac{1}{2} \sigma^{2}(x) w_{x x}(x, z)+\mu(x) w_{x}(x, z)-\varrho w(x, z)+\widetilde{u}(z) \\
& \left.w(x, z)+(1-z) w_{z}(x, z)-\Gamma(x), w(x, z)-z w_{z}(x, z)-\Gamma(1-x)\right\}=0 \tag{46}
\end{align*}
$$

identifies with the value function in the sense that

$$
\begin{equation*}
v\left(x, \zeta_{1}, \zeta_{2}\right)=\left(\zeta_{1}+\zeta_{2}\right) w\left(x, \frac{\zeta_{1}}{\zeta_{1}+\zeta_{2}}\right) \tag{47}
\end{equation*}
$$

The idea for the relevant verification theorem is to start with an application of Itô's formula to the $\operatorname{process}\left(e^{-\varrho t}\left(\Lambda_{1, t}+\Lambda_{2, t}\right) w\left(X_{t}, \frac{\Lambda_{1, t}}{\Lambda_{1, t}+\Lambda_{2, t}}\right)\right)$.

- The structure of the HJB equation

$$
\begin{align*}
\min \{ & \frac{1}{2} \sigma^{2}(x) w_{x x}(x, z)+\mu(x) w_{x}(x, z)-\varrho w(x, z)+\widetilde{u}(z) \\
& \left.w(x, z)+(1-z) w_{z}(x, z)-\Gamma(x), w(x, z)-z w_{z}(x, z)-\Gamma(1-x)\right\}=0 \tag{48}
\end{align*}
$$

suggests that the state space $\mathcal{S}=] 0,1\left[{ }^{2}\right.$ is partitioned into three regions $\mathcal{S}^{1}, \mathcal{S}^{\text {c }}$ and \mathcal{S}^{2}. In the open region $\mathcal{S}^{\text {c }}$, the function w satisfies the ODE

$$
\begin{equation*}
\frac{1}{2} \sigma^{2}(x) w_{x x}(x, z)+\mu(x) w_{x}(x, z)-\varrho w(x, z)+\widetilde{u}(z)=0 \tag{49}
\end{equation*}
$$

Inside this region, the function w is of the form

$$
\begin{equation*}
w(x, z)=A(z) \varphi(x)+B(z) \psi(x)+\frac{\widetilde{u}(z)}{\varrho} \tag{50}
\end{equation*}
$$

In the region \mathcal{S}^{1}, the first agent's participation constraint is binding and

$$
\begin{equation*}
w(x, z)+(1-z) w_{z}(x, z)=\Gamma(x) \tag{51}
\end{equation*}
$$

while, in the region \mathcal{S}^{2}, the second agent's participation constraint is binding and

$$
\begin{equation*}
w(x, z)-z w_{z}(x, z)=\Gamma(1-x) \tag{52}
\end{equation*}
$$

- (When perfect risk-sharing is sustainable.) We look for a point $\left.z_{\dagger} \in\right] 0, \frac{1}{2}[$ and a function $h:] 0, z_{\dagger}[$ such that

$$
\left.\begin{array}{rl}
& \mathcal{S}^{1} \\
\text { and } \quad & \mathcal{S}^{2} \tag{54}
\end{array}=\left\{(x, z) \in \mathcal{S} \mid z \leq z_{\dagger} \text { and } x \geq h(z)\right\}, z \mathcal{S} \mid z \geq 1-z_{\dagger} \text { and } x \leq 1-h(1-z)\right\} .
$$

To determine the free-boundary function h, we use the value matching and the smooth pasting conditions

$$
\begin{equation*}
w(x, z)+(1-z) w_{z}(x, z)=\Gamma(x) \quad \text { and } \quad w_{x}(x, z)+(1-z) w_{z x}(x, z)=\Gamma^{\prime}(x) \tag{55}
\end{equation*}
$$

for $x=h(z)$, which imply that

$$
\begin{align*}
{\left[B(z)+(1-z) B^{\prime}(z)\right] \psi(h(z))+\frac{u(\alpha(z))}{\varrho} } & =\Gamma(h(z)) \tag{56}\\
\text { and } B(z)+(1-z) B^{\prime}(z) & =\frac{\Gamma^{\prime}(h(z))}{\psi^{\prime}(h(z))} \tag{57}
\end{align*}
$$

respectively. These identities imply that h should satisfy the equation $F(h(z), z)=0$, where

$$
\begin{equation*}
F(x, z)=\int_{0}^{x} \frac{\psi(s)}{\sigma^{2}(s) p^{\prime}(s)}[u(s)-u(\alpha(z))] d s \tag{58}
\end{equation*}
$$

There exists $\left.z_{\dagger} \in\right] 0, \frac{1}{2}[$ such that this equation has a unique solution $h(z) \in] 0,1[$ for all $z \in] 0, z_{\dagger}[$ if and only if $F\left(1, \frac{1}{2}\right)<0$.

- (When perfect risk-sharing is not sustainable.) We look for a point $\left.z_{\dagger} \in\right] \frac{1}{2}, 1[$ and a function $h:] 0, z_{\dagger}$ [such that

$$
\begin{align*}
& \mathcal{S}^{1}=\left\{(x, z) \in \mathcal{S} \mid z \leq z_{\dagger} \text { and } x \geq h(z)\right\} \tag{59}\\
\text { and } \quad \mathcal{S}^{2} & =\left\{(x, z) \in \mathcal{S} \mid z \geq 1-z_{\dagger} \text { and } x \leq 1-h(1-z)\right\} . \tag{60}
\end{align*}
$$

For $z \in] 0,1-z_{\dagger}[$, the free-boundary point $h(z)$ is as in the previous case, namely, $F(h(z), z)=0$, where F is defined by (58). Note that this satisfies the ODE

$$
\begin{equation*}
h^{\prime}(z)=H(z, h(z)), \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
H(z, \bar{x})=\frac{\alpha^{\prime}(z) u^{\prime}(\alpha(z))}{u(\bar{x})-u(\alpha(z))} \frac{\int_{0}^{\bar{x}} \Psi(s) d s}{\Psi(\bar{x})} \tag{62}
\end{equation*}
$$

For $z \in] 1-z_{\dagger}, z_{\dagger}[$, we define $\ell(z)=1-h(1-z)$. Using the value matching and the smooth pasting conditions along the free-boundary points $h(z)$ and $\ell(z)$, we derive the system of ODEs

$$
\begin{equation*}
h^{\prime}(z)=H(z, \ell(z), h(z)) \quad \text { and } \quad \ell^{\prime}(z)=L(z, \ell(z), h(z)) \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
H(z, \underline{x}, \bar{x})=\frac{\alpha^{\prime}(z) u^{\prime}(\alpha(z))}{u(\bar{x})-u(\alpha(z))} \frac{\varphi(\underline{x}) \int_{\underline{x}}^{\bar{x}} \Psi(s) d s-\psi(\underline{x}) \int_{\underline{x}}^{\bar{x}} \Phi(s) d s}{\varphi(\underline{x}) \Psi(\bar{x})-\psi(\underline{x}) \Phi(\bar{x})} \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
L(z, \underline{x}, \bar{x})=\frac{\alpha^{\prime}(z) u^{\prime}(1-\alpha(z))}{u(1-\underline{x})-u(1-\alpha(z))} \frac{\psi(\bar{x}) \int_{\underline{x}}^{\bar{x}} \Phi(s) d s-\varphi(\bar{x}) \int_{\underline{x}}^{\bar{x}} \Psi(s) d s}{\psi(\bar{x}) \Phi(\underline{x})-\varphi(\bar{x}) \Psi(\underline{x})} . \tag{65}
\end{equation*}
$$

Many Happy Returns Yuri !!!

