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The General Problem

• We build the model that we study on a filtered probability space (Ω,F , (Ft),P) satisfying the usual

conditions and supporting a standard one-dimensional (Ft)-Brownian motion W . We denote by

A the family of all càglàd (Ft)-adapted processes A with increasing sample paths and such that

A0 ≥ 0. We assume that all processes considered satisfy suitable integrability conditions, which we

are not going to discuss any further below.

• We consider two agents indexed by i = 1, 2. The two agents receive exogenous endowments in a

non-storable good that are given by (Ft)-adapted continuous processes Yi ≥ 0 such that Y1+Y2 > 0.

Under autarky, the agents consume their own endowments. Their expected utility processes are

given by

U i,t = E
[∫ ∞

t

ui(s, Yi,s) ds
∣∣∣ Ft] , for i = 1, 2, (1)

where ui is the utility function of agent i. We assume that the functions ui(t, ·), t ≥ 0, are C2 and

satisfy the Inada conditions.
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• The two agents may decide to pull their endowments and agree on a consumption allocation scheme

(C1, C2) with a view to risk sharing. Such a consumption allocation should respect the resource

constraint

C1 + C2 = Y1 + Y2 =: Y. (2)

Since the good is non-storable, relaxing this constraint to C1 + C2 ≤ Y would not improve the

agents’ optimal utilities.

We denote by Cf the family of all feasible consumption allocations, namely, all positive (Ft)-adapted

continuous pairs (C1, C2) respecting the resource constraint (2).

• We assume that both of the agents have limited commitment. This assumption gives rise to the

participation or sustainability constraints

Ui,t(Ci) ≥ U i,t for all t ≥ 0, (3)

where

Ui,t(Ci) = E
[∫ ∞

t

ui(s, Ci,s) ds
∣∣∣ Ft] . (4)

We denote by Ca ⊆ Cf the family of all admissible consumption allocations, namely, all (C1, C2) ∈ Cf

that satisfy the participation constraints (3).
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• The objective is to characterise the constrained-efficient allocations, namely, the solutions to the

social planner’s problem that is defined by

V = sup
(C1,C2)∈Ca

{
ζ1U1,0(C1) + ζ2U2,0(C2)

}
. (5)

In this problem, the constants ζ1 > 0 and ζ2 > 0 are the Pareto weights on Agent 1 and Agent 2,

respectively.

• To solve the constrained optimisation problem defined by (5), we consider the Lagrangian

L(C1, C2, λ1, λ2) = ζ1U1,0(C1) + ζ2U2,0(C2)

+
∑
i=1,2

E
[∫

[0,∞[

(
Ui,t(Ci)− U i,t

)
dλi,t

]
. (6)

The processes λi ∈ A are such that λi,0 = 0. They play the roles of (cumulative) Kuhn-Tucker

multipliers associated with the participation constraints (3).

In view of the participation constraints (3), an inspection of (5) and (6) reveals that

V = inf
λ1,λ2∈A

sup
(C1,C2)∈Ca

L(C1, C2, λ1, λ2) ≤ inf
λ1,λ2∈A

sup
(C1,C2)∈Cf

L(C1, C2, λ1, λ2). (7)
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• In view of the expression

L(C1, C2, λ1, λ2) = ζ1U1,0(C1) + ζ2U2,0(C2)

+
∑
i=1,2

E
[∫

[0,∞[

(
Ui,t(Ci)− U i,t

)
dλi,t

]
(8)

and the inequalities

V = inf
λ1,λ2∈A

sup
(C1,C2)∈Ca

L(C1, C2, λ1, λ2) ≤ inf
λ1,λ2∈A

sup
(C1,C2)∈Cf

L(C1, C2, λ1, λ2), (9)

we can see that, if we find (C?
1 , C

?
2) ∈ Cf and λ?1, λ

?
2 ∈ A such that

L(C?
1 , C

?
2 , λ

?
1, λ

?
2) = inf

λ1,λ2∈A
sup

(C1,C2)∈Cf
L(C1, C2, λ1, λ2), (10)

(C?
1 , C

?
2) ∈ Ca and

∑
i=1,2

E
[∫

[0,∞[

(
Ui,t(C

?
i )− U i,t

)
dλ?i,t

]
= 0, (11)

then (C?
1 , C

?
2) provides the solution to the constrained optimisation problem defined by (5).
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• Using the integration by parts formula, we calculate

E
[∫

[0,∞[

Ui,t(Ci) dλi,t

]
= E

[∫
[0,∞[

(∫ ∞
t

ui(s, Ci,s) ds

)
dλi,t

]
= E

[∫ ∞
0

ui(t, Ci,t)λi,t dt

]
. (12)

We thus rewrite the Lagrangian as

L(C1, C2,Λ1,Λ2) = E
[∫ ∞

0

(Λ1,t + Λ2,t)
[
Ztu1(t, C1,t) + (1− Zt)u2(t, C2,t)

]
dt

]
−
∑
i=1,2

E
[∫

[0,∞[

U i,t dΛi,t

]
, (13)

where

Λi,t = ζi + λi,t and Zt =
Λ1,t

Λ1,t + Λ2,t
. (14)
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• Given y, z > 0, we define

ũ(t, y, z) = sup
0<c<y

{
zu1(t, c) + (1− z)u2(t, y − c)

}
. (15)

The unique value α(t, y, z) of c that achieves the supremum is such that

u1

(
t,α(t, y, z)

)
= ũ(t, y, z) + (1− z)ũz(t, y, z) (16)

and u2

(
t, y − α(t, y, z)

)
= ũ(t, y, z)− zũz(t, y, z). (17)

Given (Λ1,Λ2) ∈ A such that Λi,0 = ζi, the consumption allocation given by

c?1(t, Yt,Λ1,t,Λ2,t) = α

(
t, Yt,

Λ1,t

Λ1,t + Λ2,t

)
(18)

and c?2(t, Yt,Λ1,t,Λ2,t) = Yt − c?1(t, Yt,Λ1,t,Λ2,t), (19)

is feasible and maximises the Lagrangian given by (13). We define

J(Λ1,Λ2) := sup
(C1,C2)∈Cf

L(C1, C2,Λ1,Λ2)

= E
[∫ ∞

0

(Λ1,t + Λ2,t)ũ(t, Yt, Zt) dt

]
−
∑
i=1,2

E
[∫

[0,∞[

U i,t dΛi,t

]
. (20)
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• Given ξ ∈ A, we define

∇1,ξJ(Λ1,Λ2) = lim
δ↓0

1

δ

[
J(Λ1 + δξ,Λ2)− J(Λ1,Λ2)

]
(21)

and ∇2,ξJ(Λ1,Λ2) = lim
δ↓0

1

δ

[
J(Λ1,Λ2 + δξ)− J(Λ1,Λ2)

]
. (22)

Using the expressions (16)–(17) and the integration by parts, we calculate

∇i,ξJ(Λ1,Λ2) = E
[∫ ∞

0

ξtui
(
t, c?i (t, Yt,Λ1,t,Λ2,t)

)
dt

]
− E

[∫
[0,∞[

U i,t dξt

]
= E

[∫
[0,∞[

[
Ui,t
(
c?i (·, Y,Λ1,Λ2)

)
− U i,t

]
dξt

]
. (23)
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• Now, suppose that there exists a pair (Λ?
1,Λ

?
2) that minimises the index J given by (20). This pair

is such that

∇i,ξJ(Λ?
1,Λ

?
2) ≥ 0 for all ξ ∈ A and i = 1, 2. (24)

This inequality and the expression (23) imply that(
c?1(·, Y,Λ?

1,Λ
?
2), c?2(·, Y,Λ?

1,Λ
?
2)
)
∈ Ca (25)

because this consumption allocation satisfies the resource constraint (2) as well as the participation

constraints (3). Furthermore,∫
[0,∞[

[
Ui,t
(
c?i (·, Y,Λ?

1,Λ
?
2)
)
− U i,t

]
dΛ?

i = 0, (26)

i.e., the optimal Lagrange multipliers increase only when the constraints are binding.

It follows that the consumption allocation in (25) provides the solution to the constrained optimi-

sation problem defined by (5).
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A Canonical (Symmetric) Application

• We now assume that

Y1 = X and Y2 = 1−X, (27)

where X satisfies the SDE

dXt = µ(Xt) dt + σ(Xt) dWt, X0 = x ∈ ]0, 1[. (28)

We assume that µ, σ are such that the SDE (28) has a unique non-explosive strong solution with

values in ]0, 1[,

µ(x) = −µ(1− x) and σ(x) = σ(1− x) for all x ∈ ]0, 1[. (29)

We denote by ϕ (resp., ψ) the minimal strictly decreasing (resp., strictly increasing) %-excessive

functions of the diffusion associated with the SDE for X . These are solutions to the ODE

1

2
σ2(x)f ′′(x) + µ(x)f ′(x)− %f (x) = 0. (30)

Also, we denote by p the scale function of the diffusion associated with the SDE for X (note that

ϕψ′ − ϕ′ψ = Kp′, for some constant K).
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• We assume that

u1(t, c) = u2(t, c) = e−%tu(c), (31)

for some C2 utility function u that satisfies the Inada conditions and a constant % > 0.

The agents’ autarky expected utility processes are then given by

U 1,t = E
[∫ ∞

t

e−%su(Xs) ds
∣∣∣ Ft] = e−%tΓ(Xt) (32)

and U 2,t = E
[∫ ∞

t

e−%su(1−Xs) ds
∣∣∣ Ft] = e−%tΓ(1−Xt), (33)

where

Γ(x) = E
[∫ ∞

0

e−%tu(Xt) dt

]
= ϕ(x)

∫ x

0

Ψ(s)u(s) ds + ψ(x)

∫ 1

x

Φ(s)u(s) ds, (34)

with

Φ(s) =
2ϕ(s)

Kσ2(s)p′(s)
and Ψ(s) =

2ψ(s)

Kσ2(s)p′(s)
. (35)
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• Given constants ζ1 > 0 and ζ2 > 0, the objective is to solve the problem

V = sup
C∈C

{
ζ1 E

[∫ ∞
0

e−%su(Cs) ds

]
+ ζ2 E

[∫ ∞
0

e−%su(1− Cs) ds
]}

, (36)

where C is the family of all ]0, 1[-valued (Ft)-adapted continuous processes such that

E
[∫ ∞

t

e−%su(Cs) ds
∣∣∣ Ft] ≥ e−%tΓ(Xt) (37)

and E
[∫ ∞

t

e−%su(1− Cs) ds
∣∣∣ Ft] ≥ e−%tΓ(1−Xt). (38)

• In this case, the Lagrangian takes the form

L(C,Λ1,Λ2) = E
[∫ ∞

0

e−%t
(
Λ1,t + Λ2,t

)[
Ztu(Ct) + (1− Zt)u(1− Ct)

]
dt

]
− E

[∫
[0,∞[

e−%tΓ(Xt) dΛ1,t

]
− E

[∫
[0,∞[

e−%tΓ(1−Xt) dΛ2,t

]
, (39)

where

Λi,0 = ζi and Zt =
Λ1,t

Λ1,t + Λ2,t
. (40)
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• As in the general case, the first order condition for pointwise maximisation inside the first expectation

yields

C?
t = α(Zt), (41)

where

α(z) = arg max
0<c<1

{
zu(c) + (1− z)u(1− c)

}
. (42)

Furthermore, we define

ũ(z) = max
0<c<1

{
zu(c) + (1− z)u(1− c)

}
, for z > 0. (43)

In view of the general analysis, the problem reduces to minimising the performance criterion

J(Λ1,Λ2) = E
[∫ ∞

0

e−%t
(
Λ1,t + Λ2,t

)
ũ(Zt) dt

]
− E

[∫
[0,∞[

e−%tΓ(Xt) dΛ1,t

]
− E

[∫
[0,∞[

e−%tΓ(1−Xt) dΛ2,t

]
(44)

over (Λ1,Λ2). We denote by

]0, 1[× ]0,∞[ 2 3 (x, ζ1, ζ2) 7→ v(x, ζ1, ζ2) (45)

the value function of this singular stochastic control problem.
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• A suitable solution to the HJB equation

min

{
1

2
σ2(x)wxx(x, z) + µ(x)wx(x, z)− %w(x, z) + ũ(z),

w(x, z) + (1− z)wz(x, z)− Γ(x), w(x, z)− zwz(x, z)− Γ(1− x)

}
= 0 (46)

identifies with the value function in the sense that

v(x, ζ1, ζ2) = (ζ1 + ζ2)w

(
x,

ζ1

ζ1 + ζ2

)
. (47)

The idea for the relevant verification theorem is to start with an application of Itô’s formula to the

process
(
e−%t(Λ1,t + Λ2,t)w(Xt,

Λ1,t

Λ1,t+Λ2,t
)
)
.
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• The structure of the HJB equation

min

{
1

2
σ2(x)wxx(x, z) + µ(x)wx(x, z)− %w(x, z) + ũ(z),

w(x, z) + (1− z)wz(x, z)− Γ(x), w(x, z)− zwz(x, z)− Γ(1− x)

}
= 0 (48)

suggests that the state space S = ]0, 1[ 2 is partitioned into three regions S1, Sc and S2. In the

open region Sc, the function w satisfies the ODE

1

2
σ2(x)wxx(x, z) + µ(x)wx(x, z)− %w(x, z) + ũ(z) = 0. (49)

Inside this region, the function w is of the form

w(x, z) = A(z)ϕ(x) + B(z)ψ(x) +
ũ(z)

%
. (50)

In the region S1, the first agent’s participation constraint is binding and

w(x, z) + (1− z)wz(x, z) = Γ(x), (51)

while, in the region S2, the second agent’s participation constraint is binding and

w(x, z)− zwz(x, z) = Γ(1− x). (52)
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• (When perfect risk-sharing is sustainable .) We look for a point z† ∈ ]0, 1
2[ and a function h : ]0, z†[

such that

S1 =
{

(x, z) ∈ S | z ≤ z† and x ≥ h(z)
}

(53)

and S2 =
{

(x, z) ∈ S | z ≥ 1− z† and x ≤ 1− h(1− z)
}
. (54)

To determine the free-boundary function h, we use the value matching and the smooth pasting

conditions

w(x, z) + (1− z)wz(x, z) = Γ(x) and wx(x, z) + (1− z)wzx(x, z) = Γ′(x), (55)

for x = h(z), which imply that[
B(z) + (1− z)B′(z)

]
ψ
(
h(z)

)
+
u
(
α(z)

)
%

= Γ
(
h(z)

)
(56)

and B(z) + (1− z)B′(z) =
Γ′
(
h(z)

)
ψ′
(
h(z)

), (57)

respectively. These identities imply that h should satisfy the equation F
(
h(z), z

)
= 0, where

F (x, z) =

∫ x

0

ψ(s)

σ2(s)p′(s)

[
u(s)− u

(
α(z)

)]
ds. (58)

There exists z† ∈ ]0, 1
2[ such that this equation has a unique solution h(z) ∈ ]0, 1[ for all z ∈ ]0, z†[

if and only if F (1, 1
2) < 0.
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• (When perfect risk-sharing is not sustainable .) We look for a point z† ∈ ]1
2, 1[ and a function

h : ]0, z†[ such that

S1 =
{

(x, z) ∈ S | z ≤ z† and x ≥ h(z)
}

(59)

and S2 =
{

(x, z) ∈ S | z ≥ 1− z† and x ≤ 1− h(1− z)
}
. (60)

For z ∈ ]0, 1− z†[, the free-boundary point h(z) is as in the previous case, namely, F
(
h(z), z

)
= 0,

where F is defined by (58). Note that this satisfies the ODE

h′(z) = H
(
z, h(z)

)
, (61)

where

H
(
z, x̄
)

=
α′(z)u′

(
α(z)

)
u(x̄)− u

(
α(z)

)∫ x̄0 Ψ(s) ds

Ψ(x̄)
. (62)
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For z ∈ ]1 − z†, z†[, we define `(z) = 1 − h(1 − z). Using the value matching and the smooth

pasting conditions along the free-boundary points h(z) and `(z), we derive the system of ODEs

h′(z) = H
(
z, `(z), h(z)

)
and `′(z) = L

(
z, `(z), h(z)

)
, (63)

where

H(z, x, x̄) =
α′(z)u′

(
α(z)

)
u(x̄)− u

(
α(z)

)ϕ(x)
∫ x̄
x Ψ(s) ds− ψ(x)

∫ x̄
x Φ(s) ds

ϕ(x)Ψ(x̄)− ψ(x)Φ(x̄)
(64)

and

L(z, x, x̄) =
α′(z)u′

(
1− α(z)

)
u(1− x)− u(1− α(z))

ψ(x̄)
∫ x̄
x Φ(s) ds− ϕ(x̄)

∫ x̄
x Ψ(s) ds

ψ(x̄)Φ(x)− ϕ(x̄)Ψ(x)
. (65)
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