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Motivation

One-period setup:Today, say 0, and tomorrow, say T > 0.
The available market information at the future date T is modelled by
a probability space (Ω, E ,P).
The different final pay-offs are modelled by a subspace X of L0(E).
A risk measure is a function

ρ : X −→ R.

ρ(x) quantifies the riskiness (today) of the payoff x ∈ X .

Duality theory of risk measures is a fruitful area of research that was
started by

[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]
The main tool is classical convex analysis.
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Motivation

Multi-period setup:0 < t < T .
F ⊂ E encodes the available market information at t.
A conditional risk measure is a function

ρt : X −→ L0(F).

where ρt(x) quantifies the riskiness (at t) of the payoff x ∈ X .
Classical convex analysis has rather delicate application:

I measurable dependence on the parameter ω ∈ Ω;
I heavy measurable selection criteria.

New developments in functional analysis:
I L0-Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
I Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and

M. Kupper, 2016].

Every single module or conditional analogue of a classical theorem
needs an adaptation of a classical proof.
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Some preliminaries on Conditional Analysis



Countable concatenation and stability

Throughout we consider an underlying probability space (Ω,F ,P).
We denote by L0 := L0(F) the space of F-measurable random variables
modulo almost everywhere identity.
Let p(Ω) denote the set of all countable F-measurable partitions of Ω.

Let E be an L0-module.

E is said to have the countable concatenation property, or is ccp, if:

For every sequence (xk) ⊂ E and (Ak) ∈ p(Ω) there exists exactly one
x ∈ E such that

1Ak
x = 1Ak

xk for all k ∈ N.

In this case, we write
x =

∑
1Ak

xk .
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Countable concatenation and stability

Hereafter, E denotes a ccp L0-module.

∅ 6= S ⊂ E is said to be L0-convex if:
For any x , y ∈ S and η ∈ L0 with 0 ≤ η ≤ 1 (a.s.), it holds

ηx + (1− η)y ∈ S ;
∅ 6= S ⊂ E is said to be stable if:

for any (xk) ⊂ S and (Ak) ∈ p(Ω), one has that
∑

1Ak
xk ∈ S

Given a sequence (Sk) of non-empty subsets of E and (Ak) ∈ p(Ω) we
define ∑

1Ak
Sk :=

¶∑
1Ak

xk : xk ∈ Sk , ∀k ∈ N
©
.

A non-empty collection U of non-empty subsets of E is said to be
stable if:

for any (Sk) ⊂ U and (Ak) ∈ p(Ω), one has that
∑

1Ak
Sk ∈ U .
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∅ 6= S ⊂ E is said to be stable if:

for any (xk) ⊂ S and (Ak) ∈ p(Ω), one has that
∑

1Ak
xk ∈ S

Given a sequence (Sk) of non-empty subsets of E and (Ak) ∈ p(Ω) we
define ∑

1Ak
Sk :=

¶∑
1Ak

xk : xk ∈ Sk , ∀k ∈ N
©
.

A non-empty collection U of non-empty subsets of E is said to be
stable if:

for any (Sk) ⊂ U and (Ak) ∈ p(Ω), one has that
∑

1Ak
Sk ∈ U .



Locally L0-convex moduli

A topological L0-module E [T ] is said to be locally L0-convex if it admits a
neighborhood base U of 0 ∈ E such that:

1 U is stable;
2 Each U ∈ U is L0-convex and stable;
3

⋂
U = {0}.

If E [T ] is a locally L0-convex module, its topological dual L0-module is
defined to be

E ∗ := E ∗[T ] :=
¶
µ ∈ HomL0(E , L0) : µ is continuous

©
.

Stable weak topologies:

σs(E ,E
∗), σs(E

∗,E ).
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A Boolean-valued models approach to
Conditional Analysis



Boolean-valued models: Historical background

Cantor stated the Continuum hypothesis (CH): every infinite set of
reals can be bijected either with N or R (1878).
Gödel proved the consistency of CH with ZFC (1939).
Cohen proved that CH is independent of ZFC by means of the forcing
method (1963).
Scott, Solovay, and Vopěnka created Boolean-valued models to
simplify the Cohen’s method of forcing (1967).

“We must ask whether there is any interest in these nonstandard models
aside from the independence proof; that is, do they have any mathematical
interest? The answer must be yes, but we cannot yet give a really good

argument.”

Dana Scott, 1969.
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The Boolean-valued model associated to F

The Boolean-valued model associated to F is a class of functions

x : dom(x)→ F such that dom(x) ⊂ V (F).

V
(F)
0 := ∅;

V
(F)
α := {x : x is F-valued and ∃β < α such that dom(x) ⊂ V

(F)
β };

V (F) :=
⋃

α∈Ord
V

(F)
α .

Any member x of V (F) is understood as a “fuzzy set”

x

y, y′ ∈ dom(x)

y y′

x(y)
x(y′)

If ϕ(u1, . . . , un) is a logic formula (with u1, . . . , un free variables) and
x1, . . . , xn ∈ V (F) we define the Boolean truth value Jϕ(x1, . . . , xn)K ∈ F .
A full set-theoretic reasoning is possible.
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Transfer principle of Boolean-valued models

Theorem (Boolean-valued transfer principle)
If is a ZFC theorem,
then the assertion “JϕK = Ω” is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

Suppose that X can be seen as a “representation” of a simpler
well-known mathematical object X↑ inside V (F).
Every ZFC theorem about X↑ has its counterpart for the original
object X (with maybe non-obvious content).

This technique was first time applied to analysis by Gordon (1977) and
Takeuti (1978) and has been fruitfully exploited by Kusraev, Kutateladze
and Osawa, fulfilling the prediction of D. Scott.
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The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside V (F):

Thanks to the transfer principle, any known fact on real numbers is fulfilled inside
V (F).
If we manage to interpret a theorem on real numbers as a statement on L0, we
will have proved a new theorem on L0.
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Ascent of a locally L0-convex module

Theorem
For any locally L0-convex module E := E [T ] there exists a locally convex
space E↑ within V (F) such that there is a bijection

ι : E −→
¶

x ∈ V (F) : Jx ∈ E↑K = Ω
©
.

Moreover, Jι(x) = ι(y)K =
∨{A ∈ F : 1Ax = 1Ay} for all x , y ∈ E .
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Different algebraic and topological properties of S correspond to
algebraic and topological properties of S↑ inside of V (F).
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Stable compactness

A filter base G on E is said to be a stable filter base if G is also a
stable collection of stable subsets of E ;
We say that a stable subset S of E is stably compact if every stable
filter base G on S has a cluster point x ∈ S .

Proposition
A stable subset S of E is stably compact if and only if
JS↑ is compactK = Ω.

Cyclic compactness [A. Kusraev, 1982].
Conditional compactness [S. Drapeau, A. Jamneshan, M. Karliczek,
and M. Kupper, 2016].
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Instance of application

Any theorem ϕ renders a theorem JϕK = Ω.

Recall the Schauder–Tychonoff’s fixed point theorem:

Theorem (Tychonoff, 1934)
Let X [τ ] be a locally convex space and C a convex compact subset of X ,
then for any continuous function λ : C → C there exists x ∈ C such that
λ(x) = x .

Theorem
Let E [T ] be a locally L0-convex module and S an L0-convex stably
compact subset of E , then for any stable continuous function f : S → S
there exists x ∈ S such that f (x) = x .
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A Boolean-valued approach to conditional risk



Convex risk measures

Let X be a solid subspace of L1 with R ⊂ X .

A convex risk measure is a function ρ : X → R satisfying the following
conditions for all x , y ∈ X :

1 convexity: ρ(rx + (1− r)y) ≤ rρ(x) + (1− r)ρ(y) for all r ∈ [0, 1];

2 monotonicity: if x ≤ y a.s., then ρ(y) ≤ ρ(x);

3 cash invariance: ρ(x + r) = ρ(x)− r for all r ∈ R.

The Köthe dual space of X is defined to be

X# :=
¶
y ∈ L0 : E[|xy |] <∞ for all x ∈ X

©
.

〈X ,X#〉 is a dual pair with the bilinear form (x , y) 7→ E[xy ].
The Fenchel transform of ρ is defined to be

ρ#(y) := sup{E[xy ]− ρ(x) : x ∈ X} for y ∈ X#.
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Some properties of convex risk measures

Let ρ : X → R be a convex risk measure.
ρ is representable if:

ρ(x) = sup
¶

E[xy ]− ρ#(y) : y ∈ X#
©

for all x ∈ X .

ρ is lower semi-continuous w.r.t. σ(X ,X#) if:

For each r ∈ R, {ρ ≤ r} is closed w.r.t. σ(X ,X#);

ρ# is inf compact w.r.t. σ(X#,X ) if:

For each r ∈ R, {ρ# ≤ r} is compact w.r.t. σ(X#,X ).
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Conditional risk measures

Suppose that F is a sub-σ-algebra of E .

Let X be a stable solid L0(F)-submodule of L0(E) with

E[|x ||F ] <∞ for all x ∈X .

A conditional risk measure is a function ρ : X → L0(F) which satisfies the
following conditions for all x , y ∈X :

1 L0(F)-convexity:
ρ(ηx + (1− η)y) ≤ ηρ(x) + (1− η)ρ(y) a.s. for all η ∈ L0(F , [0, 1]);

2 monotonicity: x ≤ y a.s. implies ρ(y) ≤ ρ(x) a.s.;

3 L0(F)-cash invariance: ρ(x + η) = ρ(x)− η for all η ∈ L0(F).

The Köthe dual L0(F)-module of X is defined to be

X # :=
¶
y ∈ L0(E) : E[|xy | | F ] <∞ for all x ∈X

©
.

The Fenchel transform of ρ is defined to be
ρ#(y) := ess.sup{E[xy |F ]− ρ(x) : x ∈X } for y ∈X #.
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Some properties of conditional risk measures

Let ρ : X → L0(F) be a conditional risk measure.
ρ is representable if:

ρ(x) = ess.sup
¶

E[xy |F ]− ρ#(y) : y ∈X #
©

for all x ∈X ;

ρ is stably lower semi-continuous w.r.t. σs(X ,X #) if:

For η ∈ L0(F), {ρ ≤ η} is closed w.r.t. σs(X ,X #);

ρ# is stably inf compact w.r.t. σs(X#,X ) if:

For each η ∈ L0(F), {ρ# ≤ η} is either empty or stably compact
w.r.t. σs(X#,X ).
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Interpretation of a conditional risk measure as a convex risk
measure

Theorem
Let ρ : X → L0(F) be a conditional risk measure. Then, inside of V (F),
there exists a convex risk measure ρ↑ so that:

1 ρ is representable if and only if Jρ↑ is representableK = Ω.
2 ρ is stably lower semi-continuous if and only if Jρ↑ is l.s.c.K = Ω.
3 ρ# is stably inf-compact if and only if Jρ↑# is inf compactK = Ω.
4 ρ has the Fatou property if and only if

Jρ↑ has the Fatou propertyK = Ω.
5 ρ has the Lebesgue property if and only if

Jρ↑ has the Lebesgue propertyK = Ω.
6 ρ is conditional law invariant if and only if Jρ↑ is law invariantK = Ω.
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Robust representation of conditional risk measures

The following robust representation theorem was first time proved for
X = L∞ by [Jouini, Schachermayer, Touzi, 2006]:

Theorem (K. Owari, 2014)
Let ρ : X → R be a convex risk measure. Then ρ is lower semi-continuous
w.r.t. σ(X ,X#) if and only if ρ admits a representation

ρ(x) = sup{E[xy ]− ρ#(y) : y ∈ X#} ∀x ∈ X .

In that case, the following conditions are equivalent:
1 ρ attains the representation for each x ∈ X ;
2 ρ has the Lebesgue property, i.e.

lim
n

xn = x a.s., |xn| ≤ y , y ∈ X implies lim
n
ρ(xn) = ρ(x);

3 ρ# is inf-compact w.r.t. σ(X#,X ).
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Theorem
Let ρ : X → L0(F) be a conditional risk measure. Then ρ is stably lower
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In that case, the following conditions are equivalent:
1 ρ attains the representation for each x ∈ X ;
2 ρ has the Lebesgue property, i.e.
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Thank you for your attention!
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