A Boolean-valued models approach to random convex analysis and duality theory of conditional risk measures

José Miguel Zapata
(University of Murcia)

Innovative Research in Mathematical Finance 3-7 Sep 2018 - CIRM Luminy, Marseille, France (in honour of Yuri Kabanov).

Partially based on joint work with Antonio Avilés (University of Murcia).

Motivation

Motivation

One-period setup:

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space (Ω, \mathcal{E}, P).

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space (Ω, \mathcal{E}, P).
- The different final pay-offs are modelled by a subspace \mathcal{X} of $L^{0}(\mathcal{E})$.

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space (Ω, \mathcal{E}, P).
- The different final pay-offs are modelled by a subspace \mathcal{X} of $L^{0}(\mathcal{E})$.
- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space (Ω, \mathcal{E}, P).
- The different final pay-offs are modelled by a subspace \mathcal{X} of $L^{0}(\mathcal{E})$.
- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

- Duality theory of risk measures is a fruitful area of research that was started by
[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]

Motivation

One-period setup:Today, say 0 , and tomorrow, say $T>0$.

- The available market information at the future date T is modelled by a probability space (Ω, \mathcal{E}, P).
- The different final pay-offs are modelled by a subspace \mathcal{X} of $L^{0}(\mathcal{E})$.
- A risk measure is a function

$$
\rho: \mathcal{X} \longrightarrow \mathbb{R}
$$

$\rho(x)$ quantifies the riskiness (today) of the payoff $x \in \mathcal{X}$.

- Duality theory of risk measures is a fruitful area of research that was started by
[P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, 1999.]
The main tool is classical convex analysis.

Motivation

Motivation

Multi-period setup:

Motivation

Multi-period setup: $0<t<T$.

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t.

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t. A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t. A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t. A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t. A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;
- heavy measurable selection criteria.

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t. A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;
- heavy measurable selection criteria.
- New developments in functional analysis:

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t.

A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;
- heavy measurable selection criteria.
- New developments in functional analysis:
- Lo -Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t.

A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;
- heavy measurable selection criteria.
- New developments in functional analysis:
- Lo ${ }^{0}$ Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
- Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].

Motivation

Multi-period setup: $0<t<T$.

- $\mathcal{F} \subset \mathcal{E}$ encodes the available market information at t.

A conditional risk measure is a function

$$
\rho_{t}: \mathcal{X} \longrightarrow L^{0}(\mathcal{F})
$$

where $\rho_{t}(x)$ quantifies the riskiness (at t) of the payoff $x \in \mathcal{X}$.

- Classical convex analysis has rather delicate application:
- measurable dependence on the parameter $\omega \in \Omega$;
- heavy measurable selection criteria.
- New developments in functional analysis:
- Lo ${ }^{0}$ Convex Analysis [D. Filipović, M. Kupper, and N. Vogelpoth, 2009];
- Conditional analysis [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].
- Every single module or conditional analogue of a classical theorem needs an adaptation of a classical proof.

Program:

Program:

By means of tools of mathematical logic, we establish two transfer methods:

Program:

By means of tools of mathematical logic, we establish two transfer methods:
(1) From classical analysis to conditional analysis;

Program:

By means of tools of mathematical logic, we establish two transfer methods:
(1) From classical analysis to conditional analysis;
(2) From duality theory of one-period risk measures to duality theory of conditional risk measures.

Some preliminaries on Conditional Analysis

Countable concatenation and stability

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.
Let $p(\Omega)$ denote the set of all countable \mathcal{F}-measurable partitions of Ω.

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.
Let $p(\Omega)$ denote the set of all countable \mathcal{F}-measurable partitions of Ω.
Let E be an L^{0}-module.

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.
Let $p(\Omega)$ denote the set of all countable \mathcal{F}-measurable partitions of Ω.
Let E be an L^{0}-module.
E is said to have the countable concatenation property, or is ccp, if:

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.
Let $p(\Omega)$ denote the set of all countable \mathcal{F}-measurable partitions of Ω.
Let E be an L^{0}-module.
E is said to have the countable concatenation property, or is ccp, if:
For every sequence $\left(x_{k}\right) \subset E$ and $\left(A_{k}\right) \in p(\Omega)$ there exists exactly one $x \in E$ such that

$$
1_{A_{k} x}=1_{A_{k} x_{k}} \quad \text { for all } k \in \mathbb{N} .
$$

Countable concatenation and stability

Throughout we consider an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
We denote by $L^{0}:=L^{0}(\mathcal{F})$ the space of \mathcal{F}-measurable random variables modulo almost everywhere identity.
Let $p(\Omega)$ denote the set of all countable \mathcal{F}-measurable partitions of Ω.
Let E be an L^{0}-module.
E is said to have the countable concatenation property, or is ccp, if:
For every sequence $\left(x_{k}\right) \subset E$ and $\left(A_{k}\right) \in p(\Omega)$ there exists exactly one $x \in E$ such that

$$
1_{A_{k} x}=1_{A_{k} x_{k}} \quad \text { for all } k \in \mathbb{N} .
$$

In this case, we write

$$
x=\sum 1_{A_{k}} x_{k} .
$$

Countable concatenation and stability

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

Countable concatenation and stability

Hereafter, E denotes a $\operatorname{ccp} L^{0}$-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds $\eta x+(1-\eta) y \in S ;$

Countable concatenation and stability

Hereafter, E denotes a $\operatorname{ccp} L^{0}$-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if:

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if: for any $\left(x_{k}\right) \subset S$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k} x_{k}} \in S$

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if:
for any $\left(x_{k}\right) \subset S$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k} x_{k}} \in S$
- Given a sequence $\left(S_{k}\right)$ of non-empty subsets of E and $\left(A_{k}\right) \in p(\Omega)$ we define

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if:
for any $\left(x_{k}\right) \subset S$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k} x_{k}} \in S$
- Given a sequence $\left(S_{k}\right)$ of non-empty subsets of E and $\left(A_{k}\right) \in p(\Omega)$ we define

$$
\sum 1_{A_{k}} S_{k}:=\left\{\sum 1_{A_{k}} x_{k}: x_{k} \in S_{k}, \forall k \in \mathbb{N}\right\}
$$

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if:
for any $\left(x_{k}\right) \subset S$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k} x_{k}} \in S$
- Given a sequence $\left(S_{k}\right)$ of non-empty subsets of E and $\left(A_{k}\right) \in p(\Omega)$ we define

$$
\sum 1_{A_{k}} S_{k}:=\left\{\sum 1_{A_{k}} x_{k}: x_{k} \in S_{k}, \forall k \in \mathbb{N}\right\}
$$

- A non-empty collection \mathscr{U} of non-empty subsets of E is said to be stable if:

Countable concatenation and stability

Hereafter, E denotes a ccp L^{0}-module.

- $\emptyset \neq S \subset E$ is said to be L^{0}-convex if:

For any $x, y \in S$ and $\eta \in L^{0}$ with $0 \leq \eta \leq 1$ (a.s.), it holds

$$
\eta x+(1-\eta) y \in S
$$

- $\emptyset \neq S \subset E$ is said to be stable if:
for any $\left(x_{k}\right) \subset S$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k} x_{k}} \in S$
- Given a sequence $\left(S_{k}\right)$ of non-empty subsets of E and $\left(A_{k}\right) \in p(\Omega)$ we define

$$
\sum 1_{A_{k}} S_{k}:=\left\{\sum 1_{A_{k}} x_{k}: x_{k} \in S_{k}, \forall k \in \mathbb{N}\right\} .
$$

- A non-empty collection \mathscr{U} of non-empty subsets of E is said to be stable if: for any $\left(S_{k}\right) \subset \mathscr{U}$ and $\left(A_{k}\right) \in p(\Omega)$, one has that $\sum 1_{A_{k}} S_{k} \in \mathscr{U}$.

Locally Lºconvex moduli

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;
(2) Each $U \in \mathscr{U}$ is L^{0}-convex and stable;

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;
(2) Each $U \in \mathscr{U}$ is L^{0}-convex and stable;
(3) $\cap \mathscr{U}=\{0\}$.

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;
(2) Each $U \in \mathscr{U}$ is L^{0}-convex and stable;
(3) $\cap \mathscr{U}=\{0\}$.

If $E[\mathscr{T}]$ is a locally L^{0}-convex module, its topological dual L^{0}-module is defined to be

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;
(2) Each $U \in \mathscr{U}$ is L^{0}-convex and stable;
(3) $\cap \mathscr{U}=\{0\}$.

If $E[\mathscr{T}]$ is a locally L^{0}-convex module, its topological dual L^{0}-module is defined to be

$$
E^{*}:=E^{*}[\mathscr{T}]:=\left\{\mu \in \operatorname{Hom}_{L^{0}}\left(E, L^{0}\right): \mu \text { is continuous }\right\} .
$$

Locally L^{0}-convex moduli

A topological L^{0}-module $E[\mathscr{T}]$ is said to be locally L^{0}-convex if it admits a neighborhood base \mathscr{U} of $0 \in E$ such that:
(1) \mathscr{U} is stable;
(2) Each $U \in \mathscr{U}$ is L^{0}-convex and stable;
(3) $\cap \mathscr{U}=\{0\}$.

If $E[\mathscr{T}]$ is a locally L^{0}-convex module, its topological dual L^{0}-module is defined to be

$$
E^{*}:=E^{*}[\mathscr{T}]:=\left\{\mu \in \operatorname{Hom}_{L^{0}}\left(E, L^{0}\right): \mu \text { is continuous }\right\} .
$$

Stable weak topologies:

$$
\sigma_{\mathfrak{s}}\left(E, E^{*}\right), \quad \sigma_{\mathfrak{s}}\left(E^{*}, E\right)
$$

A Boolean-valued models approach to
 Conditional Analysis

Boolean-valued models: Historical background

Boolean-valued models: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).

Boolean-valued models: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).

Boolean-valued models: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).

Boolean-valued models: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created Boolean-valued models to simplify the Cohen's method of forcing (1967).

Boolean-valued models: Historical background

- Cantor stated the Continuum hypothesis (CH): every infinite set of reals can be bijected either with \mathbb{N} or \mathbb{R} (1878).
- Gödel proved the consistency of CH with ZFC (1939).
- Cohen proved that CH is independent of ZFC by means of the forcing method (1963).
- Scott, Solovay, and Vopěnka created Boolean-valued models to simplify the Cohen's method of forcing (1967).
"We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is, do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good argument."

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})} .
$$

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(\mathfrak{x}) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})} .
$$

$V_{0}^{(\mathcal{F})}:=\emptyset ;$

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(x) \subset V^{(\mathcal{F})} .
$$

$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}:\right.$ x is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{\beta}^{(\mathcal{F})}\right\} ;$

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(\mathbb{x}) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})} .
$$

$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}:\right.$ x is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{\beta}^{(\mathcal{F})}\right\}$;
$V^{(\mathcal{F})}:=\bigcup_{\alpha \in \text { Ord }} V_{\alpha}^{(\mathcal{F})}$.

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(\mathbb{x}) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})} .
$$

$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}:\right.$ x is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{\beta}^{(\mathcal{F})}\right\}$;
$V^{(\mathcal{F})}:=\bigcup_{\alpha \in \mathrm{Ord}} V_{\alpha}^{(\mathcal{F})}$.

- Any member $火$ of $V^{(\mathcal{F})}$ is understood as a "fuzzy set"

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions

$$
\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F} \quad \text { such that } \quad \operatorname{dom}(x) \subset V^{(\mathcal{F})} .
$$

$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}:\right.$ x is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathrm{x}) \subset V_{\beta}^{(\mathcal{F})}\right\}$;
$V^{(\mathcal{F})}:=\bigcup_{\alpha \in \operatorname{Ord}} V_{\alpha}^{(\mathcal{F})}$.

- Any member $火$ of $V^{(\mathcal{F})}$ is understood as a "fuzzy set"

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions $\mathfrak{x}: \operatorname{dom}(\mathbb{x}) \rightarrow \mathcal{F} \quad$ such that $\quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})}$.
$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}: \mathfrak{x}\right.$ is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathfrak{x}) \subset V_{\beta}^{(\mathcal{F})}\right\}$;
$V^{(\mathcal{F})}:=\bigcup_{\alpha \in \text { Ord }} V_{\alpha}^{(\mathcal{F})}$.

- Any member $火$ of $V^{(\mathcal{F})}$ is understood as a "fuzzy set"

$$
y, y^{\prime} \in \operatorname{dom}(x)
$$

- If $\varphi\left(u_{1}, \ldots, u_{n}\right)$ is a logic formula (with u_{1}, \ldots, u_{n} free variables) and $\mathfrak{x}_{1}, \ldots, x_{n} \in V^{(\mathcal{F})}$ we define the Boolean truth value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathcal{F}$.

The Boolean-valued model associated to \mathcal{F}

The Boolean-valued model associated to \mathcal{F} is a class $V^{(\mathcal{F})}$ of functions $\mathfrak{x}: \operatorname{dom}(x) \rightarrow \mathcal{F} \quad$ such that $\quad \operatorname{dom}(\mathbb{x}) \subset V^{(\mathcal{F})}$.
$V_{0}^{(\mathcal{F})}:=\emptyset ;$
$V_{\alpha}^{(\mathcal{F})}:=\left\{\mathrm{x}: \mathfrak{x}\right.$ is \mathcal{F}-valued and $\exists \beta<\alpha$ such that $\left.\operatorname{dom}(\mathbb{x}) \subset V_{\beta}^{(\mathcal{F})}\right\}$;
$V^{(\mathcal{F})}:=\bigcup_{\alpha \in \text { Ord }} V_{\alpha}^{(\mathcal{F})}$.

- Any member $火$ of $V^{(\mathcal{F})}$ is understood as a "fuzzy set"

$$
y, y^{\prime} \in \operatorname{dom}(x)
$$

- If $\varphi\left(u_{1}, \ldots, u_{n}\right)$ is a logic formula (with u_{1}, \ldots, u_{n} free variables) and $x_{1}, \ldots, x_{n} \in V^{(\mathcal{F})}$ we define the Boolean truth value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathcal{F}$.
- A full set-theoretic reasoning is possible.

Transfer principle of Boolean-valued models

Transfer principle of Boolean-valued models

Theorem (Boolean-valued transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Transfer principle of Boolean-valued models

Theorem (Boolean-valued transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Transfer principle of Boolean-valued models

Theorem (Boolean-valued transfer principle)
If φ is a ZFC theorem, then the assertion " $\lfloor\varphi \rrbracket=\Omega$ " is again a ZFC theorem.

Suppose that we want to study a mathematical object X :

Transfer principle of Boolean-valued models

```
Theorem (Boolean-valued transfer principle)
If \varphi is a ZFC theorem,
then the assertion " \llbracket\varphi\rrbracket=\Omega" is again a ZFC theorem.
```

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside $V^{(\mathcal{F})}$.

Transfer principle of Boolean-valued models

```
Theorem (Boolean-valued transfer principle)
If \varphi is a ZFC theorem,
then the assertion " \llbracket\varphi\rrbracket=\Omega" is again a ZFC theorem.
```

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside $V^{(\mathcal{F})}$.
- Every ZFC theorem about $X \uparrow$ has its counterpart for the original object X

Transfer principle of Boolean-valued models

```
Theorem (Boolean-valued transfer principle)
If \varphi is a ZFC theorem,
then the assertion " }\llbracket\varphi\rrbracket=\Omega" is again a ZFC theorem
```

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside $V^{(\mathcal{F})}$.
- Every ZFC theorem about $X \uparrow$ has its counterpart for the original object X (with maybe non-obvious content).

Transfer principle of Boolean-valued models

```
Theorem (Boolean-valued transfer principle)
If \varphi is a ZFC theorem,
then the assertion " \llbracket\varphi\rrbracket=\Omega" is again a ZFC theorem.
```

Suppose that we want to study a mathematical object X :

- Suppose that X can be seen as a "representation" of a simpler well-known mathematical object $X \uparrow$ inside $V^{(\mathcal{F})}$.
- Every ZFC theorem about $X \uparrow$ has its counterpart for the original object X (with maybe non-obvious content).

This technique was first time applied to analysis by Gordon (1977) and Takeuti (1978) and has been fruitfully exploited by Kusraev, Kutateladze and Osawa, fulfilling the prediction of D. Scott.

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

Von Neumann Universe V

Boolean-valued Universe $\mathrm{V}^{(\mathcal{F})}$

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

Thanks to the transfer principle, any known fact on real numbers is fulfilled inside $V^{(\mathcal{F})}$.

The Boolean-valued real numbers

[Takeuti, 1978] found a representation of the real numbers inside $V^{(\mathcal{F})}$:

Thanks to the transfer principle, any known fact on real numbers is fulfilled inside $V^{(\mathcal{F})}$.
If we manage to interpret a theorem on real numbers as a statement on L^{0}, we will have proved a new theorem on L^{0}.

Ascent of a locally L^{0}-convex module

Ascent of a locally L^{0}-convex module

Theorem
For any locally L^{0}-convex module $E:=E[\mathscr{T}]$ there exists a locally convex space $E \uparrow$ within $V^{(\mathcal{F})}$ such that there is a bijection

$$
\iota: E \longrightarrow\left\{x \in V^{(\mathcal{F})}: \llbracket x \in E \uparrow \rrbracket=\Omega\right\} .
$$

Moreover, $\llbracket \iota(x)=\iota(y) \rrbracket=\bigvee\left\{A \in \mathcal{F}: 1_{A} x=1_{A} y\right\} \quad$ for all $x, y \in E$.

Ascent of a locally L^{0}-convex module

Theorem

For any locally L^{0}-convex module $E:=E[\mathscr{T}]$ there exists a locally convex space $E \uparrow$ within $V^{(\mathcal{F})}$ such that there is a bijection

$$
\iota: E \longrightarrow\left\{x \in V^{(\mathcal{F})}: \llbracket x \in E \uparrow \rrbracket=\Omega\right\} .
$$

Moreover, $\llbracket \iota(x)=\iota(y) \rrbracket=\bigvee\left\{A \in \mathcal{F}: 1_{A} x=1_{A} y\right\} \quad$ for all $x, y \in E$.

Von Neumann Universe V

Boolean-valued Universe $\mathrm{V}^{(\mathcal{F})}$

Ascent of a locally L^{0}-convex module

Theorem

For any locally L^{0}-convex module $E:=E[\mathscr{T}]$ there exists a locally convex space $E \uparrow$ within $V^{(\mathcal{F})}$ such that there is a bijection

$$
\iota: E \longrightarrow\left\{x \in V^{(\mathcal{F})}: \llbracket x \in E \uparrow \rrbracket=\Omega\right\} .
$$

Moreover, $\llbracket \iota(x)=\iota(y) \rrbracket=\bigvee\left\{A \in \mathcal{F}: 1_{A} x=1_{A} y\right\} \quad$ for all $x, y \in E$.

Ascent of a locally L^{0}-convex module

Theorem

For any locally L^{0}-convex module $E:=E[\mathscr{T}]$ there exists a locally convex space $E \uparrow$ within $V^{(\mathcal{F})}$ such that there is a bijection

$$
\iota: E \longrightarrow\left\{x \in V^{(\mathcal{F})}: \llbracket x \in E \uparrow \rrbracket=\Omega\right\} .
$$

Moreover, $\llbracket \iota(x)=\iota(y) \rrbracket=\bigvee\left\{A \in \mathcal{F}: 1_{A} x=1_{A} y\right\} \quad$ for all $x, y \in E$.

Boolean-valued Universe $\mathrm{V}^{(\mathcal{F})}$

Ascent of a stable subset, ascent of a stable function,...

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

- Let $S_{1} \subset E_{1}$ and $S_{2} \subset E_{2}$ be stable.

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

- Let $S_{1} \subset E_{1}$ and $S_{2} \subset E_{2}$ be stable.

A function $f: S_{1} \rightarrow S_{2}$ is said to be stable if

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

- Let $S_{1} \subset E_{1}$ and $S_{2} \subset E_{2}$ be stable.

A function $f: S_{1} \rightarrow S_{2}$ is said to be stable if

$$
f\left(\sum 1_{A_{k}} x_{k}\right)=\sum 1_{A_{k}} f\left(x_{k}\right) \quad \text { whenever }\left(A_{k}\right) \in p(\Omega),\left(x_{k}\right) \subset S_{1} .
$$

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

- Let $S_{1} \subset E_{1}$ and $S_{2} \subset E_{2}$ be stable.

A function $f: S_{1} \rightarrow S_{2}$ is said to be stable if

$$
f\left(\sum 1_{A_{k}} x_{k}\right)=\sum 1_{A_{k}} f\left(x_{k}\right) \quad \text { whenever }\left(A_{k}\right) \in p(\Omega),\left(x_{k}\right) \subset S_{1} .
$$

A stable function $f: S_{1} \rightarrow S_{2}$ can be made into a function $f \uparrow: S_{1} \uparrow \rightarrow S_{2} \uparrow$ inside of $V^{(\mathcal{F})}$.

Ascent of a stable subset, ascent of a stable function,...

- Let $S \subset E$ be stable.

Then S can be made into a non-empty subset $S \uparrow$ of $E \uparrow$ inside of $V^{(\mathcal{F})}$.
Different algebraic and topological properties of S correspond to algebraic and topological properties of $S \uparrow$ inside of $V^{(\mathcal{F})}$.

- Let $S_{1} \subset E_{1}$ and $S_{2} \subset E_{2}$ be stable.

A function $f: S_{1} \rightarrow S_{2}$ is said to be stable if

$$
f\left(\sum 1_{A_{k}} x_{k}\right)=\sum 1_{A_{k}} f\left(x_{k}\right) \quad \text { whenever }\left(A_{k}\right) \in p(\Omega),\left(x_{k}\right) \subset S_{1} .
$$

A stable function $f: S_{1} \rightarrow S_{2}$ can be made into a function $f \uparrow: S_{1} \uparrow \rightarrow S_{2} \uparrow$ inside of $V^{(\mathcal{F})}$.

Different algebraic and topological properties of f correspond to algebraic and topological properties of $f \uparrow$ inside of $V^{(\mathcal{F})}$.

Stable compactness

Stable compactness

- A filter base \mathscr{G} on E is said to be a stable filter base if \mathscr{G} is also a stable collection of stable subsets of E;

Stable compactness

- A filter base \mathscr{G} on E is said to be a stable filter base if \mathscr{G} is also a stable collection of stable subsets of E;
- We say that a stable subset S of E is stably compact if every stable filter base \mathscr{G} on S has a cluster point $x \in S$.

Stable compactness

- A filter base \mathscr{G} on E is said to be a stable filter base if \mathscr{G} is also a stable collection of stable subsets of E;
- We say that a stable subset S of E is stably compact if every stable filter base \mathscr{G} on S has a cluster point $x \in S$.

Proposition

A stable subset S of E is stably compact if and only if
$\llbracket S \uparrow$ is compact $\rrbracket=\Omega$.

Stable compactness

- A filter base \mathscr{G} on E is said to be a stable filter base if \mathscr{G} is also a stable collection of stable subsets of E;
- We say that a stable subset S of E is stably compact if every stable filter base \mathscr{G} on S has a cluster point $x \in S$.

Proposition

A stable subset S of E is stably compact if and only if
$\llbracket S \uparrow$ is compact $\rrbracket=\Omega$.

- Cyclic compactness [A. Kusraev, 1982].
- Conditional compactness [S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, 2016].

Instance of application

Instance of application

Any theorem φ renders a theorem $\llbracket \varphi \rrbracket=\Omega$.

Instance of application

Any theorem φ renders a theorem $\llbracket \varphi \rrbracket=\Omega$.
Recall the Schauder-Tychonoff's fixed point theorem:
Theorem (Tychonoff, 1934)
Let $X[\tau]$ be a locally convex space and C a convex compact subset of X, then for any continuous function $\lambda: C \rightarrow C$ there exists $x \in C$ such that $\lambda(x)=x$.

Instance of application

Any theorem φ renders a theorem $\llbracket \varphi \rrbracket=\Omega$.
Recall the Schauder-Tychonoff's fixed point theorem:
Theorem (Tychonoff, 1934)
Let $X[\tau]$ be a locally convex space and C a convex compact subset of X, then for any continuous function $\lambda: C \rightarrow C$ there exists $x \in C$ such that $\lambda(x)=x$.

Theorem

Let $E[\mathscr{T}]$ be a locally L^{0}-convex module and S an L^{0}-convex stably compact subset of E, then for any stable continuous function $f: S \rightarrow S$ there exists $x \in S$ such that $f(x)=x$.

A Boolean-valued approach to conditional risk

Convex risk measures

Convex risk measures

- Let \mathcal{X} be a solid subspace of L^{1} with $\mathbb{R} \subset \mathcal{X}$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of L^{1} with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of L^{1} with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

Convex risk measures

- Let \mathcal{X} be a solid subspace of L^{1} with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

- $\left\langle\mathcal{X}, \mathcal{X}^{\#}\right\rangle$ is a dual pair with the bilinear form $(x, y) \mapsto \mathbb{E}[x y]$.

Convex risk measures

- Let \mathcal{X} be a solid subspace of L^{1} with $\mathbb{R} \subset \mathcal{X}$.

A convex risk measure is a function $\rho: \mathcal{X} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathcal{X}$:
(1) convexity: $\rho(r x+(1-r) y) \leq r \rho(x)+(1-r) \rho(y)$ for all $r \in[0,1]$;
(2) monotonicity: if $x \leq y$ a.s., then $\rho(y) \leq \rho(x)$;
(3) cash invariance: $\rho(x+r)=\rho(x)-r$ for all $r \in \mathbb{R}$.

- The Köthe dual space of \mathcal{X} is defined to be

$$
\mathcal{X}^{\#}:=\left\{y \in L^{0}: \mathbb{E}[|x y|]<\infty \text { for all } x \in \mathcal{X}\right\} .
$$

- $\left\langle\mathcal{X}, \mathcal{X}^{\#}\right\rangle$ is a dual pair with the bilinear form $(x, y) \mapsto \mathbb{E}[x y]$.
- The Fenchel transform of ρ is defined to be

$$
\rho^{\#}(y):=\sup \{\mathbb{E}[x y]-\rho(x): x \in \mathcal{X}\} \quad \text { for } y \in \mathcal{X}^{\#} .
$$

Some properties of convex risk measures

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \text { for all } x \in \mathcal{X} .
$$

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \text { for all } x \in \mathcal{X} .
$$

- ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \text { for all } x \in \mathcal{X}
$$

- ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

For each $r \in \mathbb{R},\{\rho \leq r\}$ is closed w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}{ }^{\#}\right)$;

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \text { for all } x \in \mathcal{X}
$$

- ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

For each $r \in \mathbb{R},\{\rho \leq r\}$ is closed w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$;

- $\rho^{\#}$ is inf compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$ if:

Some properties of convex risk measures

Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure.

- ρ is representable if:

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \text { for all } x \in \mathcal{X} .
$$

- ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if:

For each $r \in \mathbb{R},\{\rho \leq r\}$ is closed w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$;

- $\rho^{\#}$ is inf compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$ if:

For each $r \in \mathbb{R},\left\{\rho^{\#} \leq r\right\}$ is compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$.

Conditional risk measures

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

- Let \mathscr{X} be a stable solid $L^{0}(\mathcal{F})$-submodule of $L^{0}(\mathcal{E})$ with

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

- Let \mathscr{X} be a stable solid $L^{0}(\mathcal{F})$-submodule of $L^{0}(\mathcal{E})$ with

$$
\mathbb{E}[|x| \mid \mathcal{F}]<\infty \quad \text { for all } x \in \mathscr{X} .
$$

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

- Let \mathscr{X} be a stable solid $L^{0}(\mathcal{F})$-submodule of $L^{0}(\mathcal{E})$ with

$$
\mathbb{E}[|x| \mid \mathcal{F}]<\infty \quad \text { for all } x \in \mathscr{X}
$$

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) $L^{0}(\mathcal{F})$-convexity:

$$
\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y) \text { a.s. for all } \eta \in L^{0}(\mathcal{F},[0,1]) ;
$$

(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) $L^{0}(\mathcal{F})$-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L^{0}(\mathcal{F})$.

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

- Let \mathscr{X} be a stable solid $L^{0}(\mathcal{F})$-submodule of $L^{0}(\mathcal{E})$ with

$$
\mathbb{E}[|x| \mid \mathcal{F}]<\infty \quad \text { for all } x \in \mathscr{X} .
$$

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) $L^{0}(\mathcal{F})$-convexity:
$\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L^{0}(\mathcal{F},[0,1]) ;$
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) $L^{0}(\mathcal{F})$-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L^{0}(\mathcal{F})$.

- The Köthe dual $L^{0}(\mathcal{F})$-module of \mathscr{X} is defined to be

$$
\mathscr{X}^{\#}:=\left\{y \in L^{0}(\mathcal{E}): \mathbb{E}[|x y| \mid \mathcal{F}]<\infty \text { for all } x \in \mathscr{X}\right\} .
$$

Conditional risk measures

Suppose that \mathcal{F} is a sub- σ-algebra of \mathcal{E}.

- Let \mathscr{X} be a stable solid $L^{0}(\mathcal{F})$-submodule of $L^{0}(\mathcal{E})$ with

$$
\mathbb{E}[|x| \mid \mathcal{F}]<\infty \quad \text { for all } x \in \mathscr{X} .
$$

A conditional risk measure is a function $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ which satisfies the following conditions for all $x, y \in \mathscr{X}$:
(1) $L^{0}(\mathcal{F})$-convexity:
$\rho(\eta x+(1-\eta) y) \leq \eta \rho(x)+(1-\eta) \rho(y)$ a.s. for all $\eta \in L^{0}(\mathcal{F},[0,1]) ;$
(2) monotonicity: $x \leq y$ a.s. implies $\rho(y) \leq \rho(x)$ a.s.;
(3) $L^{0}(\mathcal{F})$-cash invariance: $\rho(x+\eta)=\rho(x)-\eta$ for all $\eta \in L^{0}(\mathcal{F})$.

- The Köthe dual $L^{0}(\mathcal{F})$-module of \mathscr{X} is defined to be

$$
\mathscr{X}^{\#}:=\left\{y \in L^{0}(\mathcal{E}): \mathbb{E}[|x y| \mid \mathcal{F}]<\infty \text { for all } x \in \mathscr{X}\right\} .
$$

- The Fenchel transform of ρ is defined to be

$$
\rho^{\#}(y):=\operatorname{ess} \cdot \sup \{\mathbb{E}[x y \mid \mathcal{F}]-\rho(x): x \in \mathscr{X}\} \quad \text { for } y \in \mathscr{X}^{\#} .
$$

Some properties of conditional risk measures

Some properties of conditional risk measures

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure.

Some properties of conditional risk measures

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure.

- ρ is representable if:

Some properties of conditional risk measures

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure.

- ρ is representable if:

$$
\rho(x)=\operatorname{ess} . \sup \left\{\mathbb{E}[x y \mid \mathcal{F}]-\rho^{\#}(y): y \in \mathscr{X}^{\#}\right\} \quad \text { for all } x \in \mathscr{X} ;
$$

Some properties of conditional risk measures

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure.

- ρ is representable if:

$$
\rho(x)=\operatorname{ess} . \sup \left\{\mathbb{E}[x y \mid \mathcal{F}]-\rho^{\#}(y): y \in \mathscr{X}^{\#}\right\} \quad \text { for all } x \in \mathscr{X} ;
$$

- ρ is stably lower semi-continuous w.r.t. $\sigma_{\mathfrak{s}}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if: For $\eta \in L^{0}(\mathcal{F}),\{\rho \leq \eta\}$ is closed w.r.t. $\sigma_{\mathfrak{s}}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$;

Some properties of conditional risk measures

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure.

- ρ is representable if:

$$
\rho(x)=\operatorname{ess} . \sup \left\{\mathbb{E}[x y \mid \mathcal{F}]-\rho^{\#}(y): y \in \mathscr{X} \#\right\} \quad \text { for all } x \in \mathscr{X} \text {; }
$$

- ρ is stably lower semi-continuous w.r.t. $\sigma_{\mathfrak{s}}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if:

$$
\text { For } \eta \in L^{0}(\mathcal{F}),\{\rho \leq \eta\} \text { is closed w.r.t. } \sigma_{\mathfrak{s}}\left(\mathscr{X}, \mathscr{X}^{\#}\right) \text {; }
$$

- $\rho^{\#}$ is stably inf compact w.r.t. $\sigma_{s}\left(\mathcal{X}^{\#}, \mathcal{X}\right)$ if:

For each $\eta \in L^{0}(\mathcal{F}),\left\{\rho^{\#} \leq \eta\right\}$ is either empty or stably compact

$$
\text { w.r.t. } \sigma_{s}\left(\mathcal{X}^{\#}, \mathcal{X}\right) .
$$

Interpretation of a conditional risk measure as a convex risk measure

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:

Interpretation of a conditional risk measure as a convex risk measure

Theorem
Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(2) ρ is stably lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(2) ρ is stably lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- $\rho^{\#}$ is stably inf-compact if and only if $\llbracket \rho^{\#}$ is inf compact $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(2) ρ is stably lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- $\rho^{\#}$ is stably inf-compact if and only if $\llbracket \rho \uparrow^{\#}$ is inf compact $\rrbracket=\Omega$.
- ρ has the Fatou property if and only if
$\llbracket \rho \uparrow$ has the Fatou property $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(2) ρ is stably lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- $\rho^{\#}$ is stably inf-compact if and only if $\llbracket \rho \uparrow^{\#}$ is inf compact $\rrbracket=\Omega$.
- ρ has the Fatou property if and only if
$\llbracket \rho \uparrow$ has the Fatou property $\rrbracket=\Omega$.
- ρ has the Lebesgue property if and only if $\llbracket \rho \uparrow$ has the Lebesgue property $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then, inside of $V^{(\mathcal{F})}$, there exists a convex risk measure $\rho \uparrow$ so that:
(1) ρ is representable if and only if $\llbracket \rho \uparrow$ is representable $\rrbracket=\Omega$.
(2) ρ is stably lower semi-continuous if and only if $\llbracket \rho \uparrow$ is l.s.c. $\rrbracket=\Omega$.

- $\rho^{\#}$ is stably inf-compact if and only if $\llbracket \rho \uparrow^{\#}$ is inf compact $\rrbracket=\Omega$.
- ρ has the Fatou property if and only if $\llbracket \rho \uparrow$ has the Fatou property $\rrbracket=\Omega$.
- ρ has the Lebesgue property if and only if $\llbracket \rho \uparrow$ has the Lebesgue property $\rrbracket=\Omega$.
- ρ is conditional law invariant if and only if $\llbracket \rho \uparrow$ is law invariant $\rrbracket=\Omega$.

Interpretation of a conditional risk measure as a convex risk measure

Interpretation of a conditional risk measure as a convex risk measure

Interpretation of a conditional risk measure as a convex risk measure

Robust representation of conditional risk measures

The following robust representation theorem was first time proved for $\mathcal{X}=L^{\infty}$ by [Jouini, Schachermayer, Touzi, 2006]:

Theorem (K. Owari, 2014)
Let $\rho: \mathcal{X} \rightarrow \mathbb{R}$ be a convex risk measure. Then ρ is lower semi-continuous w.r.t. $\sigma\left(\mathcal{X}, \mathcal{X}^{\#}\right)$ if and only if ρ admits a representation

$$
\rho(x)=\sup \left\{\mathbb{E}[x y]-\rho^{\#}(y): y \in \mathcal{X}^{\#}\right\} \quad \forall x \in \mathcal{X}
$$

In that case, the following conditions are equivalent:
(1) ρ attains the representation for each $x \in \mathcal{X}$;
(2) ρ has the Lebesgue property, i.e.

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq y, y \in \mathcal{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) ;
$$

(3) $\rho^{\#}$ is inf-compact w.r.t. $\sigma\left(\mathcal{X}^{\#}, \mathcal{X}\right)$.

Robust representation of conditional risk measures

Theorem

Let $\rho: \mathscr{X} \rightarrow L^{0}(\mathcal{F})$ be a conditional risk measure. Then ρ is stably lower semi-continuous w.r.t. $\sigma_{\mathfrak{s}}\left(\mathscr{X}, \mathscr{X}^{\#}\right)$ if and only if ρ admits a representation

$$
\rho(x)=\operatorname{ess} . \sup \left\{\mathbb{E}[x y \mid \mathcal{F}]-\rho^{\#}(y): y \in \mathscr{X}^{\#}\right\} \quad \forall x \in \mathscr{X} .
$$

In that case, the following conditions are equivalent:
(1) ρ attains the representation for each $x \in \mathcal{X}$;
(1) ρ has the Lebesgue property, i.e.

$$
\lim _{n} x_{n}=x \text { a.s., }\left|x_{n}\right| \leq y, y \in \mathscr{X} \text { implies } \lim _{n} \rho\left(x_{n}\right)=\rho(x) \text { a.s.; }
$$

(0) $\rho^{\#}$ is stably inf-compact w.r.t. $\sigma_{\mathfrak{s}}\left(\mathscr{X}^{\#}, \mathscr{X}\right)$.

References

References

围
A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

References

A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2017).

References

E
A. Avilés, J.M. Zapata. Boolean-valued models as a foundation for locally L^{0}-convex analysis and Conditional set theory. Journal of Applied Logics. 5(1) (2018) 389-420.

T
J.M. Zapata. A Boolean-valued model approach to conditional risk. Preprint available in Arxiv (2017).
國 J.M. Zapata. A Boolean-valued Models Approach to L^{0}-Convex Analysis, Conditional Risk and Stochastic Control. Thesis dissertation (2018) - Supervised by José Orihuela.

Thank you for your attention!

