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Goal of this talk ...

introduce a very general setting for stochastic models of financial
markets with a Bayesian flavor (joint work with Christa Cuchiero and
Irene Klein).
introduce a machine learning setting where such models can be
numerically evaluated (joint work with Hans Bühler, Lukas Gonon,
Ben Wood).
show alternative parametrizations of the problem in the spirit of
reservoir computing.
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Bayesian Finance

Platonic financial market

Often accepted hypothesis in modeling financial markets:

Observations of prices are perfect and can be immediately included in
trading decisions.

We consider here a setting where this hypothesis is not true anymore.

Platonic stock exchange: consider a financial market, where the prices
of the assets are not fully revealed to the trader (like ideas in Platon’s cave
allegory) or where trading decisions are not immediately excuted. How to
invest optimally?
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Bayesian Finance

Platonic financial market

A platonic financial market is given by a stochastic basis together with two
filtrations F ⊂ G and a family of càdlàg stochastic processes S adapted to
G. Almost sure statements are understood with respect to the larger
filtration G.

Trading in these assets is possible but only with F-predictable strategies
(made precise later).

Analyzing platonic financial markets we call Bayesian Finance since
optional projections will play a key role such as in (Bayesian) Filtering,
however, with respect to pricing measures.
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Bayesian Finance

Examples

Trading with an execution delay.
Trading with observational delay.
Trading one underlying to hedge risks of another underlying.
For some assets trading is only possible for restricted time sets (for
example static trading)
Prices are uncertain due to liquidity issues, transaction costs.
Model prices differ from market prices, which means in principle that
one believes market prices come with an error.
Lack of information (e.g. discrete information versus continuous time
modeling).
quantify frictions in stochastic portfolio theory
Model uncertainty.
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Bayesian Finance

References

Youri Kabanov – Christophe Stricker: The Dalang-Morton-Willinger
theorem under delayed and restricted information (2006).
Moritz Dümbgen – Chris Rogers: Estimate nothing (2014).
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Bayesian Finance

The Kabanov-Stricker theorem: discrete time

Here we consider only a finite number of adapted processes S1, . . .Sn on
(Ω,G, (Gt)Tt=0,P). Trading is allowed only with restricted information.
To be precise, let (Ft), t = 1, . . . ,T , be a filtration such that Ft ⊂ Gt for
all t. For an Rn-valued, (Ft) simply predictable process H = (H1, . . . ,Hn)

(H · S)t =
n∑

k=1

t∑
u=1

Hk
u−1(Sk

u − Sk
u−1) .

Possible portfolio processes:
X = {X = (H · S) : H Rn-valued, F-predictable} and K0 = {XT ,X ∈ X}.
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Bayesian Finance

Youri Kabanov and Christophe Stricker from 2006:

Theorem

The following conditions are equivalent:
(i) NA, that means K0 ∩ L0

+(Ω,G,P) = {0}.
(ii) there exists a probability measure Q with dQ

dP ∈ L∞(Ω,G,P) such that

EQ [Sk
t+1|Ft ] = EQ [Sk

t |Ft ],

for all k = 1, . . . , n, t = 0, . . .T − 1.
(iii)

(
K0 − L0

+(Ω,G,P)
)
∩ L0

+(Ω,G,P) = {0}
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Bayesian Finance

FTAP in continuous time: setting

We consider a large financial market model in continuous time in the
following way. Let I be a parameter space which can be any set, countable
or uncountable.

Let T = 1 denote a finite time horizon and let (Ω,G,P) be a probability
space with a filtration G = (Gt)t∈[0,1]. On this probability space we are

given a family of G-adapted stochastic processes (S i
t)t∈[0,1], i ∈ I .

Notice that we do not assume any path properties nor semi-martingality
properties.
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Bayesian Finance

Setting

We define, for each n ≥ 1, a family An of eligible subsets of I , which
contain exactly n elements:

An = {all/some subsets A ⊆ I , such that |A| = n}, (1)

where |A| denotes the cardinality of the set A. Furthermore we consider a
family of filtrations FA = (FA

t )t∈[0,1], indexed by A ∈ A in G. We assume
that

FA is refining and monotone

for A1,A2 ∈
⋃

n≥1An, then A1 ∪ A2 ∈
⋃

n≥1An.

for two sets A1,A2 ∈
⋃

n≥1An, such that A1 ⊆ A2, then we have that

FA1 ⊆ FA2
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Bayesian Finance

Setting

For each A ∈
⋃

n≥1An we define the set of portfolio wealth processes XA

based on simple strategies for deterministic time points in the small
financial market A that are predictable with respect to the smaller filtration
FA = (FA

t )t∈[0,1]. To be precise the set of simple portfolio wealth processes
for the small market given by A = {α1, . . . , αn} ∈ An is defined as

XA = {(HA · SA)t , t ∈ [0, 1] : HA is FA-predictable and simple} .
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Bayesian Finance

Setting

We define the set X n of all portfolio wealth processes with respect to
simple strategies that include at most n assets (but all possible different
choices of n assets). Indeed, for each n ≥ 1 we consider the following set
X n

X n =
⋃

A∈An

XA. (2)

Note that the sets X n are neither convex nor do they satisfy a
concatenation property in the sense of, e.g., Kabanov (1997), because in
both cases 2n assets could be involved in the combinations.
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Bayesian Finance

We introduce the convex sets of (simple) portfolio wealth processes and its
terminal evaluation:

Wealth processes with restricted information

1 Define the set of all wealth processes defined on simple strategies
involving a finite number of assets in the large financial market as
X =

⋃
n≥1X n.

2 We denote by K0 = {X1 : X ∈ X} the evaluations of elements of X
at terminal time T = 1.
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Bayesian Finance

Remark

Our setting is general and realistic. There are no path requirements on the
involved processes. Every trading situation might, e.g., involve a degree of
delay as well as an amount of market frictions as well as specific
information available. Moreover we can have a different set of possible
trading times for the assets (static trading in some assets).

Let C be the convex cone of all superreplicable claims (by simple
strategies) in the large financial market, that is,

C = K0 − L0
≥0(G,P).

Note also that the above setting includes as examples the large financial
market based on a sequence of assets as well as bond markets (with a
continuum of assets).
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Bayesian Finance

NAFL condition

We use an Lp assumption as in Stricker (1990) (in the setting of one
filtration and small markets). But only for some P ′ ∼ P.

No Arbitrage Criterion with Integrability Assumption

Let P ′ ∼ P and p ≥ 1. We assume that S i
t ∈ Lp(Ω,G,P ′), for all i ∈ I ,

t ∈ [0, 1] for some fixed p ≥ 1.

Let Cp(P ′) = C ∩ Lp(G,P ′). We say that the large financial market
satisfies the condition no asymptotic Lp-free lunch for P ′ (NAFLp(P ′)) if
the following holds:

Cp(P ′) ∩ Lp≥0(G,P ′) = {0}.

(By the integrability assumptions it is obvious that Cp(P ′) 6= ∅.)
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Bayesian Finance

Dual set

Fix 1 ≤ q ≤ ∞ dual to p. We define the set of Lq(P ′) probability
measures such that the Q-optional projection of the process (SA

t ) for the
filtration FA is a Q-martingale, for all finite subsets A of I , as follows:

Mq(P ′) = {Q ∼ P,
dQ

dP ′
∈ Lq(G,P ′) : EQ [Sαi

t |FA
u ] = EQ [Sαi

u |FA
u ] a.s.,

for all A = {α1, . . . , αl} ∈
⋃
n≥1

An, 1 ≤ i ≤ l and all u ≤ t ∈ [0, 1]}

(3)

Note that always Mq(P ′) ⊆M1(P) for the original measure P.
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Bayesian Finance

Admissibility

We emphasize that we do not assume any admissibility for our portfolio
value processes, instead we assume Lp(P ′)-integrability with respect to
some measure P ′ which is equivalent with respect to the physical measure
P.
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Bayesian Finance

Main Theorem

Theorem

The following statements are equivalent:
1 There exists p ≥ 1 and P ′ ∼ P such that NAFLp(P ′) holds
2 The set of equivalent martingale measures Q, such that optional

projections are martingales, is not empty, M1(P) 6= ∅.

Remarks:

It is of great help that we do not need a stochastic integral in this
case, which is still not fully available.

By the equivalence of (1) and (2) we see that our NAFL condition
does not depend on the choice of P. In the case of bounded S (2)
shows that it is equivalent to NAFLVR (NFLVR).
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Bayesian Finance

Further Results

Functional analytic refinements which allow to express NAFLp(P ′)
differently.

Super-replication, utility optimization, risk minimization, ...

Frictions like trading delays are included, trading constraints,
transaction costs or market impacts can also be easily included in this
almost discrete continuous time setting.
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Bayesian Finance

Immediate Applications

Non semi-martingale models can be used for prices, since the
semi-martingale property does NOT follow from NAFLp.
Prior information in the Bayesian sense on sets of prior measures in
the sense of robust finance can be included.
Dynamic changes of prior information can be made visible in the
modeling setup.
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Deep Hedging

Evaluate 2Filtration Setting by Machine Learning methods

The 2Filtration Setting is numerically delicate, in particular in the
presence of non-linear frictions.
neither PDE methods nor dynamic programming is usually available.
still machine learning methods allow to implement stochastic
optimization problems efficiently even in absence of dynamic
programming principles.

In the sequel we introduce a 2Filtration stochastic optimization problem
with transaction costs and trading constraints and demonstrate that one
can obtain satisfying solutions by machine learning techniques.
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Deep Hedging

Discrete-time market model with frictions

Trading: at time points t0 = 0 < t1 < . . . < tn = T .

Prices of hedging instruments: stochastic process (Stk )k=0,...,n in Rd .

Work on a (finite) probability space (Ω,G,P) with filtration
G = (Gtk )k=0,...,n, for simplicity Gtk = σ(St0 , . . . ,Stk ).

At t = 0 sell a contingent claim with (random) payoff Z at T > 0.

Specify a (smaller) filtration F ⊂ G for hedging.

Charging price p0 and hedging according to an F-predictable strategy
δ, terminal profit and loss is (with · discrete-time stochastic
integration)

PLT (Z , p0, δ) := −Z + p0︸︷︷︸
price

+ (δ · S)T︸ ︷︷ ︸
trading gains

− CT (δ)︸ ︷︷ ︸
cum. transaction costs

.
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Deep Hedging

Setup and problem formulation in detail

PLT (Z , p0, δ) := −Z + p0︸︷︷︸
price

+ (δ · S)T︸ ︷︷ ︸
trading gains

− CT (δ)︸ ︷︷ ︸
cum. transaction costs

. (4)

(4) in more detail:

(δ · S)T =
∑n

k=1 δtk · (Stk − Stk−1
).

CT (δ) =
∑n

k=0 ck(δtk − δtk−1
,St0 , . . . ,Stk ) with δt−1 := 0, δtn := 0.

Example: transaction costs proportional to transaction amount, i.e.
ck(δtk − δtk−1

, St0 , . . . ,Stk ) =
∑d

i=1 εi |δitk − δ
i
tk−1
|S i

tk
.

Note: PLT (Z , p0, δ) ≥ 0 represents a gain for seller.
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Deep Hedging

Indifference pricing and optimal hedging:

Describe risk-preferences by a convex risk-measure ρ.

Denote H the set of available hedging strategies.

The indifference price is the (unique) solution p(Z ) to

inf
δ∈H

ρ (PLT (Z , p(Z ), δ)) = inf
δ∈H

ρ (PLT (0, 0, δ)) . (5)

Optimal hedging strategy is minimizer δ∗ (if it exists) in left-hand-side
of (5).

Numerical calculation of p(Z ) and δ∗:

Highly challenging by classical numerical techniques (very
high-dimensional problem) in particular in the 2Filtration setting.

→ in practice more simplistic models are used (parametric,
continuous-time, no transaction costs).
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Deep Hedging

an approximate calculation is feasible thanks to modern deep learning
techniques (exploited for other problems in finance e.g. in works by
Cont, Sirignano, E, Han, Jentzen, Cheridito, Becker, ...).

Straight forward Approach: consider only hedging strategies
δ = (δtk )k=1,...,n of the form

δtk = F θk (Stk−1
, δtk−1

), k = 1, . . . , n

where F θk is a neural network with weights parametrized by θk .

Key point 1: neural networks are surprisingly efficient at
approximating multivariate functions (see works by Bölcskei, Grohs,
Kutyniok, Petersen, Wiatowski, ...).

Key point 2: efficient machine learning optimization algorithms
(stochastic gradient-type and backpropagation) and implementations
(Tensorflow, Theano, Torch, ...) are available.
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Deep Hedging

Approximate indifference price
By cash-invariance, the indifference price p(Z ) is given as

p(Z ) = π(−Z )− π(0), where

π(X ) := inf
δ∈H

ρ(X + (δ · S)T − CT (δ)) .

For suitable parameter set ΘM ⊂ Rr and δθtk = F θk (Stk−1
, δθtk−1

) as
above, approximate π(X ) by

πM(X ) := inf
θ∈ΘM

ρ
(
X + (δθ · S)T − CT (δθ)

)
.

Directly amenable to machine learning optimization algorithms
(stochastic gradient-type and backpropagation) if ρ is entropic risk
measure (→ exponential utility indifference price) or more generally
an optimized certainty equivalent, i.e.

ρ(X ) := inf
w∈R
{w + E [`(−X − w)]} (6)

for ` : R→ R continuous, non-decreasing and convex.
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Deep Hedging

Example Study: Heston model with CVar

dS
(1)
t =

√
VtS

(1)
t dBt , S

(1)
0 = s0

dVt = α(b − Vt)dt + σ
√

VtdWt , V0 = v0

B and W are Brownian motions with d〈B,W 〉 = ρdt

(α, b, ρ, σ, v0, s0) = (1, 0.04,−0.7, 2, 0.04, 100)

Payoff and Hedging

Payoff: Call spread (see next slide) with maturity T = 30 days.

Hedging instruments: Trade in S (1) and variance swap S (2).

Trading: Daily rebalancing of portfolio.

Risk-measure: α-CVar (expected shortfall),

ρ(X ) := inf
w∈R

{
w +

1

1− α
E [(−X − w)+]

}
.
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Deep Hedging

Call spread

Used by traders for (approximate) pricing / hedging of binary options.

Payoff: − 1
K2−K1

[(S
(1)
T − K1)+ − (S

(1)
T − K2)+] for K1 < K2.

Here K1 = s0 = 100, K2 = 101:

97 98 99 100 101 102 103
S_T

0.0

0.2

0.4

0.6

0.8

1.0

Pa
yo

ff
Spread payoff
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Deep Hedging

Neural network approximation

δtk = F θk (S
(1)
tk−1

,S
(2)
tk−1

, δtk−1
) and for each k , F θk is a feed-forward

neural network with two hidden layers (15 nodes each) and ReLU
activation function (x 7→ x+).

Use Adam (batch size 256) for training.
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Deep Hedging

δ
(s)
t as a function of (st , vt) for t = 15:

96 98 100 102 0.04
0.08

0.12

0.05

0.15

0.25

Model Spread Delta

96 98 100 102 0.04
0.08

0.12

0.05

0.15

0.25

95% Spread Delta

96 98 100 102 0.04
0.08

0.12

0.05

0.15

0.25

99% Spread Delta

Higher risk-aversion ↔ barrier shift
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Deep Hedging

Price asymptotics: proportional transaction costs

pε = pε(Z ) is the exponential utility indifference price of Z for
proportional transaction costs of size ε.

For continuous-time models with d = 1:

pε − p0 = O(ε2/3), as ε ↓ 0. (7)

Our methodology is good enough to reproduce (7) in a Heston model
with d = 2 hedging instruments. For this case (or any other model
with d > 1) no results on (7) have been available previously (neither
theoretical nor numerical).
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Deep Hedging

7.0 6.5 6.0 5.5 5.0 4.5
log( )
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g(

p
p 0

)
Rate of convergence is 0.71

Another instance of the Unreasonable effectiveness of neural networks!
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Reservoir Computing and learning trading strategies

Reservoir Computing
learning hedging strategies in a 2Filtration setting falls in the category
of learning dynamic phenomena, i.e. we want to calculate as easily as
possible the map from the price path of S to the hedging strategy.

paradigm of reservoir computing: split the input-output map into a
generic part (the reservoir), which is not trained and a readout part,
which is trained, see work of Lyudmila Grigoryeva, Juan-Pablo
Ortega, et al.

how to choose the reservoir in case of learning hedging strategies?

comparable question: learning the solution of a semi-martingale
driven unknown equation

dXt =
d∑

i=1

Vi (Xt) ◦ dS i
t , X0 = x ∈ RN

for some smooth vector fields Vi : RN → RN , i = 1, . . . , d .
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Reservoir Computing and learning trading strategies

The signature process
Task: a large amount of tuples (S(ω),X (ω)) is given (the training data),
describe a non-linear map which stores this information and allows to
generalize. Notice that we do not neither need nor re-construct Vi for that.

In order to learn the map (St)0≤t≤T 7→ XT from the paths of S to the
solution of the above equation one considers linear systems in the free
algebra with d generators (the product is denoted by ⊗).

dYt =
d∑

i=1

Yt ⊗ ei ◦ dS i
t , Y0 = 1

This is an infinite dimensional system whose solution is just the collection
of all iterated Ito-Stratonovich integrals.

Rough path theory tells that Y is a reservoir on which the dynamics of X
can be represented: Xt can be written as a linear functional on Yt , the
linear functional depends solely on the vector fields V1, . . . ,Vd and can
therefore learned given enough training data.
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Reservoir Computing and learning trading strategies

A random localized signature

Instead of the previous infinite dimensional system there might be better
choices to construct a reservoir: fix an activation function σ.

A random localized signature

there is a set of hyper-parameters θ ∈ Θ, and a dimension M.
depending on θ choose randomly matrices A1, . . . ,Ad on RM as well
as shifts β1, . . . , βd such that we have maximal non-integrability on a
starting point x ∈ RM .
one can tune the hyper-parameters θ ∈ Θ such that

dZt =
d∑

i=1

σ(AiZt + βi ) ◦ dS i
t , Z0 = z

locally (in time) approximates Xt via a linear readout.
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Reservoir Computing and learning trading strategies

Elements of the proof

Elements of the proof

Not only the signature process but all stochastic processes sharing
this maximal non-integrability have the representation property stated
in rough path theory.
The cut-off dimension M leads to limited quality of approximation,
but with high dimension it tends to 0.
The tuning hyper-parameters θ allow to regularize the regression.
The representation holds locally depending on the activation function.
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Reservoir Computing and learning trading strategies

Outlook

find optimal reservoirs for non-standard stochastic optimization
problems to facilitate machine learning solutions.

combine machine learning optimization techniques with Bayesian
techniques to improve knowledge about the model.

what can be done in case of rough paths can be also done in case of
regularity structures: construct optimal representation systems for
solutions of singular SPDEs to facilitate learning of solutions.
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solutions of singular SPDEs to facilitate learning of solutions.
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