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Introduction

How do economic agents adapt to climate change?

• Water security is one of the most tangible and fastest-growing social, political

and economic challenges faced today

• The coal industry is an important consumer of freshwater resources and is

responsible for 7% of all water withdrawal globally

• Cooling power plants are responsible for the greatest demand in fresh water
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Introduction

A model for producers competing for a scarce resource

• Consider N producers sharing a resource whose supply per unit of time is

limited (e.g., fresh water) and denoted by Z̃t ;

• Each producer initially uses technology 1 requiring fresh water, and can

switch to technology 2 (not using water) at some future date τi ;

• Each producer faces demand level M i
t and can produce up to M i

t if the water
supply allows:

• With technology 1, one unit of water is required to produce one unit of good;
• With technology 2, no water is required.

• In case of shortage of water, the available supply is shared among producers

according to their demand levels.

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 4 / 31



Introduction

A model for producers competing for a scarce resource

• Consider N producers sharing a resource whose supply per unit of time is

limited (e.g., fresh water) and denoted by Z̃t ;

• Each producer initially uses technology 1 requiring fresh water, and can

switch to technology 2 (not using water) at some future date τi ;

• Each producer faces demand level M i
t and can produce up to M i

t if the water
supply allows:

• With technology 1, one unit of water is required to produce one unit of good;
• With technology 2, no water is required.

• In case of shortage of water, the available supply is shared among producers

according to their demand levels.

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 4 / 31



Introduction

A model for producers competing for a scarce resource

• Consider N producers sharing a resource whose supply per unit of time is

limited (e.g., fresh water) and denoted by Z̃t ;

• Each producer initially uses technology 1 requiring fresh water, and can

switch to technology 2 (not using water) at some future date τi ;

• Each producer faces demand level M i
t and can produce up to M i

t if the water
supply allows:

• With technology 1, one unit of water is required to produce one unit of good;
• With technology 2, no water is required.

• In case of shortage of water, the available supply is shared among producers

according to their demand levels.

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 4 / 31



Introduction

A model for producers competing for a scarce resource

• Consider N producers sharing a resource whose supply per unit of time is

limited (e.g., fresh water) and denoted by Z̃t ;

• Each producer initially uses technology 1 requiring fresh water, and can

switch to technology 2 (not using water) at some future date τi ;

• Each producer faces demand level M i
t and can produce up to M i

t if the water
supply allows:

• With technology 1, one unit of water is required to produce one unit of good;
• With technology 2, no water is required.

• In case of shortage of water, the available supply is shared among producers

according to their demand levels.

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 4 / 31



Introduction

A model for producers competing for a scarce resource

• The demand of i-th producer follows the dynamics

dM i
t

M i
t

= µdt + σdW i
t , M i

0 = mi .

where W 1, . . . ,W N are independent Brownian motions.

• With technology 2, the output is M i
t and with technology 1 the output is

Q i
t =


M i

t , if Z̃t ≥
N∑
i=1

M j
t1τj>t

Z̃t∑N
j=1 M

j
t1τj>t

M i
t otherwise.

⇒ Q i
t = ωN

t M
i
t , where ωN

t is the proportion of demand which may be satisfied

ωN
t =

Z̃t∑N
j=1 M

j
t1τj>t

∧ 1.
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Introduction

Cost function of producers

The cost function of the producer is given by∫ τi

0

e−ρtpQ i
tdt −

∫ τi

0

e−ρt p̂(M i
t − Q i

t)dt − e−ρτiK +

∫ ∞
τi

e−ρt p̃M i
tdt

=

∫ τi

0

e−ρtpωN
t M

i
tdt −

∫ τi

0

e−ρt p̂(1− ωN
t )M i

tdt − e−ρτiK +

∫ ∞
τi

e−ρt p̃M i
tdt

where we assume that ρ > µ.

p is the gain from producing with technology 1;

p̂ is the penalty paid for not meeting the demand;

K is the cost of switching the technology;

p̃ is the gain from producing with technology 2.
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Mean-field games

Mean-field games

Introduced by Lasry and Lions (2006,2007) and Huang, Caines and Malhamé

(2006) to describe large-population games with symmetric interactions.

Consider a stochastic differential game with N players, where each player controls

its state X i
t ∈ Rd by taking an action αi

t ∈ A ⊂ Rk :

dX i
t = b(t,X i

t , µ̄
N−1

X−i
t

, αi
t)dt + σ(t,X i

t , µ̄
N−1

X−i
t

, αi
t)dW

i
t ,

where W i are independent Wiener processes and µ̄N−1

X−i
t

is the empirical

distribution of the other players.

The cost function of i-th player is

J i (ααα) = E

[∫ T

0

f (t,X i
t , µ̄

N−1

X−i
t

, αi
t)dt + g(X i

T , µ̄
N−1

X−i
T

)

]
,

and we look for a Nash equilibrium: α̂αα ∈ AN : ∀i , ∀αi ∈ A, J i (α̂αα) ≤ J i (αi , α̂αα−i ).
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Mean-field games

Mean-field games

As N →∞, it is natural to assume that µ̄N−1

X−i
t

converges to a deterministic density

and the Nash equilibrium is described as follows (Carmona and Delarue ’17):

• For a deterministic flow (µt)0≤t≤T , solve

inf
α∈A

Jµ(α), Jµ(α) = E

[∫ T

0

f (t,Xα
t , µt , αt)dt + g(Xα

T , µT )

]
(∗)

where

dXα
t = b(t,Xα

t , µt , αt)dt + σ(t,Xα
t , µt , αt)dWt .

• Find a flow (µt)0≤t≤T such that L(X̂µ
t ) = µt , t ∈ [0,T ], where X̂µ is the

solution to (∗).

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 9 / 31



Mean-field games

Mean-field games

As N →∞, it is natural to assume that µ̄N−1

X−i
t

converges to a deterministic density

and the Nash equilibrium is described as follows (Carmona and Delarue ’17):

• For a deterministic flow (µt)0≤t≤T , solve

inf
α∈A

Jµ(α), Jµ(α) = E

[∫ T

0

f (t,Xα
t , µt , αt)dt + g(Xα

T , µT )

]
(∗)

where

dXα
t = b(t,Xα

t , µt , αt)dt + σ(t,Xα
t , µt , αt)dWt .

• Find a flow (µt)0≤t≤T such that L(X̂µ
t ) = µt , t ∈ [0,T ], where X̂µ is the

solution to (∗).

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 9 / 31



Mean-field games

The analytic approach

The stochastic control problem is characterized as the solution to a HJB equation

∂tV + max
α

{
f (t, x , µt , α) + b(t, x , µt , α)∂xV +

1

2
σ2(t, x , µt , α)∂2

xxV

}
= 0

with the terminal condition V (T , x) = g(x , µT ).

The flow of densities solves the Fokker-Planck equation

∂tµt −
1

2
∂2
xx(σ2(t, x , µt , α̂t)µt) + ∂x(b(t, x , µt , α̂t)µt) = 0,

with the initial condition µ0 = δX0 , where α̂ is the optimal feedback control.

⇒ A coupled system of a Hamilton-Jacobi-Bellman PDE (backward) and a

Fokker-Planck PDE (forward)
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MFG of optimal stopping

Optimal stopping mean-field games

In optimal stopping mean-field games (aka MFG of timing), the strategy of each

agent is a stopping time.

• Nutz (2017): bank run model with common noise, interaction through

proportion of stopped players, explicit form of optimal stopping time;

• Carmona, Delarue and Lacker (2017): a general timing game with common

noise, interaction through proportion of stopped players. Existence of strict

equilibria under complementarity condition (others leaving create incentive

for me to leave), no uniqueness.

• Bertucci (2017): Markovian state of each agent; no common noise,

interaction through density of states of players still in the game, analytic

approach (obstacle problem), existence of mixed equilibria, uniqueness under

antimonotonicity condition (others leaving create incentive for me to stay).
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MFG of optimal stopping

The model

We consider n agents whose states X i , i = 1, . . . , n follow the dynamics

dX i
t = µ(t,X i

t )dt + σ(t,X i
t )dW i

t ,

where the Brownian motions W i , i = 1, . . . , n are independent and the

coefficients µ and σ are assumed to be Lipschitz continuous and with linear

growth in the second variable, uniformly on t ∈ [0,T ].

We denote by L the infinitesimal generator:

Lf (t, x) = µ(t, x)
∂f

∂x
(t, x) +

σ2(t, x)

2

∂f 2

∂x2
(t, x).
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MFG of optimal stopping

The single-agent problem

Each agent aims to solve the optimal stopping problem

max
τi∈T ([0,T ])

E[

∫ τ

0

e−ρt f̃ (t,X i
t ,m

n
t )dt + e−ρτg(τ,X i

τ )],

where ρ > 0 is a discount factor, f : [0,T ]× Ω×M(Ω)→ R is the running

reward function, g : Ω→ R is the terminal reward and mn
t is defined by

mn
t (dx) =

1

n

n∑
i=1

δX i
t
(dx)1t≤τt .

We assume that g belongs to C 1,2([0,T ]× R): letting

f (t, x , µ) = e−ρt(f̃ (t, x , µ)− ρg(t, x) + ∂g
∂t + Lg), g the optimal stopping

problem becomes

max
τi∈T ([0,T ])

E[

∫ τ

0

f (t,X i
t ,m

n
t )dt].

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 14 / 31



MFG of optimal stopping

The MFG formulation: optimal stopping problem

In the limit of large number of agents, we expect that the empirical measure mn
t

converges to a deterministic limiting distribution mt for each t ∈ [0,T ].

The state of the representative agent with initial value x follows the dynamics

dX x
t = µ(t,X x

t )dt + σ(t,X x
t )dWt .

and the optimal stopping problem for the agent takes the form

max
τ∈T ([0,T ])

E[

∫ τ

0

f (t,X x
t ,mt)dt].
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MFG of optimal stopping

The MFG formulation: optimal stopping problem

Let τm,x be the optimal stopping time for agent with initial demand level x .

Second step of the MGF strategy: given initial measure m∗0 , find (mt)0≤t≤T s.t.

mt(A) =

∫
m∗0 (dx)P[X x

t ∈ A; τm,x > t], A ∈ B(R), t ∈ [0,T ]. (1)

Solution of optimal stopping MFG: fixed point of the right-hand side of (1).

Such solution is called a pure solution. Pure solutions for optimal stopping MFG

problems do not always exist (Bertucci ’2017) ⇒ we consider relaxed solutions.

⇒ agents may stay in the game after the optial stopping time if this does not

decrease their value.
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MFG of optimal stopping: the relaxed control approach

Relaxed optimal stopping

Inspired by works on linear programming formulation of stochastic control, e.g.,

Stockbridge ’90; El Karoui, Huu Nguyen and Jeanblanc ’87 and more recently Bukhdahn,

Goreac and Quincampoix ’11. Application to MFG in Lacker ’15.

Consider the optimal stopping problem

sup
τ∈T ([0,T ])

E
[∫ τ

0

f (t,Xt)dt

]
, Xt = x +

∫ t

0

µ(s,Xs)ds +

∫ t

0

σ(s,Xs)dWs

Introduce occupation measure mt(A) := E[1A(Xt)1t≤τ ]. The objective writes∫
[0,T ]×Ω

f (t, x)mt(dx) dt.

By Itô formula, for positive, regular test function u,

u(0, x) +

∫
[0,T ]×Ω

(
∂u

∂t
+ µ

∂u

∂x
+

1

2
σ2 ∂

2u

∂x2

)
mt(dx) dt = E[u(τ ∧ T ,Xτ∧T )] ≥ 0.
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MFG of optimal stopping: the relaxed control approach

Relaxed optimal stopping

For a given initial distribution m∗0 , compute

V R(m∗0 ) = sup
m∈A(m∗

0 )

∫ T

0

∫
Ω

f (t, x)mt(dx) dt.

where the set A(m∗0 ) contains all families of positive bounded measures

(mt)0≤t≤T on Ω, satisfying∫
Ω

u(0, x)m∗0 (dx) +

∫ T

0

∫
Ω

{
∂u

∂t
+ Lu

}
mt(dx) dt ≥ 0

for all u ∈ C 1,2([0,T ]× Ω) such that u ≥ 0 and ∂u
∂t + Lu is bounded.

⇒ In other words, −∂m∂t + L∗m ≥ 0 in the sense of distributions.
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MFG of optimal stopping: the relaxed control approach

Link to the strong formulation

• Under standard assumptions (including ellipticity, see Bensoussan-Lions ’82),

V R(δx) = v(0, x), where

v(t, x) = sup
τ∈T ([t,T ])

E
[∫ τ

t

f (s,X (t,x)
s )ds

]
.

• Let m̂ be any solution of the relaxed optimal stopping problem. Then,∫
(t,x)∈[0,T ]×Ω:v(t,x)=0

|f (t, x)|m̂t(dx) = 0

⇒ Agents may stay in the game on {v = 0} as long as f = 0

• For test functions u such that supp u ∈ {(t, x) ∈ [0,T ]× Ω : v(t, x) > 0},∫
Ω

u(0, x)m∗0 (dx) +

∫ T

0

∫
Ω

{
∂u

∂t
+ Lu

}
m̂t(dx) dt = 0.

⇒ m̂ satisfies Fokker-Planck on {v > 0}.
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• Under standard assumptions (including ellipticity, see Bensoussan-Lions ’82),

V R(δx) = v(0, x), where

v(t, x) = sup
τ∈T ([t,T ])

E
[∫ τ

t

f (s,X (t,x)
s )ds

]
.

• Let m̂ be any solution of the relaxed optimal stopping problem. Then,∫
(t,x)∈[0,T ]×Ω:v(t,x)=0

|f (t, x)|m̂t(dx) = 0

⇒ Agents may stay in the game on {v = 0} as long as f = 0

• For test functions u such that supp u ∈ {(t, x) ∈ [0,T ]× Ω : v(t, x) > 0},∫
Ω

u(0, x)m∗0 (dx) +

∫ T

0

∫
Ω

{
∂u

∂t
+ Lu

}
m̂t(dx) dt = 0.

⇒ m̂ satisfies Fokker-Planck on {v > 0}.
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MFG of optimal stopping: the relaxed control approach

Relaxed optimal stopping: existence

Let V be the space of families of positive measures on Ω (mt(dx))0≤t≤T such

that
∫ T

0

∫
Ω
mt(dx) dt <∞.

To each m ∈ V , associate a positive measure on [0,T ]× Ω defined by

µ(dt, dx) := mt(dx) dt, and endow V with the topology of weak convergence.

Lemma (Compactness)

Let m∗0 be a bounded positive measure satisfying∫
Ω

ln{1 + |x |}m∗0 (dx) <∞.

Then the set A(m∗0 ) is weakly compact.
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MFG of optimal stopping: the relaxed control approach

Relaxed optimal stopping: existence

Lemma (Existence for relaxed optimal stopping)

Let m∗0 be a bounded positive measure satisfying the compactness condition.

Assume that sup(t,x)∈[0,T ]×Ω f (t, x) <∞ and that f is of the form

f (t, x) = f̄ (t)g(x)

where g is a difference of two convex functions: g = g+ − g− whose derivatives

g ′+ and g ′− have polynomial growth and f̄ is positive bounded measurable.

Then there exists m∗ ∈ A(m∗0 ) which maximizes the functional

m 7→
∫ T

0

∫
Ω

f (t, x)mt(dx) dt

over all m ∈ A(m∗0 ).
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MFG of optimal stopping: the relaxed control approach

Relaxed optimal stopping MFG

Definition (Nash equilibrium)

Given the initial distribution m∗0 , a family of measures m∗ ∈ A(m∗0 ) is a Nash

equilibrium for the relaxed MFG optimal stopping problem if∫ T

0

∫
Ω

f (t, x ,m∗t )mt(dx) dt ≤
∫ T

0

∫
Ω

f (t, x ,m∗t )m∗t (dx) dt,

for all m ∈ A(m∗0 ).

⇒ the set of Nash equilibria coincides with the set of fixed points of the

set-valued mapping G : A(m∗0 )→ A(m∗0 ) defined by

G (m) = argmaxm̂∈A(m∗
0 )

∫ T

0

∫
Ω

f (t, x ,mt)m̂t(dx) dt,
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MFG of optimal stopping: the relaxed control approach

Optimal stopping MFG: existence

Theorem
Let m∗0 be a bounded positive measure satisfying the compactness condition, and

let the reward function f be of the form

f (t, x ,m) =
n∑

i=1

f̄i

(
t,

∫
Ω

ḡi (x)mt(dx)

)
gi (x),

where gi and ḡi can be written a difference of two convex functions whose

derivatives have polynomial growth, and f̄i is bounded measurable and continuous

with respect to its second argument. Then there exists a Nash equilibrium for the

relaxed MFG problem.

Proof: Fan-Glicksberg fixed point theorem for set-valued mappings.
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MFG of optimal stopping: the relaxed control approach

Optimal stopping MFG: uniqueness

Let

f (t, x ,m) = f̄1

(
t,

∫
Ω

g1(x)mt(dx)

)
g1(x) + f̄2(t)g2(x),

where g1, g2 and f̄1 are as above and f̄2 is bounded measurable.

Assume in addition that f̄ is antimonotone in the sense that for all t ∈ [0,T ] and

x , y ∈ Ω,

(f̄ (t, x)− f̄ (t, y))(x − y) ≤ 0.

Let m and m′ be two equilibria. Then, for almost all t ∈ [0,T ],∫
Ω

g(x)mt(dx) =

∫
Ω

g(x)m′t(dx).

In particular, the value of the representative agent is the same for both equilibria.
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Back to the game of resource sharing
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Back to the game of resource sharing

The limiting game

The reservoir size scales with the number of agents: Z̃t = NZt , where Zt is

deterministic ⇒ each agent has a share Zt which does not depend on N.

As N →∞, the empirical distribution of states mN
t converges to a deterministic

limiting distribution mt .

The proportion ωN
t of the total demand which may be satisfied given the reservoir

level will converge to a deterministic proportion ωt :

ωt =
Zt∫

xmt(dx)
∧ 1.

The problem of individual agent (1st step of MFG strategy):

max
τ∈T ([0,T ])

E
[ ∫ τ

0

e−ρtpωtM
M0
t dt −

∫ τ

0

e−ρt p̂(1− ωt)M
M0
t dt

− e−ρτK +

∫ ∞
τ

e−ρt p̃MM0
t dt

]
.
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Back to the game of resource sharing

The limiting game

In the limit, our game becomes an optimal stopping MFG with reward functions

f̃ (t, x ,m) = x

[
(p + p̂)

(
Zt∫

Ω
xm(x)dx

∧ 1

)
− p̂

]
.

g(t, x) =

{
−K +

p̃x

ρ− µ

}
,

so that

f (t, x ,m) = xe−ρt
[

(p + p̂)

(
Zt∫

Ω
xm(x)dx

∧ 1

)
− p̂ − p̃ρ

ρ− µ

]
+ ρKe−ρt .

This problem satisfies the assumptions for existence and uniqueness
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Back to the game of resource sharing

Numerical illustration

Production gain before switching p = 1

Production gain after switching p̃ = 1.4

Penalty for not meeting the demand p̂ = 2.0

Fixed cost of switching K = 3

Discount factor ρ = 0.2

Demand growth rate µ = 0.1

Demand volatility σ = 0.1

Initial demand level M0 = 0.7

Reservoir capacity Zt = 1− 0.05t

Time (latest possible switching date) T = 10

Number of discretization steps N = 400

Peter Tankov (ENSAE) A mean-field game of resource sharing June 25–29, 2018 29 / 31



Back to the game of resource sharing

Numerical illustration
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Left: total demand and reservoir capacity as function of time. Right: Exercise

frontier. To illustrate convergence, we plot three iterations of the algorithm.
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Back to the game of resource sharing

Conclusion

С днем рожденья, Юра!
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