Utility maximization with proportional transaction cost under model uncertainty

Xiaolu Tan

Ceremade, University of Paris-Dauphine

Joint works with Shuoqing Deng and Xiang Yu

3-7 September, 2018 Conference "Innovative Research in Mathematical Finance" in honour of Yuri Kabanov's 70 birthday @Luminy, France

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

2 Toy Example

- Only transaction cost at time 1
- Transaction cost at both times 0 and 1

3 A general framework

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Financial market : trading, arbitrage, and the FTAP

• Discrete time market framework : $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ is a filtered probability space, *S* is the adapted price process of the underlying assets, *H* is a predictable process as trading strategy process. Assume r = 0. For a self-financing strategy *H*, its P&L is given by

$$(H \circ S)_T := \sum_{t=1}^T H_t \Delta S_t.$$

• No arbitrage condition (NA) :

$$(H \circ S)_T \ge 0$$
, a.s. $\Rightarrow (H \circ S)_T = 0$, a.s.

• Fundamental Theorem of Asset Pricing (FTAP): (i) (NA) is equivalent to the existence of equivalent martingale measure, i.e.

$$\mathcal{M} \ := \ ig\{\mathbb{Q} \sim \mathbb{P}: \ S \ {\sf is a } \ \mathbb{Q} \ {\sf -martingale}ig\} \
eq \emptyset.$$

(ii) The market is complete iff \mathcal{M} is a singleton,

Option pricing

• Complete market : pricing by replication for a derivative option $\xi:\Omega\to\mathbb{R}$:

 $\pi(\xi) = y$ where there is H s.t. $y + (H \circ S)_T = \xi$, a.s.

• Incomplete market : super-replication problem :

 $\pi(\xi) := \inf \left\{ y \in \mathbb{R} : y + (H \circ S)_T \ge \xi, \text{ a.s.} \right\}$

• The superhedging duality :

$$\pi(\xi) = \sup_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}^{\mathbb{Q}}[\xi].$$

Portfolio choice, utility maximization

• A utility maximization problem : given a utility function $U: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$, one solves

$$V_0 := \sup_{H} \mathbb{E}^{\mathbb{P}} \big[U \big(x + (H \circ S)_T \big) \big].$$

• A convex duality result :

$$V_0 = \inf_{y>0} \left(\mathbb{E}^{\mathbb{P}} \left[U^* \left(y \frac{d\mathbb{Q}}{d\mathbb{P}} \right) \right] + xy \right),$$

where

$$U^*(y) := \sup_{x \in \operatorname{dom}(U)} (U(x) - xy).$$

• Existence of optimal trading strategy, optimal dual optimizer?

(D) (A) (A) (A)

Utility indifference price

• Utility maximization problem with initial wealth 0 and random endowment $\xi:\Omega\to\mathbb{R}$:

$$V(0,\xi) := \sup_{H} \mathbb{E}^{\mathbb{P}} \big[U \big(0 + (H \circ S)_{T} + \xi \big) \big].$$

• Utility indifference price : find a constant p such that

$$V(p,0) := \sup_{H} \mathbb{E}^{\mathbb{P}} \left[U(p + (H \circ S)_{T} + 0) \right]$$

= $V(0,\xi)$

• Denote the utility indifference price

$$\pi_u(\xi) := p.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Trading with proportional transaction cost

• Trading with proportional transaction cost (d = 1) :

$$(H \circ S)_T \rightarrow (H \circ S)_T - c \sum_t |H_t - H_{t-1}| S_t.$$

• More general proportional transaction cost ($d \ge 2$) modelling by solvency cone.

• Consistent Price System : (X, \mathbb{Q}) such that X is a \mathbb{Q} -martingale, $\mathbb{Q} \sim \mathbb{P}$, $X_t \in [(1-c)S_t, (1+c)S_t]$.

• FTAP, Duality, existence of the optimal strategy, shadow process, etc. Kabanov and Safarian (2009), etc.

Robust finance

- For a measurable space (Ω, \mathcal{F}) , in place of a fixed probability \mathbb{P} , one considers a family \mathcal{P} of (singular) probability measures.
- The "robust" FTAP and "robust" super-hedging problem :

$$\inf \{y \in \mathbb{R} : y + (H \circ S)_T \ge \xi, \ \mathcal{P}\text{-q.s.} \}.$$

• The "robust" utility maximization problem :

$$\sup_{H} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} [U(x + (H \circ S)_{T})].$$

- Some references in discrete time framework :
 - Nutz (F&S, 2016), existence of the optimal strategy.
 - Blanchard and Carassus (AAP, 2018), existence under more general conditions.
 - Blanchard and Carassus (2017), indifference pricing.
 - Neufeld and Sikic (SICON, 2018), with friction.
 - Bartl (2016), exponential utility function.

Only transaction cost at time 1 Transaction cost at both times 0 and 1

Outline

2 Toy Example

- Only transaction cost at time 1
- Transaction cost at both times 0 and 1

3 A general framework

One-period with transaction cost at time 1

• Let us consider a one-period market (t = 0, 1) with model uncertainty, $U : \Omega \times \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ be a utility function, one consider the utility maximization problem :

$$V := \sup_{H \in \mathbb{R}} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[U \left(H(S_1 - S_0) - |H| c S_1 \right) \right].$$

• Notice that

$$\begin{aligned} H(S_1 - S_0) - |H| cS_1 &= \min_{\theta \in [-1,1]} H(S_1 - S_0) - Hc\theta S_1 \\ &= \min_{\theta \in [-1,1]} H((1 - c\theta)S_1 - S_0). \end{aligned}$$

• Let $X_0 := S_0$ and $X_1(\omega, \theta) := (1 - c\theta)S_1(\omega)$, then

$$V = \sup_{H \in \mathbb{R}} \inf_{\mathbb{P} \in \mathcal{P}} \inf_{\theta \in [-1,1]} \mathbb{E}^{\mathbb{P}} \left[U \left(H(X_1 - X_0) \right) \right].$$

One-period with transaction cost at time 1

• Let
$$\overline{\Omega} := \Omega \times [-1, 1]$$
, $X_0 = S_0$, $X_1(\omega, \theta) := S_1(\omega)(1 + c\theta)$,
 $\overline{\mathcal{P}} := \{\overline{\mathbb{P}} : \overline{\mathbb{P}}|_{\Omega} \in \mathcal{P}\}$, then

$$V = \sup_{\substack{H \in \mathbb{R} \ \overline{\mathbb{P}} \in \mathcal{P} \ \theta \in [-1,1]}} \mathbb{E}^{\mathbb{P}} \left[U \left(H(X_1 - X_0) \right) \right]$$

=
$$\sup_{\substack{H \in \mathbb{R} \ \overline{\mathbb{P}} \in \overline{\mathcal{P}}}} \mathbb{E}^{\overline{\mathbb{P}}} \left[U \left(H(X_1 - X_0) \right) \right].$$

• Market with underlying X : let

۱

$$\overline{\mathcal{Q}}:=\{\overline{\mathbb{Q}}\lll\overline{\mathcal{P}}\ :X \text{ is a }\overline{\mathbb{Q}}\text{-martingale}\},$$

then $(\overline{\mathbb{Q}}, X)$ is a CPS since $X_t \in [(1-c)S_t, (1+c)S_t]$ by construction.

イロト 不得下 イヨト イヨト

One-period with transaction cost at both 0 and 1

• Let us consider the one-period market (t = 0, 1) with proportional transaction cost at both time 0 and 1 :

$$V := \sup_{H \in \mathbb{R}} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[U \left(H(S_1 - S_0) - |H| c S_1 - |H| c S_0 \right) \right].$$

• By the same argument, one introduce and enlarged space $\overline{\Omega} := \Omega \times [-1, 1] \times [-1, 1]$, $X_0 := (1 + c\theta_0)S_0$ and $X_1 := (1 + c\theta_1)S_1$, then

$$V = \sup_{\substack{H \in \mathbb{R}}} \inf_{\mathbb{P} \in \mathcal{P}} \inf_{\substack{\theta_0 \in [-1,1]}} \inf_{\substack{\theta_1 \in [-1,1]}} \mathbb{E}^{\mathbb{P}} [U(H(X_1 - X_0))]$$

$$= \sup_{\substack{H \in \mathbb{R}}} \inf_{\mathbb{P} \in \overline{\mathcal{P}}} \mathbb{E}^{\overline{\mathbb{P}}} [U(H(X_1 - X_0))].$$

• Problem : *H* is a deterministic constant rather than \mathbb{F}^{X} -adapted.

Super-replication under proportional transaction cost

• For the exponential utility function $U(x) := -\exp(-\gamma x)$, one uses MiniMax Theorem :

$$V = \sup_{\substack{H \in \mathbb{R} \\ \theta_0 \in [-1,1]}} \inf_{\substack{P \in \mathcal{P} \\ \theta_1 \in [-1,1]}} \mathbb{E}^{\mathbb{P}} \left[U (H(X_1 - X_0)) \right] \right)$$

=
$$\inf_{\substack{\theta_0 \in [-1,1] \\ H \in \mathbb{R}}} \sup_{\substack{H \in \mathcal{P} \\ \theta_1 \in [-1,1]}} \mathbb{E}^{\mathbb{P}} \left[U (H(X_1 - X_0)) \right] \right),$$

since

$$H \mapsto \log \left(\mathbb{E}^{\mathbb{P}} \left[\exp(-\gamma (H(X_1 - X_0))) \right] \right)$$
 is concave,

and

$$\begin{split} &\log \left(\mathbb{E}^{\mathbb{P}} \big[\exp(-\gamma (H(X_1 - (1 + c\theta_0)S_0))) \big] \right) \\ &= \log \left(\mathbb{E}^{\mathbb{P}} \big[\exp(-\gamma HX_1) \big] + \gamma (1 + c\theta_0)S_0 \right. \end{split}$$

is linear in θ_0 .

э

Outline

2 Toy Example

- Only transaction cost at time 1
- Transaction cost at both times 0 and 1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A general framework of Bouchard & Nutz (2014)

• Let $\Omega_0 := \{\omega_0\}$, Ω_1 be a Polish space, $\Omega_t := \Omega_0 \times \Omega_1^t$, and $\Omega := \Omega_T$, $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ be defined by $\mathcal{F}_t := \mathcal{B}(\Omega_t)$ for all $t \ge 0$. Given t < T and $\omega \in \Omega_t$, the set $\mathcal{P}_t(\omega)$ defines the set of all probability measure on Ω_{t+1} known the path previous path ω , let

 $\mathcal{P} := \big\{ \mathbb{P}_0 \otimes \mathbb{P}_1 \otimes \cdots \otimes \mathbb{P}_{T-1} : \mathbb{P}_t(\cdot) \in \mathcal{P}_t(\cdot) \big\}.$

• Transaction cost modelling with solvency cone $(K_t)_{t\geq 0}$, where $K_t : \Omega \to 2^{\mathbb{R}^d}$ is a \mathcal{F}_t -measurable random set. K_t represents the collection of positions, labelled in units of different d financial assets, that can be turned into non-negative ones (component by component) by performing immediately exchanges between the assets.

• An admissible trading strategy is an \mathbb{F} -adapted process $(\eta_t)_{0 \le t \le T}$ such that $-\eta_t \in K_t$. No-arbitrage condition is equivalent to the existence of consistent price system.

Main result : superhedging duality

• Let $U(x) = -\exp(-\gamma x)$, $\xi : \Omega \to \mathbb{R}^d$ be some derivative option, for $i = 1, \dots, e, \zeta_i : \Omega \to \mathbb{R}^d$ be some liquid options whose price is 0, we consider the (numéraire-based) utility maximization problem :

$$V := \sup_{(\ell,\eta)} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[U \Big(\Big(\xi + \sum_{i=1}^{e} \big(\ell_i \zeta_i - |\ell_i| c_i \mathbf{1}_d \big) + \sum_{t=0}^{T} \eta_t \Big)^d \Big) \Big].$$

Let

$$\begin{split} \mathcal{S}_e &:= & \Big\{ (\mathbb{Q}, Z) \ : \mathbb{Q} \lll \mathcal{P}, \ Z_t \in \mathcal{K}_t^*, \ Z \text{ is a } \mathbb{Q}\text{-martingale s.t.} \\ & \mathbb{E}^{\mathbb{Q}} \big[\zeta_i \cdot Z_T \big] \in [-c_i, c_i], \ i = 1, \cdots, e \Big\}, \end{split}$$

where $K_t^*(\omega) := \{ y \in \mathbb{R}^d : x \cdot y \ge 0 \text{ for all } x \in K_t(\omega) \}.$

(母) (王) (王) (王)

Main result : superhedging duality

 \bullet Main result 1 : under some no-arbitrage condition, one has the existence of the optimal trading strategy and the duality result

$$V = -\exp\Big(-\inf_{(\mathbb{Q},Z)\in\mathcal{S}_e} \big\{\mathbb{E}^{\mathbb{Q}}[\gamma\xi\cdot Z_T] + \mathcal{E}(\mathbb{Q},\mathcal{P})\big\}\Big),\$$

where $\mathcal{E}(\mathbb{Q}, \mathbb{P}) := \mathbb{E}^{\mathbb{P}}\left[\frac{d\mathbb{P}}{d\mathbb{Q}}\log(\frac{d\mathbb{P}}{d\mathbb{Q}})\right]$, $\mathcal{E}(\mathbb{Q}, \mathcal{P}) := \inf_{\mathbb{P}\in\mathcal{P}}\mathcal{E}(\mathbb{Q}, \mathbb{P})$ are entropie functions.

- Extensions in the framework of Bartl (2016).
- Main result 2 : Some consequences of the duality result : convergence and stability of the utility indifference price.

イロト イポト イヨト イヨト