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An introduction

In this talk, there will be few conclusions. Rather, there will be examples and dis-

cussions.

The questions begin with the following fact: The market participants have their

own beliefs about the financial market and they decide their own pricing strategies.

These can be very different from each other without coordination. But in spite

of the variety of individual pricing strategies, the market remains viable (generally

speaking). The strategies of the different market participants should have followed

some consistency principle.

From the viewpoint of modeling, we should have a general theory, which manage

multiple trading systems (each composed of an arbitrage principle, an information

flow, a numéraire, a pricing measure, and others) operating on the same market,

and a corresponding general principle about the market stability. (Such a theory

would be useful either for the participants or for the market regulators.)
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An introduction

Unfortunately, such a theory seems not exist. The classical FTAP does not serve

for this purpose, because the FTAP supposes a very restrictive assumption: all

market participants share a same price process and a same information flow (so

that everyone takes the same trading strategy). We simply mention the market of

O.T.C, which is much heavy than the organized markets, and where the pricing of

O.T.C. contracts can be calculated with various different methods, not necessarily

with a common price process, not necessarily based on the full information flow of

the market.

Notice that, in particular situations, models of multiple trading systems exist and

they yield useful results. But, it lacks a general notion to unify all the particular

situations, and it lacks a general theory to examine the coherence of the multiple

trading systems and the market stability. In this talk, we re-examine some of the

known models, show the corresponding results and try to draw a profile about the

expected theory.
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Differentiated information flows

A first reason of different trading systems is the different level of information of

the market participants. That is because pricing models depend on their filtrations

of information.

Be careful: we not do speak about the insider trading. We speak of the informa-

tion differentiation as a normal property of the market. A typical example is of the

market makers (at least in old systems), who can profit extra information. (That

said, market make seems not an eldorado, because of the obligations imposed to

him.) The question is how a market can exist, despite the information differentia-

tion of the participants.
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Differentiated information flows

Mathematically, such market exists. Consider the market model endowed with

a brownian motion β and an independent random variable τ , whose law has the

density function:

1√
2πt3

e−
1

2t11{t>0}.

Consider the asset process S = eXt, t ≥ 0, where X is the process determined by the

following stochastic differential equation in the filtration G generated by β and by

τ ∈ G0:

(∗)

{
dXt = dβt − 11{t≤τ}

1
1−Xt

(
1− (1−Xt)2

τ−t

)
dt

X0 = 0

We can check that this equation has a semimartingale solution X, which is related

with τ by the relation τ = inf{s ≥ 0 : Xs = 1}. People who operates in the filtration

G on a horizon [0, T ] has an arbitrage strategy : buy S at time 0 if τ ≤ T (recall

that {τ ≤ T} ∈ G0) and sell it at the time τ .
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Differentiated information flows

However, for a market agent who observes only the asset S alone, he will find a

nice Black-Scholes market. This is because X in its natural filtration is a brownian

motion, according to [Jeulin Lemme(3.25)].

With different perceptions of the price process S, the two agents will have two

different trading systems. The model seems well-defined and corresponding to

what we wan. There is nevertheless something strange : the first market agent is

granded an arbitrage opportunity, while the second agent is protected in perfect

hedge in a Black-Scholes market. Who pays then the insider trading ?

Recall that the FTAP can not be applied to exclude this model from the consid-

eration (under the assumption that arbitrage can exist in a normal market). One

needs new results to qualify this model.
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Differentiated information flows

We present now a second study of market model with different information flows.

(It is issued from a common work with Fontana and Jeanblanc.) On a stochastic

basis, consider a filtration F, a honest time in F and the progressive enlargement

G of F with τ . Let Z be the Azema supermartingale of τ in F and let ν be the

first zero of Z. Suppose that the filtration F is continuous, complete and satisfies

NFLVR = NA+NA1. We have the following results.

i. NA1 holds in G on the time horizon [0, τ ], but NA fails.

ii. For any F-stopping time σ, NFLVR holds in G on the time horizon [0, τ ∧ σ], if
and only if Q[σ ≥ ν] = 0. (We had not at all expected such a result. In partic-
ular, when ν =∞ (which is not absurd), no insider trading will be possible.)

iii. For all ε > 0, NA1 holds in G on the time horizon [τ + ε,∞], but NA fails.

iv NA1 fails to hold in G on the time horizon [0,∞).

Roughly speaking, "NA fails" means some arbitrage gains possible, while "NA1

fails" means a unbounded arbitrage profit.
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Differentiated information flows

This is one of the successful models which modelize the normal arbitrages in the

market. This model shows that, in general, the market can be composed with

agants working in different information flow (together with their potential arbitrage

opportunities), and remains viable. The arbitrage profit of the insider remains

generally limited, except he successes to operate at exactly the instance τ (fairly

impossible).

Notice that, if this model is taken for the market regulation, one will conclude

that, to prevent the market instability from a default at τ , it is enough to stop the

trading for a short while after the default. (That seems already a custom, and we

have now a theory to approve it.)

Consider again the question of market maker, for whom the arbitrage opportunities

yield only limited profits. In the light of the above example, the NA1 would be a

sufficient framework for a general theory on the system of market makers.
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Pricing with changes of probability measure

It is not surprising to have different trading systems, because of different infor-

mation flows. But, in default pricing, multiple trading systems exist for quite a

different reason.

Let us consider a market model (Ω,G,Q) defaultable at τ a totally inaccessible

G stopping time with an intensity process h. In applying the standardized pricing

formula (P being a martingale measure), the price process of a defaultable security

at the maturity T > 0 (under suitable integrability condition) is given by:

St = E
[
e
−
∫ τ

t
rvdvRτ11{t<τ≤T} + e

−
∫ T

t
rvdvξ11{T<τ} |Gt

]
= E

[∫ T
t
e
−
∫ u

t
rvdvRuhu11{u≤τ}du+ e

−
∫ T

t
rvdvξ11{T<τ} |Gt

]
, t < T,

(1)

where r denotes the interest rate, ξ denotes the promised payoff at the maturity,

and R denotes the recovery rule at default.
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Pricing with changes of probability measure

However, it is a very poor formula, as indicated by Duffie-Schroder-Skiadas, be-

cause the formula depends explicitly on the default time τ (which can not be cali-

brated from the market data before the default), while a desirable formula should

be a functional of the only market fundamental quantities (the dividend process,

the interest rate process, the default intensity process, etc.) that a market partici-

pant can obtain from the market data before the default event.

Duffie-Schroder-Skiadas propose a new formula: Let

Vt = E
[∫ T

t

e
−
∫ u

t
rv+hvdvRuhudu+ e

−
∫ T

t
rv+hvdvξ |Gt

]
, t < T. (2)

Suppose ∆τV = 0 on {τ < T}. Then, the price process S coincides with V on

[0, τ ∧ T ) (V being then a pre-default value process of S).
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Pricing with changes of probability measure

The formula (2) is very good. It has the required form to be a suitable formula in

default pricing and it is a first proof that default pricing is simply the normal pric-

ing, with a new divident Rh and with an increase of the interest rate by h points.

However, the condition ∆τV = 0 has no economical meaning and is difficult to

verify. Collin.Dufresne-Goldstein-Hugonnier propose then a different computation.

The process

Mt = 11{t<τ}e
∫ t

0
hvdv, t ≥ 0.

is in general a local martingale under Q. Suppose it a true martingale and define a

new probability measure Q = MT .Q on GT . Then,

St = E
[∫ T

t
e
−
∫ u

t
rvdvRuhu11{u≤τ}du+ e

−
∫ T

t
rvdvξ11{T<τ} |Gt

]
= 11{t<τ}

1
Mt

E
[
(
∫ T
t
e
−
∫ u

t
rv+hvdvRuhudu+ e

−
∫ T

t
rv+hvdvξ)MT |Gt

]
= 11{t<τ}E

[∫ T
t
e
−
∫ u

t
rv+hvdvRuhudu+ e

−
∫ T

t
rv+hvdvξ |Gt

]
, t < T.

(3)

We have here all the virtue of the first formula without the condition ∆τV = 0.
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Pricing with changes of probability measure

Collin.Dufresne-Goldstein-Hugonnier’s computation has inspired from Schon-

bucher’s works with survival measure. Schonbucher has studied if one can use

defaultable security as numéraire and if in this case the duality between numéraire

and pricing measure remains again valid. His conclude is affirmative. For example,

to price defaultable zero-coupon bond, one can take the price process B of the

unit defaultable zero-coupon bond as the numéraire and write the other default-

able zero-coupon bond prices X in B-units as follows:

Xt = E[e−
∫ T

0
rvdvξ11{T<τ} | Gt] = e

−
∫ t

0
rvdvBtE[e−

∫ t

0
rvdvξ | Gt], (4)

where E denotes the expectation under the probability measure P defined by the

density function 1
B0

e
−
∫ T

0
rvdv11{T<τ} with respect to the pricing measure Q, called the

survival measure.
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Pricing consistency of defaultable securities

Four points: *It is an example with multiple trading systems. *It is an example

where the different systems yield the same price. *The trading systems are estab-

lished with changes of probability measure. *The best pricing formula is made in

term of singular numéraires and of non equivalent probability changes. It is a good

exemple to explain the necessity to accept the "exotic" trading system.

There seems be some fuzziness in the literature around whether the use of singular

numéraires and of non equivalent probability change should be considered as exotic

or as standard. The recent development of default pricing seems be in favor of the

second option. There exist attempts such as Fisher-Pulido-Ruf (with Martingale

valuation operator) to officialize the use of singular numéraires, with some ad-

vantages and drawbacks (not adapted to our idea of a theory on multiple trading

systems).
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Another definition of pricing measure

We prefer an approach based on the notion of pricing measure (as Schonbucher

has suggested). We need to settle down the singularity. We recall a result of Ku-

nita about pair of probability measures. For any probability measure P, there exists

a stopping time T = νQ/P such that, for any t ≥ 0, on Gt ∩ {t < T}, the real world

probability measure Q is absolutely continuous with respect to P, while P[t ≥ T ] = 0

so that Q is completely singular to P on Gt ∩ {t ≥ T}. According to this result, any

process defined under P will be well-defined under Q over the time horizon [0, T [.

Definition 1 Let X be a given gain-and-loss process (the arbitrage process). Let

N ≥ 0 be a given numéraire. Let R be a stopping time. A probability measure P is

call a pricing measure for X in N-numéraire on the time horizon [0, R[, if νQ/P ≥ R

and if the value in N-numéraire of X is a local martingale under P (so that it is a

martingale measure for X
N

).
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Another definition of pricing measure

This notion unifies the previous examples. For instance, the survival measure P of

Schonbucher is a pricing measure with

. the arbitrage process is Xt = E
[
e
−
∫ T

t
rvdvξ11{T<τ} |Gt

]
;

. the numraire is Nt = Bte

∫ t

0
rvdv;

. the explosion time νG,Q/P = inf{s ≥ 0 : Bs = 0};

. R = τ ≤ νG,Q/P (because Bt > 0 on {t < τ}).
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Another definition of pricing measure

As for the measure Q of Collin.Dufresne-Goldstein-Hugonnier, it is a pricing mea-

sure with

. the arbitrage process is Xt = St + e

∫ t

0
rv+hvdv

∫ t
0 e
−
∫ u

0
rv+hvdvRuhudu;

. the numraire is Nt = e

∫ t

0
rv+hvdv;

. the explosion time νG,Q/Q = τ ;

. R = τ = νG,Q/Q.
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Another definition of pricing measure

We believe that the approach with pricing measure would be better suitable to

the study of multiple trading systems. There is a big advantage of the approach

with pricing measure: one can then make "the computation in law". A typical

example of "the computation in law" is the resolution of a stochastic differential

equation by a PDE. If we want to apply formula (4) to price default, we need

not to go back under the original probability measure Q. It is enough to know

the law of ξ under the survival measure P, which may very be possible. (Consider

the situation where the model has a Markovian factor process determined by a

stochastic differential equation with respect to a Brownian motion.)
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The XVA computation

In the previous example, there is one only filtration. We present now an default

pricing with two filtrations (issued from works with Crepey). The two different

filtrations will yield two trading systems. But we will show that both the trading

systems yield the same price process, just like in the previous example.
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The XVA computation

On a stochastic basis we consider two filtrations F and G. Let τ be a G stopping

time. We suppose the two following conditions.

Definition 2 condition (B). There exists a sub-filtration F ⊂ G such that τ is not

an F stopping time and

P(F) ∩ (0, τ ] = P(G) ∩ (0, τ ].

Definition 3 Condition (A). Under the condition (B), there exists a probability

measure P, equivalent to Q on FT , such that, for any (F,P) local martingale M ,

M τ− is a (G,Q) local martingale on [0, T ].

Lemma 4 The condition (B) implies O(F) ∩ [0, τ) = O(G) ∩ [0, τ).

The relationships P(G)→ P(F) and O(G)→ O(F) will be called "reduction".
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The XVA computation

We consider a XVA computation in G. (Recall Crepey’s talk.) Let P be the proba-

bility in the condition (A) (called an invariance probability measure)

Theorem 5 (A gentle version) Under the condition (B) and the condition (A),

the pre-default value process of the solution of the XVA equation in G under Q

coincides with the solution of the same (modulo reduction) XVA equation in F

under P without default.

It is an important result. This result reassures people (approving some practical

custums) in their computation of default pricing, who have the feeling to not have

all information about defaults.
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The XVA computation

Consider another point. One knows that pricing measure may not be unique.

One know how to change the numéraire and the pricing measure. But, when

one speaks about this non uniqueness, one does not think that the non unique-

ness can also come from the change of the filtration. The invariance probability

measure P of condition (A) is a pricing measure in the sense of Definition 1. One

also remembers the survival measure as pricing measure (of Schonbucher and of

Collin.Dufresne-Goldstein-Hugonnier). We have the following unexpected result.

Let Z denote the Azéma supermartingale in F of τ .

Theorem 6 Suppose that ZT > 0. Suppose that the survival measure exists.

Then, the restriction of the survival measure on FT is the invariance probability

measure P.

This theorem shows that Definition 1 is a good definition, because it exhibits a big

coherence in default models.
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From local martingale deflator to pricing measure

The notion of pricing measure has shown its utility in the previous examples. On

the other hand, a lot of market models are founded on the NA1 principle (linked

with deflators). We ask naturally if we can also consider a deflator as pricing mea-

sure (so that we can make "the computation in law"). The answer to that ques-

tion is not straightforward. We have to reconsider the very basic notion of market

model.

"Definition" A (mathematical) market is an isomorphical equivalence class of

stochastic basis with arbitrage processes and pricing formulas. Each member of

the equivalence class will be called a market model.

With this in mind, we would be able to prove the following result.

"Theorem" For any market with a local martingale deflator, it is imbedded into a

market model which has a pricing measure.
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A conclusion

To have a general theory dealing with multiple trading systems, we need a tractable

representation of the trading systems. The new definition of pricing measure en-

velop what are necessary for pricing. The previous examples seem show that the

pricing measure constitutes a good candidat to represent the various trading sys-

tems. A future theory would be, therefore, a theory of pricing measures.

We have already something to do: achieve the theorem in quotes, or define a no-

tion of system coherence in the model of Theorem 6.
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Thank you very much


