A. SHIRYAEV, D.LISOVSKIJ

Steklov Mathematical Institute & Moscow State University

On SEQUENTIAL TESTING of TWO STATISTICAL HYPOTHESES

e-mail: albertsh@mi.ras.ru

1. Suppose that we have two hypotheses

$$H_0: \quad dX_t = dB_t, \qquad X_0 = 0,$$

$$H_1: \quad dX_t = \theta_t dt + dB_t, \quad X_0 = 0,$$

where $(\theta_t)_{t\geq 0}$ is interpreted as a signal and the Brownian motion $(B_t)_{t>0}$ is interpreted as noise.

We shall consider the sequential scheme $\Delta = \Delta(\tau, \delta)$, where $\tau = \tau(X)$ is a stopping time and $\delta = \delta(X)$ is an \mathcal{F}_{τ} -measurable function taking two values 0 (if H_0 is true) and 1 (if H_1 is true).

In the book "Statistics of random processes" (R. Liptser and A. Shiryaev) there is the following theorem (Theorem 17.8).

In the class

$$\Delta = \Delta(\tau, \delta) \in \Delta_{\alpha, \beta},$$

where $\Delta_{\alpha,\beta}$ is a class of (τ,δ) such that the errors of the first and second kind satisfies

$$P_1(\delta(X) = 0) \le \alpha, \quad P_0(\delta(X) = 1) \le \beta$$

(α and β are given constants, $\alpha + \beta < 1$)

there exists a scheme $\tilde{\Delta} = \Delta(\tilde{\tau}, \tilde{\delta}) \in \Delta_{\alpha,\beta}$ which is optimal in the sense that for any other scheme $\Delta = \Delta(\tau, \delta) \in \Delta_{\alpha,\beta}$

$$\mathsf{E}_{0} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{0} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

$$\mathsf{E}_{1} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{1} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

$$\mathsf{E}_{1} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{1} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

$$\mathsf{E}_{1} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{1} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

$$\mathsf{E}_{2} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{3} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

$$\mathsf{E}_{3} \int_{0}^{\tilde{\tau}(X)} m_{t}^{2}(X) \, ds \leq \mathsf{E}_{4} \int_{0}^{\tau(X)} m_{t}^{2}(X) \, dt,$$

(we assume that $\theta = (\theta_t)_{t\geq 0}$ and $B = (B_t)_{t\geq 0}$ are independent and $\mathsf{E}_1|\theta_t|<\infty$, $t<\infty$).

In particular, if $\theta_t = \lambda t$, $\lambda \neq 0$, then we have a classical Wald result that there exists a test $(\tilde{\tau}, \tilde{\delta}) \in \Delta_{\alpha,\beta}$ such that

$$\mathsf{E}_1 \tilde{\tau} \le \mathsf{E}_1 \tau, \quad \mathsf{E}_0 \tilde{\tau} \le \mathsf{E}_0 \tau$$

for any test $(\tau, \delta) \in \Delta_{\alpha, \beta}$.

Optimal test $(\tilde{\tau}, \tilde{\delta})$ has a form

$$\tilde{\tau}(X) = \inf\{t : \lambda_t(X) \notin (A, B)\}, \quad \tilde{\delta}(X) = \begin{cases} 1, & \lambda_{\tilde{\tau}(X)} \ge B, \\ 0, & \lambda_{\tilde{\tau}(X)} \le A, \end{cases}$$

where
$$A = \ln \frac{\alpha}{1 - \beta}$$
, $B = \ln \frac{1 - \alpha}{\beta}$, and

$$\lambda_t(X) = \int_0^t m_s(X) \, dX_s - \frac{1}{2} \int_0^t m_s^2(X) \, ds.$$

In this case

$$\mathsf{E}_0 \int_0^{\tilde{\tau}(X)} m_t^2(X) \, ds = 2\omega(\beta,\alpha),$$

$$\mathsf{E}_1 \int_0^{\tilde{\tau}(X)} m_t^2(X) \, ds = 2\omega(\alpha,\beta),$$
 where $\omega(x,y) = (1-x) \ln \frac{1-x}{y} + x \ln \frac{x}{1-y}.$

For Bayesian test of two hypotheses $(\theta_t = \lambda t)$ with $\pi = 1/2$ the answer will be the same.

It is interesting that the Wald test has a form

$$\tilde{\tau} = \inf\{t \geq 0 \colon \pi_t \not\in (A, B)\}.$$

Now we will consider a problem of testing two Wald's hypotheses for $\underline{\text{FINITE}}$ time of observation [0,T]. In this case optimal test (in Bayesian setting) will have the form

$$\tilde{\tau}_T = \inf\{t \leq T : \pi_t \not\in (g_0(t), g_1(t))\}.$$

Boundaries are complicated and in principle can be found as solutions to a Stefan problem. Now we remark only that behavior of the boundaries near $\overline{\text{TERMINAL}}$ point T is the following:

$$\lim_{t \uparrow T} \frac{dg_0(t)}{dt} = +\infty, \qquad \lim_{t \uparrow T} \frac{dg_1(t)}{dt} = -\infty$$

(S. Gorban, Russian Math. Surveys, 70:4 (2016)).

2. Now we consider the following two Markov-Gaussian processes:

$$H_0: dX_t = -\gamma X_t dt + dB_t, \quad X_0 \sim \mathcal{N}\left(0, \frac{1}{2\gamma}\right),$$

$$\mathsf{H}_1$$
: $dX_t = -\theta X_t dt + dB_t$, $X_0 \sim \mathcal{N}\left(0, \frac{1}{2\theta}\right)$,

where $\gamma > 0$, $\theta > 0$, and $\gamma > \theta$. It means that we consider two stationary Ornstein–Uhlenbeck processes and we want to test two hypotheses H_0 and H_1 .

As above, by $\Delta_{\alpha,\beta}$ we will denote a class $\Delta = \Delta(\tau,\delta)$ such that $P_1(\delta(X) = 0) \le \alpha$, $P_0(\delta(X) = 1) \le \beta$, $0 < \alpha + \beta < 1$, and

$$\mathsf{E}_0 \int_0^{\tau(X)} X_s^2 \, ds < \infty, \quad \mathsf{E}_1 \int_0^{\tau(X)} X_s^2 \, ds < \infty.$$

The central results are the following two theorems.

THEOREM 1. In the class $\Delta = \Delta_{\alpha,\beta}$ there exists the asymptotically optimal test $(\tilde{\tau}, \tilde{\delta})$ such that for any test $(\tau, \delta) \in \Delta_{\alpha,\beta}$

$$E_{0} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} ds \leq E_{0} \int_{0}^{\tau(X)} X_{s}^{2} ds + O(\beta \ln(\alpha \beta)),$$

$$E_{1} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} ds \leq E_{1} \int_{0}^{\tau(X)} X_{s}^{2} ds + O\left(\alpha \ln(\alpha \beta) + \beta^{\theta/(\gamma - \theta)} \sqrt{\ln \frac{1}{\beta}}\right)$$

as $\alpha \to 0$, $\beta \to 0$. The plan $(\tilde{\tau}, \tilde{\delta})$ is defined by

$$\tilde{\tau}(X) = \inf\{t \ge 0 : \lambda_t(X) \notin (A, B)\}, \quad \tilde{\delta}(X) = \begin{cases} 1, & \lambda_{\tilde{\tau}(X)} > B, \\ 0, & \lambda_{\tilde{\tau}(X)} \le A, \end{cases}$$
 (*)

where $A = \ln \alpha$, $B = -\ln \beta$, and

$$\lambda_t(X) = \ln \sqrt{\frac{\theta}{\gamma}} + \frac{\gamma - \theta}{2} (X_0^2 + X_t^2 - t) + \frac{\gamma^2 - \theta^2}{2} \int_0^t X_s^2 \, ds.$$

THEOREM 2. In the class $\Delta = \Delta_{\alpha,\beta}$ there exists the asymptotically optimal test $(\tilde{\tau}, \tilde{\delta})$ such that if

$$\gamma \to \infty$$
, $\theta \to \infty$, but $\gamma - \theta = c > 0$,

then for any test $(\tau, \delta) \in \Delta_{\alpha, \beta}$

$$E_{0} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} ds \leq E_{0} \int_{0}^{\tau(X)} X_{s}^{2} ds + O\left(\gamma^{-5/2} \left(\frac{\beta}{1-\alpha}\right)^{\gamma/c}\right),$$

$$E_{1} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} ds \leq E_{1} \int_{0}^{\tau(X)} X_{s}^{2} ds + O\left(\gamma^{-5/2} \left(\frac{\beta}{1-\alpha}\right)^{\gamma/c}\right),$$

where $0 < \alpha + \beta < 1$, and the plan $(\tilde{\tau}, \tilde{\delta})$ is defined by (*) with

$$A = \ln \frac{\alpha}{1 - \beta}, \quad B = \ln \frac{1 - \alpha}{\beta}.$$

3. The proof of these theorems is based on Lemmas 1-5.

LEMMA 1. The following inequalities hold:

$$\begin{aligned} &\mathsf{E}_0 \, \mathsf{In} \, \frac{d\mathsf{P}_0}{d\mathsf{P}_1}(\tau,X) \geq \omega(\beta,\alpha), \\ &\mathsf{E}_1 \, \mathsf{In} \, \frac{d\mathsf{P}_1}{d\mathsf{P}_0}(\tau,X) \geq \omega(\alpha,\beta), \end{aligned}$$

where

$$\omega(x,y) = (1-x) \ln \frac{1-x}{y} + x \ln \frac{x}{1-y}.$$

LEMMA 2. For the plan $(\tilde{\tau}, \tilde{\delta})$ defined in (*), where A and B are arbitrary but such that $A \leq \ln \sqrt{\theta/\gamma} \leq B$, we have

$$\mathsf{E}_0 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds = G_0(\theta, \gamma, A, B), \qquad \mathsf{E}_1 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds = G_1(\theta, \gamma, A, B),$$

where

$$G_{1}(\theta, \gamma, A, B) = \frac{2}{(\gamma - \theta)^{2}} \left[-\frac{A - B}{e^{A} - e^{B}} f(\gamma, B) - \left(\ln \sqrt{\frac{\theta}{\gamma}} + \frac{\gamma - \theta}{2\gamma} + \frac{Be^{B} - Ae^{A}}{e^{A} - e^{B}} \right) f(\theta, B) - \sqrt{\frac{(\gamma - \theta)(B - \ln \sqrt{\theta/\gamma})}{\pi \theta}} \exp \left\{ -\frac{\theta(B - \ln \sqrt{\theta/\gamma})}{\gamma - \theta} \right\} \right]$$

$$f(x, y) = \text{Erf}\left(\sqrt{\frac{x(y - \ln \sqrt{\theta/\gamma})}{\gamma - \theta}} \right), \qquad \text{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-v^{2}/2} dv$$

and the expression for $G_0(\theta, \gamma, A, B)$ is similar.

PROOF of Lemma 2 is based on Itô's formula for X_t^2 . For example, with respect to P_1

$$X_t^2 = X_0^2 + t - 2\theta \int_0^t X_s^2 ds + \int_0^t X_s dB_s,$$

whence for

$$\lambda_t(X) = \ln \frac{dP_1}{dP_0}(t, X) = \ln \sqrt{\frac{\theta}{\gamma}} + \frac{\gamma - \theta}{2}(X_0^2 + X_t^2 - t) + \frac{\gamma^2 - \theta^2}{2} \int_0^t X_s^2 ds$$

we obtain that $(P_1-a.s.)$

$$\lambda_t(X) = \ln \sqrt{\frac{\theta}{\gamma}} + (\gamma - \theta) \left(X_0^2 + \int_0^t X_s^2 dB_s \right) + \frac{(\gamma - \theta)^2}{2} \int_0^t X_s^2 ds.$$

Denote by g = g(x) the solution to the differential equation

$$g''(x) - g'(x) = 1,$$
 $g(A) = 0,$ $g(B) = 0.$

Then $g(x)=(e^A-e^B)^{-1}\big[Be^A-Ae^B+(A-B)e^x-(e^A-e^B)x\big]$, and applying Itô's formulas, we find

$$\mathsf{E}_{1}g(\lambda_{\tilde{\tau}(X)}(X)) = \mathsf{E}_{1}g(\lambda_{0}(X)) + \frac{(\gamma - \theta)^{2}}{2} \mathsf{E}_{1} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} \, ds.$$

But

$$\lambda_{\tilde{\tau}(X)}(X) = \begin{cases} A \text{ or } B, & \lambda_0 \in [A, B], \\ \lambda_0(X) \equiv \ln \sqrt{\theta/\gamma} + (\gamma - \theta)X_0^2, & \lambda_0 \notin [A, B]. \end{cases}$$

So, for case $A \leq \ln \sqrt{\theta/\gamma} \leq B$ we have

$$\frac{(\gamma - \theta)^2}{2} \mathsf{E}_1 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds = \mathsf{E}_1 \Big(-g(\lambda_0(X)) I \Big\{ \lambda_0(X) \in \Big[\mathsf{In} \sqrt{\frac{\theta}{\gamma}}, B \Big] \Big\} \Big).$$

Integration of the right-hand side leads to the given formulas.

The following Lemma 3 gives, for the plan $(\tilde{\tau}, \tilde{\delta})$, the structure of the errors $P_1(\tilde{\delta}(X) = 0)$ and $P_0(\tilde{\delta}(X) = 1)$.

LEMMA 3. (a) If $B \ge A \ge \ln \sqrt{\theta/\gamma}$, then

$$P_{1}(\tilde{\delta}(X) = 0) = f(\theta, A) + \frac{e^{A}}{e^{A} - e^{B}} \Big[e^{B}(f(\gamma, A) - f(\gamma, B)) - (f(\theta, A) - f(\theta, B)) \Big],$$

$$P_{0}(\tilde{\delta}(X) = 1) = 1 - f(\gamma, B) + \frac{1}{e^{A} - e^{B}} \Big[e^{A}(f(\gamma, B) - f(\gamma, A)) - (f(\theta, A) - f(\theta, B)) \Big].$$

(b) If $A \leq \ln \sqrt{\theta/\gamma} \leq B$, then

$$P_{1}(\tilde{\delta}(X) = 0) = \frac{e^{A}}{e^{A} - e^{B}} [f(\theta, B) - e^{B} f(\gamma, B)],$$

$$P_{0}(\tilde{\delta}(X) = 1) = 1 - f(\gamma, B) + \frac{1}{e^{A} - e^{B}} [e^{A} f(\gamma, B) - f(\theta, B)].$$

Again, the proof is based on Itô's formula.

We observe that

$$f(x,t) = 1 - c(x) y^{-1/2} \exp\left\{-\frac{xy}{\gamma - \theta}\right\} (1 + O(y^{-1})), \quad x > 0, \ y \to \infty,$$
 with
$$c(x) = \sqrt{\frac{\gamma - \theta}{\pi x}} \left(-\frac{\theta}{\gamma}\right)^{\theta/(2(\gamma - \theta))};$$

$$f(\theta, y) = 1 - \frac{\sqrt{c} e^{y-1/2}}{\sqrt{\pi y}} \gamma^{-1/2} \exp\left\{-\frac{\gamma y}{c}\right\} (1 + O(\gamma^{-1})),$$

$$\theta \to \infty, \quad \gamma - \theta = c;$$

$$f(\gamma, y) = 1 - \frac{\sqrt{c} e^{-1/2}}{\sqrt{\pi y}} \gamma^{-1/2} \exp\left\{-\frac{\gamma y}{c}\right\} (1 + O(\gamma^{-1})),$$
$$\gamma \to \infty, \quad \gamma - \theta = c.$$

LEMMA 4. For the plan $\tilde{\Delta} = (\tilde{\tau}, \tilde{\delta})$ we have as $A \to -\infty$, $B \to \infty$:

$$\begin{split} \frac{(\gamma-\theta)^2}{2} \mathsf{E}_0 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds &= \ln \sqrt{\frac{\theta}{\gamma}} + \frac{\gamma-\theta}{2\gamma} - A \Big[1 + O\Big(\Big(1 - \frac{B}{A} \Big) e^{-B} \Big) \Big]; \\ \frac{(\gamma-\theta)^2}{2} \mathsf{E}_1 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds &= -\ln \sqrt{\frac{\theta}{\gamma}} - \frac{\gamma-\theta}{2\theta} \\ &+ B \Big[1 + O\Big(\Big(1 - \frac{A}{B} \Big) e^A + B^{-1/2} \exp\Big\{ - \frac{\theta B}{\gamma-\theta} \Big\} \Big) \Big]. \end{split}$$

(The proof follows from Lemma 2 and above expressions for functions $f(\theta, B)$ and $f(\gamma, B)$.)

LEMMA 5. If $A \to -\infty$, $B \to \infty$, then

$$P_{1}(\tilde{\delta}(X) = 0) = e^{A}(1 + O(e^{-B})),$$

$$P_{0}(\tilde{\delta}(X) = 1) = e^{-B} \left[1 + O\left(e^{A} + B^{-1/2} \exp\left\{-\frac{\theta B}{\gamma - \theta}\right\}\right) \right].$$

The following lemma deals with the case when $\gamma, \theta \to \infty$, $\gamma - \theta = c$.

LEMMA 6. Under the assumptions $\gamma, \theta \to \infty$, $\gamma - \theta = c$ we have:

$$\begin{split} \frac{(\gamma - \theta)^2}{2} \mathsf{E}_0 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds &= \ln \sqrt{\frac{\theta}{\gamma}} + \frac{\gamma - \theta}{2\gamma} \\ &+ \frac{A e^B - B e^A - (A - B)}{e^A - e^B} \Big[1 + O \Big(\gamma^{-5/2} e^{-\gamma \theta/c} \Big) \Big] \\ \frac{(\gamma - \theta)^2}{2} \mathsf{E}_1 \int_0^{\tilde{\tau}(X)} X_s^2 \, ds &= -\ln \sqrt{\frac{\theta}{\gamma}} - \frac{\gamma - \theta}{2\theta} \\ &- \frac{(A - B) e^{A + B} + B e^B - A e^A}{e^A - e^B} \Big[1 + O \Big(\gamma^{-5/2} e^{-\gamma B/c} \Big) \Big], \end{split}$$

and

$$P_{0}(\tilde{\delta}(X) = 1) = \frac{e^{A} - 1}{e^{A} - e^{B}} \left[1 + O\left(\gamma^{-1/2}e^{-\gamma B/c}\right) \right],$$

$$P_{1}(\tilde{\delta}(X) = 0) = \frac{e^{A}(1 - e^{B})}{e^{A} - e^{B}} \left[1 + O\left(\gamma^{-3/2}e^{-\gamma B/c}\right) \right].$$

PROOF of THEOREMS 1 and 2. If we take $A = \ln \alpha$, $B = -\ln \beta$, then for the plan $(\tilde{\tau}, \tilde{\delta})$ with

$$\tilde{\tau}(X) = \inf\{t \ge 0 : \lambda_t(X) \notin (A, B)\}, \quad \tilde{\delta}(X) = \begin{cases} 1, & \lambda_{\tilde{\tau}(X)} \ge B, \\ 0, & \lambda_{\tilde{\tau}(X)} \le A, \end{cases}$$

where $\lambda_t(X)=\ln\sqrt{\frac{\theta}{\gamma}}+\frac{\gamma-\theta}{2}(X_0^2+X_t^2-t)+\frac{\gamma^2-\theta^2}{2}\int_0^t X_s^2\,ds,$ we obtain from Lemma 5 that

$$P_0(\tilde{\delta}(X) = 1) = \beta \left[1 + O\left(\alpha + (-\ln \beta)^{-1/2} \beta^{\theta/(\gamma - \theta)}\right) \right],$$

$$P_1(\tilde{\delta}(X) = 0) = \alpha (1 + O(\beta)).$$

Thus $\tilde{\Delta} = (\tilde{\tau}, \tilde{\delta}) \in \Delta_{\alpha, \beta} \quad (\alpha, \beta \to 0).$

Lemma 1 says that

$$\mathsf{E}_0 \ln \frac{d\mathsf{P}_0}{d\mathsf{P}_1}(\tau, X) \ge \beta \ln \frac{\beta}{1 - \alpha} + (1 - \beta) \ln \frac{1 - \beta}{\alpha}. \tag{**}$$

If we denote $\ln \frac{dP_0}{dP_1}(\tau, X)$ by $\lambda_{\tau}(X)$, then

$$\lambda_{\tau}(X) = \ln \sqrt{\frac{\theta}{\gamma}} + (\gamma - \theta) \left(X_0^2 + \int_0^{\tau} X_s^2 dB_s \right) + \frac{(\gamma - \theta)^2}{2} \int_0^{\tau} X_s^2 ds. \quad (***)$$

Using (**) and (***) we may get for $\mathsf{E}_0 \int_0^\tau X_s^2 \, ds$ the bound from below via $\alpha, \beta, \theta, \gamma$. But the previous lemmas give also the expression of $\mathsf{E}_0 \int_0^{\tilde{\tau}} X_s^2 \, ds$ via $\alpha, \beta, \theta, \gamma$. This provides a possibility to obtain

$$\mathsf{E}_{0} \int_{0}^{\tau(X)} X_{s}^{2} \, ds \ge \mathsf{E}_{0} \int_{0}^{\tilde{\tau}(X)} X_{s}^{2} \, ds + \begin{cases} O(\beta \ln(\alpha \beta)), & \alpha, \beta \to 0; \\ O\left(\gamma^{-5/2} \left(\frac{\beta}{1-\alpha}\right)^{\gamma/c}\right), & \gamma, \theta \to \infty, & \gamma - \theta = c. \end{cases}$$

Similar inequality can be obtained under the measure P_1 .