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1. Suppose that we have two hypotheses
Hoi dXy = dBt, XO = 0,
Hi: dXy = 0y dt + dBy, Xg =0,

where (0;);>0 is interpreted as a signal and the Brownian motion
(Bt)¢>0 is interpreted as noise.

We shall consider the sequential scheme A = A(r,§), where 7 =
7(X) is a stopping time and § = §(X) is an Fr-measurable function
taking two values O (if Hg is true) and 1 (if Hy is true).

In the book “Statistics of random processes’ (R. Liptser and A. Shiryaev)
there is the following theorem (Theorem 17.8).




In the class
A = A(Ta 5) S Aa,ﬁa

where A, g is a class of (7,6) such that the
errors of the first and second kind satisfies
P1(6(X) =0) <a, Po(é(X)=1)<p
(o and @ are given constants, a+ 3 < 1)

there exists a scheme A = A(F,4) € A, 3 Which is optimal in the
sense that for any other scheme A = A(7,6) € Ay 3

7(X) 7(X)
o [ mP(X)ds<Eo [ mP(X)dt,

7(X) 7(X)
L[ mR(0ds < Ey [ mB(X) dt,

(we assume that 0 = (0;);>0 and B = (B;);>0 are independent and
E1|0: < 00, t < 00).

my(X) 1= E1(0¢| 7*) (P-a.s.)




In particular, if 8; = Xt, A = 0, then we have a classical Wald result
that there exists a test (7,4) € A, g such that

Ei7 <EqT, EoT < Egpr

for any test (7,6) € A, 3.

Optimal test (7,0) has a form

7(X) = inf{t: M(X) & (A, B)}, 5<X):{o Ar(x) < A

where A = In B =1n a, and

A(X) = /Ot ms(X) dXs — %/Ot m2(X) ds,




In this case

T(X
Eo/( ' m2(X) ds = 20(8, 0),

0
7(X)
E 2(X)ds =2
L[ mP(X) ds = 20(a, ),
wherew(w,y):(l—x)lnl_x—ka;ln T
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For Bayesian test of two hypotheses (6; = At) with # = 1/2 the
answer will be the same.




It is interesting that the Wald test has a form

T=inf{t>0:m & (A, B)}.

Now we will consider a problem of testing two Wald’'s hypotheses
for FINITE time of observation [0,T]. In this case optimal test (in
Bayesian setting) will have the form

T =inf{t <T:m & (g0(t), 91(1))}.

Boundaries are complicated and in principle can be found as solutions
to a Stefan problem. Now we remark only that behavior of the
boundaries near TERMINAL point T is the following:

. dgy(t)
— | —
oo, tITr? dt

(S. Gorban,Russian Math. Surveys, 70:4 (2016)).




2. Now we consider the following two Markov—Gaussian processes:

1
Hp: dX = —yX¢dt +dBy, Xp NN(O,Q—)a
8

' 20
where v > 0, 86 > 0, and v > 0. It means that we consider two
stationary Ornstein—Uhlenbeck processes and we want to test two
hypotheses Hy and Hj.

1
Hi: dXy = —0Xydt +dBy, Xgn~ N(O —),

As above, by A, 3 we will denote a class A = A(7,d) such that
P1(6(X)=0)<a, Po(6(X)=1)<B,0<a+p<1,and

(X) (X)
EO/T X52d5<oo, E1/T X§d3<oo.
0 o)

The central results are the following two theorems.




THEOREM 1.1In theclass A = Aa,ﬁ there exists the asymptotically
optimal test (7,60) such that for any test (r,6) € A,

(X (X
EO/O( )ngngO/O( ) X2 ds + 0(BIn(af)).

T(X (X
Elfo( )stdséﬁfo( )deerO(ozln(ozﬁ)+6g/(7_0)\/|n%>

as o« — 0, B3 — 0. The plan (7,6) is defined by

1, )\,T_(X) >B, (

*)
0, Azx) < A,

T(X) =inf{t > 0: M(X) ¢ (A, B)}, S(X):{

where A =Ina, B= —Ing3, and

0 — 6 2_ 92
A (X) = In\/:+7—(X8+XE—t)+7 / X2 ds.
vy 2 2 0




THEOREM 2.1Intheclass A = Aaﬁ there exists the asymptotically
optimal test (7,9) such that if

v — 00, 9—>OO, but ’Y_Q:C>Oa
then for any test (7,0) € A, 3

(X (X /c
EO/O( )dengo/O( ))q;“ds+0<w—5/2(1f@)7 )

F(X (X /c
E1/O( )denglfo( )X3d3+0<v‘5/2(1fa)7 )

where 0 < aa+ 3 < 1, and the plan (7,0) is defined by (%) with

o 1 —«

A= In ; B = In
1-p




3. The proof of these theorems is based on Lemmas 1-5.

LEMMA 1. The following inequalities hold:

dP
EoIn—2(7, X) > w(B, o),
dPq

dP
El ln—l TaX) 2 UJ(Oé,,B),
dPg

where
1 —=x €T

+ zIn

w(x,y) = (1 —x)In y e




LEMMA 2. For the plan (7,9) defined in (%), where A and B are
arbitrary but such that A <In,/8/y < B, we have

FX) FX)
Eo/O X2ds = Go(6,~, A, B), E1/O X2ds = G1(0,7, A, B),
where
2 A B
G1(0,~, A, B) = B

0 BeB— AeA
—(m\/;—l- 27+ ) 16, B)

J(v—exB— InJ@Tw [ OB =1 \o)
B 70 p{_ - }]
flz,y) = Erf(J =y —’yli\e/Q/ify)) Erf(z) = %/ox /2

and the expression for Gg(0,~, A, B) is similar.
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PROOF of Lemma 2 is based on Itd’'s formula for XtQ. For example,
with respect to Py

> 2 b2 t
X :Xo—l—t—QG/OXS ds—l—/oXsst,

whence for

dP O ~—0 262 t
MO =102, X) =1y 2+ 2G4+ xR -+ [ x2ds
dPg 8% 2 2 0

we obtain that (P;i-a.s.)

_ 0 > t o (y—0)% 1t -
)\t(X)—In\/;—F(fy—@)(XO—I—/OXSdBS>—|— . /OXSds.
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Denote by ¢ = g(x) the solution to the differential equation

g"(z) — ¢'(z) =1, g(A) =0, ¢(B)=0.

Then g(z) = (e —eB)1 [BeA — AeP 4+ (A — B)e® — (e — eB):U}, and
applying Itd’'s formulas, we find

—6)2 7(X)
E190(0(X)) = Ergo00) + T2 6y [ X2
But

\ y — A or B, Ao € [A, B],
) (X)) = A(X) =1In/0/y+ (v —0)XE, Xo ¢ [A Bl

So, for case A <In,/08/v < B we have

(v — 8)2E1 /%(X) X2ds =E;q (—Q(Ao(X))I{Ao(X) S ['” \/g’ B] })

Integration of the right-hand side leads to the given formulas.
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The following Lemma 3 gives, for the plan (7,48), the structure of
the errors P1(6(X) = 0) and Pp(d(X) = 1).

LEMMA 3. (a) If B> A >1In,/0/~, then

A
PLE(X) = 0) = £(6,4) + 55 P (f(7. 4) — (7, B))
~ (f(6.4) ~ 16, B))|
1

PoF(X) = 1) =1 f(3, B) + ———5 " (}(, B) = £(3, )
~ (f(6,40) ~ 16, B))|
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(b) If A<In,/0/y < B, then

A

P1(5(X) = 0) = ——5|f(0, B) — " f(7, B)],

Po(B(X) = 1) =1 f(7.B) + 5[ 13, B) ~ £(6. B)].

Again, the proof is based on Itd's formula.
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We observe that

o) =1 @y el - A +06 D), 0>0.y—
-

_ 0/(2(v—0))
with c¢(z) = ! 9( 9) ;

T Y
y—1/2
6.0 = 1= VT el (1406 )
0 — o0, v—0=c
_ . Veert? g VY ~1
f(v,y) =1- o gl exp{—?}(l + Oy 7)),

vy —oo, v—0=c
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LEMMA 4. For the plan A = (7,9) we have as A — —oco0, B — oo:

(W;Q)QEO/:(X) X2ds=1In %—I—WQ—_WQ —All +O(<1 B §>e_3>];

saftro(1- )+ o{- )]

(The proof follows from Lemma 2 and above expressions for functions
f(0,B) and f(v,B).)
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LEMMA 5. If A — —o00, B — oo, then
P1(5(X) =0) =e (14 0(eP)),
Po(5(X)=1) = ¢ B [1 4 O(eA 4+ B1/2 exp{——})].

The following lemma deals with the case when v,0 — oo, v — 60 = c.
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LEMMA 6. Under the assumptions ~,0 — oo, v — 6 = ¢ we have:

_ 02 A(X)
(v — ) o [ stdsz,n\[ﬂ_@
2 0 Y 27

AeB — Bed — (A—-B CEio g
B e (R CR )

— 0)? 7(X) 0 — 0
(O )E1/T X2ds=—In, /- -2
2 0 Y 20

_(A- B>€A;B_t 563 — A’ 14 0(y75/2e=7B/)],

and

Po(3(X) =1) = _61 14 0(y~ 1278/,

b1 (5(X) = 0) — e(1 - )[1 +0(y32eB/4Y]|.

EZA—EZ
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PROOF of THEOREMS 1 and 2. Ifwetake A=Ina, B= —1Ing,
then for the plan (7,48) with

F(X) =inf{t > 0: M(X) ¢ (A, B)}, (X)) = {O Az(x) S A

_ 2  pn2
where \(X) = In \/E + M(xg +x2opn4 =Y /tXSQ ds, we
vy 2 2 0
obtain from Lemma 5 that
Po(5(X) =1) = B[1+ O(a+ (~Inpg)~1/2p0/0=0)]
P1(0(X) =0) = a(1 4+ 0(p)).
Thus A = (7,9) € Ayg (a,8—0).
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Lemma 1 says that
dPg

1
If we denote In dPO(T X) by M (X), then

_ 4 2 T 2 (v —6)2 7 2
)\T(X)—In\/;—l—(fy—9)<XO—|—/o X dBS>—|— . /OXS ds. (%)

Using (#x) and (x*x*) we may get for Eq [J X2ds the bound from
below via «, 3,0,~. But the previous lemmas give also the expression
of Eg fo X2 ds Vvia «, 3,60,~. This provides a possibility to obtain

(X) 7(X)
EO/T XSQdSEEO/T stds

: : O(BIn(aB)), a, B — 0;
+ 0(7_5/2(L)7/C), v,0 — 00, v—0=c.

1l -«
Similar inequality can be obtained under the measure P;.

b L 1—8)n
—

Eqgln— ,X)Zﬁlnl
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