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A motivating example

Question:
Do we really know how to define an arbitrage-free market?

In very simple examples, this is not so clear after all . . .

Example: N = 2 assets (and no bank account), given by

Si
t = exp

(
σiW

i
t + (mi − σ2i /2)t

)
for t ≥ 0, i = 1, 2,

with possibly ρ-correlated Brownian motions W 1,W 2.

Is this arbitrage-free? In which sense?

Usually, pass to discounted prices. But — which of the two

symmetric assets to use here?
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A motivating example (cont’d)

Suppose parameters satisfy m2 −m1 + σ21 − ρσ1σ2 = 0. Look

at X = S2/S1, set X ′ = 1/X . Simple computation shows that

X is a nonnegative martingale with lim
t→∞

Xt = 0 P-a.s.

If we discount prices by S1, then discounted model (1,X ) is

arbitrage-free because it satisfies NFLVR.

If we discount prices by S2, then discounted model (X ′, 1) is

not arbitrage-free — we even have limt→∞ X ′t = +∞ P-a.s.

Is there any reason to choose one of the symmetric assets for

discounting? Not really . . .

So — how do we define “arbitrage-free” here?
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Basic goals

Start with general model for frictionless financial market

with N asset prices on stochastic interval

[[0,T ]] = {(ω, t) ∈ Ω× [0,∞) : 0 ≤ t ≤ T (ω)}.

(This includes models on finite interval [0,T ] as well as models

on [0,∞) with infinite horizon.)

Find economically reasonable definition for arbitrage-free

market in this setting.

Give dual characterisation in terms of some martingale

properties.

Illustrate results by examples.
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Basic setup

N assets, described by RN -valued semimartingale

S = (St) = (S1
t , . . . ,S

N
t ), where Si

t is time-t price of asset i .

If there is a riskless asset, it must be part of S. Not assumed

in general (see example above).

Prices are not discounted by anything.

Special case is classic setup with N = 1 + d and S = (1,X )

for an Rd -valued semimartingale X (bank account and risky

assets, already discounted).

Later, several (mild) conditions on S will appear.

Sometimes, we want (or need) to change accounting unit

via process (“numéraire”) D = (Dt) to new prices S = S/D.

Then always assume D0 = 1, D > 0 and D− > 0.
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Basic setup (cont’d)

As usual, strategies ϑ = (ϑt) are self-financing, with wealth

Vt(ϑ) = Vt(ϑ)[S] := ϑt ·St = ϑ0·S0+ϑ•St = ϑ0·S0+
∫ t
0 ϑ dS.

In the classic setup with S = (1,X ), we can identify ϑ with a

pair (v0,H) and get wealth in the familiar form as

Vt(v0,H) = v0 +
∫ t

0
H dX .

For admissibility, impose that V(ϑ) ≥ 0 and write ϑ ∈ Lsf+.

Extend all processes to [0,∞) by keeping them constant

after T . [Small technical detail about strategies ϑ . . . ]
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Possible conditions on S

Consider market portfolio 1 = (1, . . . , 1) ∈ Lsf of holding

one unit of each asset.

More generally, can consider “reference portfolio” η ∈ Lsf .

(C1) ∃ η∗ ∈ Lsf satisfying

0 < inft≥0 Vt(η
∗) ≤ supt≥0 Vt(η

∗) <∞ P-a.s.

(C2) Market portfolio satisfies

0 < inft≥0 Vt(1) ≤ supt≥0 Vt(1) <∞ P-a.s.

Clearly (C2) implies (C1).

Equally clearly, both are highly restrictive — just think of

GBM model on [0,∞) from initial example.
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Possible conditions on S (cont’d)

(C2 ′) Market portfolio 1 = (1, . . . , 1) ∈ Lsf satisfies, for all

T ∈ (0,∞),

0 < inf0≤t≤T Vt(1) ≤ sup0≤t≤T Vt(1) <∞ P-a.s.

(C3) S ≥ 0 P-a.s.

Equivalent formulation of (C2 ′): Total market value

V(1) = 1 · S =
∑N

i=1 Si satisfies 1 · S > 0 and 1 · S− > 0 on

[0,∞) (uniformly on compact intervals, but not necessarily

uniformly over t ≥ 0).

Condition (C2 ′) looks reasonable. We cannot work with it (at

least not yet . . . ) without also having (C3).

Both (C2 ′) and (C3) are always satisfied in the classic setup

S = (1,X ) if X ≥ 0.
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Key idea for definitions

Basic idea: a market deserves to be called “arbitrage-free”

if it is inherently stable — total inactivity in trading cannot be

improved.

Put differently: the strategy ϑ ≡ 0 of doing nothing cannot be

beaten by another strategy — it is “maximal” in some sense.

Key question: What is a good concept of a strategy being

maximal?
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Strong maximality for S

Classic concept: strategy ϑ ∈ Lsf+ is strongly maximal (sm)

for S in Lsf+ if there is no (nontrivial payoff) f ∈ L0+ \ {0} such

that for every ε > 0, there is ϑ̂ε ∈ Lsf+ with

V0(ϑ̂ε)[S] ≤ V0(ϑ)[S] + ε,

lim inft→∞ Vt(ϑ̂
ε − ϑ)[S] ≥ f P-a.s.

(If we add to ϑ some nontrivial payoff at ∞, total time-0

superreplication price must exceed time-0 value of ϑ.)

(This is familiar concept used in similar forms by several

authors.)
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Strong index weight maximality

Our new concept: strategy ϑ ∈ Lsf+ is strongly index

weight maximal (siwm) in Lsf+ if

there is no [0, 1]-valued adapted process ψ = (ψt)t≥0

converging P-a.s. to some ψ∞ ∈ L0+ \ {0} and such that

for every ε > 0, there is some ϑ̂ε ∈ Lsf+ with

V0(ϑ̂ε) ≤ V0(ϑ) + ε,

lim inft→∞(ϑ̂εt − ϑt − ψt1) ≥ 0 P-a.s.

(ψ is long-only portfolio which stabilises over time and produces

significant share of market portfolio. If we add to ϑ such a desirable

portfolio, total time-0 superreplication cost must exceed time-0

value of ϑ.)
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Comparison of concepts

Common property: maximal strategy can only be improved

at nonzero initial cost.

Key difference:

for traditional concept, improvement is in terms of wealth.

for new concept, improvement is in terms of some reference

strategy (here, the market portfolio 1).

Important consequence: new concept is discounting-

invariant:

Suppose we change units with process (Dt) with D0 = 1 and

D > 0, D− > 0 on [0,∞), to get S = S/D.

Then sm for S does not imply sm for S .

But siwm (for S) is equivalent to siwm (for S).
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Technical comment

Define superreplication prices, for a payoff f ∈ L0+ and for a
portfolio ψ∞ ∈ L0+, by

πs(f ) := inf
{
v0 ∈ R : ∃ϑ̂ ∈ Lsf with V0(ϑ̂) ≤ v0

and lim inf
t→∞

Vt(ϑ̂) ≥ f P-a.s.
}
,

π̃s(ψ∞) := inf
{
v0 ∈ R : ∃ϑ̂ ∈ Lsf with V0(ϑ̂) ≤ v0

and lim inf
t→∞

ϑ̂t ≥ ψ∞1 P-a.s.
}
.

Then we have (under (C2′) and (C3)):

ϑ ≡ 0 sm for S ⇐⇒ πs(f ) > 0 for any f ∈ L0+ \ {0},
ϑ ≡ 0 siwm ⇐⇒ π̃s(ψ∞) > 0 for any ψ∞ ∈ L0+ \ {0}.

But this does not work well for ϑ 6≡ 0 . . .
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Main results I

Theorem: Under (restrictive condition) (C1) with reference

portfolio η∗:

0 ∈ Lsf+ is sm for S

⇐⇒
S(η∗) = S/V(η∗) satisfies NUPBR

⇐⇒
∃ semimartingale D with 0 < inft≥0Dt ≤ supt≥0Dt <∞ P-a.s.

such that S = S/D is σ-martingale

(i.e. D is narrow σ-martingale deflator).

Extension of (Herdegen) FTAP to infinite horizon.

But: condition (C1) is much too restrictive . . .
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Main results II

Theorem: Under (restrictive condition) (C2) on 1:

1) siwm always implies sm for S.

2) If we add condition (C3) (nonnegativity), sm for S also

implies siwm.

Technical core of results.

Uses variation of Delbaen/Schachermayer theorem to prove

existence of lim
t→∞

Vt(ϑ)[S(η∗)] for ϑ ∈ Lsf+ ,

if (AOA condition) 0 is sm for S and we have (C1) with η∗.

Key trick: result allows us to pass from original prices S to

market weights µ := S/
∑

Si and back.
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Main results III

Theorem (FTAP): Under (good condition) (C2 ′) and (C3):

0 ∈ Lsf+ is siwm

⇐⇒
Market weight process µ = S/

∑
Si satisfies NUPBR

⇐⇒
∃ semimartingale D with D > 0 and D− > 0 on [0,∞) P-a.s.

such that S = S/D is σ-martingale

(i.e. D is σ-martingale deflator)

and S [but perhaps not S] satisfies (strong) condition (C2).
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Comments

Terminology: S satisfies dynamic index weight viability

(DIWV) if zero strategy 0 ∈ Lsf+ is strongly index weight

maximal (siwm) in Lsf+.

So we have new FTAP for AOA condition DIWV.

Structure of result:

Primal AOA condition does not depend on chosen accounting
units (discounting-invariant).
Dual characterisation gives martingale property for prices in
some accounting units — which cannot be chosen a priori!
For a general model, classic absence of arbitrage depends
on discounting, but our formulation does not.
In the spirit of Samuelson (1965), “properly anticipated
prices fluctuate randomly” — but the proper discounting is
part of the dual characterisation, not an a priori choice!
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Example 1: Model from motivation with N = 2 possibly

correlated assets given by

Si
t = exp

(
σiW

i
t + (mi − σ2i /2)t

)
for t ≥ 0, i = 1, 2.

This S satisfies DIWV if and only if

mi − σ2i + ρσ1σ2 = m3−i for i = 1 or i = 2.

Equivalently, one of S/S1,S/S2 must be a martingale.
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Examples (cont’d)

Example 2: Black–Scholes model given by

S1
t = exp(rt) for t ≥ 0,

S2
t = exp

(
σWt + (m − σ2/2)t

)
for t ≥ 0,

with σ > 0.

This S satisfies DIWV if and only if

m − r

σ2
∈ {0, 1}.

Equivalently, one of S/S1,S/S2 must be a martingale.
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What else?

Many counterexamples for possible, but wrong implications

Can replace market portfolio 1 by another “desirable reference

portfolio” η; under suitable (natural) assumptions, DIWV(1)

and DIWV(η) are then equivalent

Connection to classic framework and results, including

discussion of related literature

Questions: . . . are welcome . . .
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The end

Thank you for your attention

http://www.math.ethz.ch/∼mschweiz

or google “Martin Schweizer”
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