Fractional Poisson process: long-range dependence and applications in ruin theory

Bruno Saussereau

LMB, Franche-Comté University

Joint work with Romain Biard

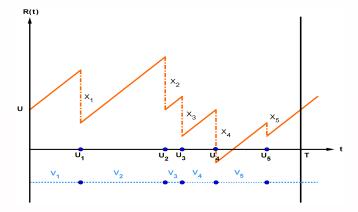
Outline

- Introduction
- Practional Poisson process
- 3 Direct applications in ruin theory

- Introduction
- Fractional Poisson process
- Direct applications in ruin theory

Direct applications in ruin theory

$$R(t) = u + ct - \sum_{i=1}^{N(t)} X_i.$$



Classical assumptions

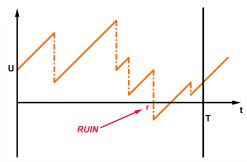
$$R(t) = u + ct - \sum_{i=1}^{N(t)} X_i,$$

where

- $(N(t))_{t>0}$: Poisson process with parameter $\lambda > 0$.
 - \hookrightarrow Claim inter-occurrence times $(V_i)_{i\geq 1}$: sequence of independent and exponentially distributed with parameter λ random variables.
- Claim amounts $(X_i)_{i\geq 1}$: sequence of independent and identically distributed positive random variables.
- $(X_i)_{i\geq 1}$ is independent from $(V_i)_{i\geq 1}$.

Remark: by convention, $\sum_{i=1}^{N(t)} X_i = 0$ if N(t) = 0.

Classical problems



• Finite-time ruin probability:

$$\psi(u,T) = P(\exists \tau \in [0,T], R(\tau) < 0 | R(0) = u),$$

• and infinite-time ruin probability:

$$\psi(u) = \lim_{T \to \infty} \psi(u, T).$$

Light-tailed vs Heavy-tailed

Light-tailed	Heavy-tailed
A random variable X is said light-tailed if	A random variable X is said heavy-tailed if
$\exists r > 0 , \mathbf{E} ig[\mathrm{e}^{r X} ig] < + \infty .$	$\forall r > 0, \mathbf{E} \big[\mathrm{e}^{rX} \big] = +\infty.$
Examples: exponential, gamma, Weibull with shape parameter greater than 1.	Examples : lognormal, Pareto, Burr, Weibull with shape param- eter less than 1.

Subexponential distribution

A distribution $K \in \mathbb{R}_+$ is said to be subexponential if, with $\overline{K} = 1 - K$,

$$\lim_{x\to\infty}\frac{\overline{K*K}(x)}{\overline{K}(x)}=2.$$

We denote $K \in \mathcal{S}$.

In particular, if X_1, \ldots, X_n are i.i.d. with distribution K, then

$$\mathbf{P}(X_1 + \ldots + X_n > x) \sim \mathbf{P}(\max(X_1, \ldots, X_n) > x) \sim n\bar{K}(x), x \to \infty.$$

"Principle of a single big jump"

Examples: Log-normal, Pareto, Burr,...

Regularly varying distribution

A distribution $K \in \mathbb{R}_+$ is said to be regularly varying with index $\alpha \geq 0$ if, with $\overline{K} = 1 - K$.

$$\lim_{x\to\infty}\frac{\overline{K(tx)}}{\overline{K}(x)}=t^{-\alpha}.$$

We denote $K \in \mathbb{R}_{-\alpha}$.

In particular, there exists a function $L \in \mathbb{R}_0$ such that

$$\overline{K}(x) = L(x)x^{-\alpha}$$
.

Examples: Pareto, Burr,...

- Introduction
- Practional Poisson process
- Direct applications in ruin theory

Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters $\lambda>0$ and $\mathrm{H}\in(0,1]$ if

$$\mathsf{P}(\mathit{V}>\mathit{t}) = \mathit{E}_{\mathrm{H}}(-\lambda\mathit{t}^{\mathrm{H}})\,, \text{for } \mathit{t} \geq 0$$

where

$$E_{\rm H}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+{\rm H}k)}$$

is the Mittag-Leffler function (Γ denotes the Euler's Gamma function) which is defined for any complex number z.

Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters $\lambda>0$ and $\mathrm{H}\in(0,1]$ if

$$P(V > t) = E_{H}(-\lambda t^{H})$$
, for $t \ge 0$

where

$$E_{\rm H}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+{\rm H}k)}$$

is the Mittag-Leffler function (Γ denotes the Euler's Gamma function) which is defined for any complex number z.

It holds that

$$\mathbb{E}\left(e^{-\xi V}\right) = \frac{\lambda}{\lambda + \xi^H} \ .$$

Definition 1 : Renewal process

$$N_{\mathrm{H}}(t) = \max\{n \geq 0 : U_n \leq t\} = \sum_{k \geq 1} \mathbb{1}_{U_k \leq t},$$

with

- $U_n = \sum_{k=1}^n V_k$ for $n \ge 1$;
- and $(V_k)_{k\geq 1}$ are i.i.d. with Mittag-Leffler distribution with parameters $\lambda > 0$ and $H \in (0,1]$.
- \Rightarrow $(N_{\rm H}(t))_{t\geq 0}$ is a fractional Poisson process with parameters λ and ${\rm H.}$

Definition 2: Time-changed usual Poisson process

Let:

- ullet $(N(t))_{t\geq 0}$ be a Poisson process with parameter $\lambda>0$;
- $(E_{\rm H}(t))_{t\geq 0}$ be the right continuous inverse of a standard H-stable subordinator $(D_{\rm H}(t))_{t\geq 0}$. (i.e. $E_{\rm H}(t)=\inf\{r>0\ :\ D_{\rm H}(r)>t\}$ where $\mathbf{E}\left[e^{-sD_{\rm H}(t)}\right]=\exp(-ts^{\rm H})$).
- \Rightarrow $(N_{\rm H}(t))_{t\geq 0}:=N(E_{\rm H}(t))_{t\geq 0}$ is a fractional Poisson process with parameters $\lambda>0$ and ${\rm H}\in(0,1].$

Remark: From Meerschaert et al. (2011), Definition 1 and Definition 2 are equivalent.

First properties

Let $(N_H(t))_{t\geq 0}$ be a fractional Poisson process with parameters $\lambda>0$ and $H\in(0,1]$.

We have that

- ullet $(N_1(t))_{t\geq 0}$ is a classical Poisson process with parameter $\lambda>0$;
- $L_{\mathrm{H}}(\xi) := \mathbf{E}(\exp(-\xi V_1)) = \frac{\lambda}{\lambda + \xi^{\mathrm{H}}}$;
- ullet if $\mathrm{H}\in (0,1)$, then $\mathbf{P}(\mathit{V}_1>t)\sim_{t o\infty} rac{t^{-\mathrm{H}}}{\lambda\Gamma(1-\mathrm{H})}.$;
- ullet as a consequence, for $H\in (0,1)$ the inter-arrival times are regularly varying with parameter H, so heavy-tailed, and with infinite mean ;
- $(N_{\rm H}(t))_{t>0}$ is light-tailed, i.e. ${\sf E}\left[\exp\{\xi N_{\rm H}(t)\}\right]<\infty$ for any $\xi\in\mathbb{R}$.
- N_H is not a second order stationary process.

Long-range dependence

Let $(X_j^{\mathrm{H}})_{j\geq 1}$ be the fractional Poissonian noise, defined for $j\geq 1$ by $X_j^{\mathrm{H}}:=\mathcal{N}_{\mathrm{H}}(j)-\mathcal{N}_{\mathrm{H}}(j-1)$.

Theorem

The fractional Poissonian noise $(X_j^H)_{j\geq 1}$ has the long-range dependence property for any $H\in (0;1)$.

Long-range dependence

Renewal theory

As a renewal process $(N_t)_{t\geq 0}$ has the property of long-range dependence if

- ullet $\limsup_{t o \infty} rac{\mathrm{Var}(\mathcal{N}_t)}{t} = \infty$
- it is stationary.

A similar point of view (Maheshwari and Vellaisamy)

A process $(X_t)_{t\geq 0}$ is said to have the LRD propoerty if there exists $d\in (0,1)$ (SRD if $d\in (1,2)$) such that

$$\operatorname{Corr}(X_s, X_t) \sim_{t \to \infty} c(s) t^{-d}$$
.

They proved that the fPn satisfies $\operatorname{Corr}(X_s,X_t)\sim t^{-\frac{1}{2}(3-H)}$ and thus it has short range dependence.

We consider the randow walk

$$X_j = \sum_{k=1}^J Z_k$$

with an i.i.d. sequence $(Z_k)_{k\geq 1}$ with zero mean and variance 1.

We consider the randow walk

$$X_j = \sum_{k=1}^j Z_k$$

with an i.i.d. sequence $(Z_k)_{k>1}$ with zero mean and variance 1.

- The process $(X_i)_{i\geq 1}$ is not a stationary process
- It should be SRD because

$$\frac{\operatorname{Var}(X_j)}{j} < \infty$$
 or $\sum_{j>1} \operatorname{Cov}(X_0, X_j) < \infty$.

We consider the randow walk

$$X_j = \sum_{k=1}^J Z_k$$

with an i.i.d. sequence $(Z_k)_{k>1}$ with zero mean and variance 1.

- The process $(X_i)_{i\geq 1}$ is not a stationary process
- It should be SRD because

$$\frac{\operatorname{Var}(X_j)}{j} < \infty$$
 or $\sum_{j>1} \operatorname{Cov}(X_0, X_j) < \infty$.

But the random walk is well known to produce long leads and rare sign of changes despite being "fair".

Definition (Heyde and Yang (1997))

A process $(X_m)_{m\geq 1}$ (not necessarily stationary) has the property of long-range dependence if the block mean process

$$Y_{t}^{(m)} = \frac{\sum_{j=tm-m+1}^{j=tm} X_{j}}{\sum_{j=tm-m+1}^{j=tm} \text{Var}(X_{j})}$$

defined for an integer $t \ge 1$ satisfies

$$\lim_{m\to\infty} \left(\sum_{j=tm-m+1}^{j=tm} \operatorname{Var}(X_j) \right) \operatorname{Var}\left(Y_t^{(m)}\right) = +\infty .$$

Definition (Heyde and Yang (1997))

A process $(X_m)_{m\geq 1}$ (not necessarily stationary) has the property of long-range dependence if the block mean process

$$Y_t^{(m)} = rac{\sum_{j=tm-m+1}^{j=tm} X_j}{\sum_{j=tm-m+1}^{j=tm} \text{Var}(X_j)}$$

defined for an integer $t \ge 1$ satisfies

$$\lim_{m\to\infty} \left(\sum_{j=tm-m+1}^{j=tm} \operatorname{Var}(X_j) \right) \operatorname{Var}\left(Y_t^{(m)}\right) = +\infty.$$

The random walk $X_j = \sum_{k=1}^j Z_k$ is LRD

$$rac{\operatorname{Var}\left(\sum_{j=tm-m+1}^{tm}X_j
ight)}{\sum_{i=tm-m+1}^{tm}\mathbb{E}(X_i^2)}\sim c(t) imes m\;.$$

Applications

• Storm origins, raindrop release and arrival on the ground, alluvial events, earthquakes: see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds of seconds : Lavergnat and Gole (1998) with $\rm H=0.68$.

• Self-similarity of web traffic : Resnick (2000) with H=0.66.

- Introduction
- Fractional Poisson process
- 3 Direct applications in ruin theory

In ruin theory

$$R(t) = u + ct - \sum_{i=1}^{N_{\mathbf{H}}(t)} X_i ,$$

where

- $(N_{\rm H}(t))_{t\geq 0}$: fractional Poisson process with parameters $\lambda>0$ and $H\in(0,1)$.
 - \hookrightarrow Claim inter-occurrence times $(V_i)_{i\geq 1}$: sequence of independent and Mittag-Leffler distributed with parameter λ and $H\in(0,1)$ random variables.
- Claim amounts $(X_i)_{i\geq 1}$: sequence of independent and identically distributed positive random variables.
- $(X_i)_{i\geq 1}$ is independent from $(V_i)_{i\geq 1}$.

With exponential claim amounts (1) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

The distribution of the ruin time τ has a density p_{τ} given by

$$p_{\tau}(t) = e^{-\mu(u+ct)} \sum_{n=0}^{\infty} \frac{\mu^{n} (u+ct)^{n-1}}{n!} \left(u + \frac{ct}{n+1} \right) f_{H}^{*(n+1)}(t) , \qquad (1)$$

where $f_{\rm H}^{*n}$ denotes the n–fold convolution of the function $f_{\rm H}$ defined by for $t\geq 0$ by

$$f_{\rm H}(t) = ut^{\rm H-1}E_{\rm H,H}(-\lambda t^{\rm H}) \tag{2}$$

where

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

is the generalized two-parameter Mittag-Leffler function.

<u>Proof</u>: Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.

With exponential claim amounts (2) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

For any x > 0 it holds that

$$\xi \int_0^\infty e^{-\xi t} \psi(u,t) dt = 1 - y(\xi) \exp\left\{-u\mu(1-y(\xi))\right\} \;\;,\;\; \xi > 0$$

where $y(\xi)$ is the unique solution of the equation

$$y(\xi) = \frac{\lambda}{\lambda + \left(\xi + c\mu(1 - y(\xi))\right)^{H}}, \quad \xi > 0.$$
 (3)

Proof: Direct application of Theorem 1 in Malinovskii (1998).

With exponential claim amounts (3) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

Under the assumptions of this section, we have

$$\psi(u) = \left(1 - \frac{\gamma}{\mu}\right) e^{-\gamma u},$$

where $\gamma > 0$ is the unique solution of

$$\gamma^{\mathrm{H}} - \mu \gamma^{\mathrm{H}-1} + \frac{\lambda}{c^{\mathrm{H}}} = 0. \tag{4}$$

<u>Proof</u>: Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).

With heavy-tailed claim amounts (1)

Proposition

If the distribution F of the claim sizes is sub-exponential, then

$$\psi(u,t) \sim rac{\lambda t^{\mathrm{H}} \, \overline{F}(u)}{\Gamma(1+\mathrm{H})}$$

as u goes to $+\infty$.

<u>Proof</u> :

$$\begin{split} \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)}X_{i}>u+ct\right)&\leq\psi(u,t)\leq\mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)}X_{i}>u\right)\;;\\ \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)}X_{i}>u+ct\right)&\sim\mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)}X_{i}>u\right)\sim\mathbf{E}(N_{\mathrm{H}}(t))\,\overline{F}(u)\;;\\ \text{and from Lageras (2005)}:\;\mathbf{E}(N_{\mathrm{H}}(t))&=\frac{\lambda t^{\mathrm{H}}}{\Gamma(1+\mathrm{H})}\;. \end{split}$$

With heavy-tailed claim amounts (2) (In progress...)

Since $(N_{\rm H}(t))_{t\geq 0}$ is a renewal process, a random walk can be easily exhibited :

$$S_0 = 0$$
, $S_n = (X_1 - cV_1) + \cdots + (X_n - cV_n)$.

With

$$M=\sup\{S_n,\ n\geq 0\}\,,$$

we have, for u > 0,

$$\psi(u) = \mathsf{P}(M > u) \,.$$

So from Denisov et al. (2004), we get :

With heavy-tailed claim amounts (3) (In progress...)

Proposition

Assume that $P(X_1 > x) = L(x)x^{-\alpha}$ for some slowly regularly varying function L and $\alpha > 0$ (so $X_1 \in \mathcal{R}_{-\alpha}$).

• If $\alpha > H$ then

$$\psi(u) \sim \frac{\lambda \Gamma(\alpha - H)}{c^H \Gamma(\alpha)} u^{-\alpha + H} L(u) \quad u \to \infty.$$

• If $\alpha=\mathrm{H}$ and $\int_0^{+\infty} \frac{L(t)}{t} dt < +\infty$ then

$$\psi(u) \sim \frac{\lambda}{c^{\mathrm{H}}\Gamma(\mathrm{H})} \int_{u}^{+\infty} \frac{L(t)}{t} dt, \quad u \to \infty.$$

Thank you for your attention!