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Risk process : Insurance company's reserve evolution

N(t)

R(t):u—i-ct—ZX;.

i=1

R(t)
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Classical assumptions

N(t)
R(t)=u+ct—) X,
i=1

where

@ (N(t))e>o : Poisson process with parameter A > 0.

— Claim inter-occurrence times (V;);>1 : sequence of independent and
exponentially distributed with parameter A random variables.

@ Claim amounts (X;);>1 : sequence of independent and identically distributed
positive random variables.

@ (X;)i>1 is independent from (V;)i>1.

Remark : by convention, Z,N:(i) X; =0 if N(t) =0.
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Classical problems

g
d
/r!/ T ‘

RUIN

@ Finite-time ruin probability:
Y(u, T)=P(3T €[0,T], R(t) <O|R(0) = u),
@ and infinite-time ruin probability:

P(u) = Tlinoo¢(u, 7).
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Light-tailed vs Heavy-tailed

Light-tailed

A random variable X is said light-
tailed if

3r>0, E[e™] < +o0.

Examples : exponential, gamma,
Weibull with shape parameter
greater than 1.

Heavy-tailed
A random variable X is said
heavy-tailed if
Vr>0, E[erx] = +o00.

Examples : lognormal, Pareto,
Burr, Weibull with shape param-
eter less than 1.
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Subexponential distribution

A distribution K € R is said to be subexponential if, with K=1-K,

jim [KO) 5
X—»00 K(X)

We denote K € S.

In particular, if X1,...,X, are i.i.d. with distribution K, then

P(X1+ ...+ X, > x) ~ P(max(Xi, ..., X;) > x) ~ nK(x), x = 00.

"Principle of a single big jump”

Examples : Log-normal, Pareto, Burr,...
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Regularly varying distribution

A distribution K € R is said to be regularly varying with index a > 0 if, with
K=1-K,
K
im th) =t “
X—00 K(X)

We denote K € R_,,.

In particular, there exists a function L € Rq such that

Examples : Pareto, Burr,...
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Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters A > 0 and H € (0, 1] if

P(V > t) = Eg(—At") for t > 0

where
B2 = rroginy
T LT k)

is the Mittag-Leffler function (I denotes the Euler's Gamma function)
which is defined for any complex number z.
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Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters A > 0 and H € (0, 1] if

P(V > t) = Eg(—At") for t > 0

where - )
Z
Eu(z) = kz;) 1+ k)

is the Mittag-Leffler function (I denotes the Euler's Gamma function)
which is defined for any complex number z.

It holds that

E (e‘gv> = )\‘:\fH .
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Definition 1 : Renewal process

Nu(t) =max{n>0 : U, <t} = Z 1y.<t,
k>1

with
o Uy=>1_qVkforn>1;

@ and (Vi )k>1 are i.i.d. with Mittag-Leffler distribution with parameters
A>0and H € (0,1].

= (N (t))e>o is a fractional Poisson process with parameters A and H.
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Definition 2 : Time-changed usual Poisson process
Let :
@ (N(t))e>0 be a Poisson process with parameter A > 0 ;
@ (En(t))e>o0 be the right continuous inverse of a standard H-stable

subordinator (Dy(t))e>0. (i-e. En(t) =inf{r >0 : Dy(r) > t}
where E [e7sPn(t)] = exp(—ts')).

= (Nu(t))e>o0 := N(Eu(t))r>o is a fractional Poisson process with
parameters A > 0 and H € (0, 1].

Remark: From Meerschaert et al. (2011), Definition 1 and Definition 2 are
equivalent.
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First properties

Let (Mu(t))e>0 be a fractional Poisson process with parameters A > 0 and
H e (0,1].

We have that
@ (Ni(t))e>o is a classical Poisson process with parameter A > 0 ;
A
o Ly(§) := E(exp(—EW1)) = el
s—H

if He (0,1), then P(V4 > t) ~¢ 00 (L —H) ?

@ as a consequence, for H € (0,1) the inter-arrival times are regularly
varying with parameter H, so heavy-tailed, and with infinite mean ;

(Nu(t))e>o is light-tailed, i.e. E [exp{¢Nu(t)}] < oo for any £ € R.

Ny is not a second order stationary process.
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Long-range dependence

Let (XJ-H)J-zl be the fractional Poissonian noise, defined for j > 1 by
XJ-H = Ng(j) — Nua(j — 1).
Theorem

The fractional Poissonian noise (XJH) j>1 has the long-range dependence
property for any H € (0;1).
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Long-range dependence

Renewal theory

As a renewal process (N;)¢>o has the property of long-range dependence if
Var(Nt)

° Iimsuptﬁoof =00

@ it is stationary.

A similar point of view (Maheshwari and Vellaisamy)

A process (X¢)¢>o is said to have the LRD propoerty if there exists
d € (0,1) (SRD if d € (1,2)) such that

Corr(Xs, Xt) ~t—00 c(s)t_d .

They proved that the fPn satisfies Corr(Xs, X¢) ~ t=23H) and thus it
has short range dependence.
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LRD with non stationarity: an example
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LRD with non stationarity: an example

We consider the randow walk

M-~

Xi=) 2k

k=1

with an i.i.d. sequence (Zi)x>1 with zero mean and variance 1.
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LRD with non stationarity: an example

We consider the randow walk

Xi=) 2k

M-~

k=1

with an i.i.d. sequence (Zy)x>1 with zero mean and variance 1.

@ The process (Xj)j>1 is not a stationary process
@ It should be SRD because

Var(X;
M<oo or ZCOV(XO,XJ-)<OO.

J i1
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LRD with non stationarity: an example

We consider the randow walk

X: —

\j Z

M~

k=1

with an i.i.d. sequence (Zx)x>1 with zero mean and variance 1.

@ The process (Xj)j>1 is not a stationary process
@ It should be SRD because

Var(X;
M<oo or ZCOV(XO,XJ-)<OO.

J i1

changes despite being "fair".

But the random walk is well known to produce long leads and rare sign of J

17 / 28



Introduction (Fractional Poisson process)

Direct applications in ruin theory

Definition (Heyde and Yang (1997))

A process (Xm)m>1 (not necessarily stationary) has the property of

long-range dependence if the block mean process

j=t
Y(m) _ Zj‘:tz—m—i-l )<J
: = :

Zj'i;Z—m—i-l Var()g')

defined for an integer t > 1 satisfies
Jj=tm

m—oo | |
j=tm—m+1

lim Z Var(X;) | Var (Yt(m)> = +00 .
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Definition (Heyde and Yang (1997))

A process (Xm)m>1 (not necessarily stationary) has the property of
long-range dependence if the block mean process

Jj=tm )
Zj:tm—m—i—l )<J

j’i§Z—m+l Var()g')

y{m =

defined for an integer t > 1 satisfies

Jj=tm
. : (m)) _
mlinOO E Var(X;) | Var (Yt ) =400 .
j=tm—m+1

The random walk X; = Y7 _, Zx is LRD

Var (Z}:tm—m—&-l XJ)
Z;r:ntmferl E()Sz)

~c(t)yx m.
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Applications

@ Storm origins, raindrop release and arrival on the ground, alluvial
events, earthquakes : see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds
of seconds : Lavergnat and Gole (1998) with H = 0.68.

o Self-similarity of web traffic : Resnick (2000) with H = 0.66.
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In ruin theory

Nn(f)
R(t)y=u+ct— Y X,
i=1

where

@ (Ng(t))e>o : fractional Poisson process with parameters A > 0 and
H e (0,1).

< Claim inter-occurrence times (V;);>1 : sequence of independent and
Mittag-Leffler distributed with parameter A and H € (0, 1) random variables.

@ Claim amounts (X;)i>1 : sequence of independent and identically distributed
positive random variables.

@ (X;)i>1 is independent from (V;);>1.

Remark : by convention, ZI.N:I'{(r) X; = 0 if Nyg(t) =0.
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With exponential claim amounts (1) : X; ~ E(u)

Proposition
The distribution of the ruin time T has a density p, given by

0 n—1
t t o
p-(t) =e” #u+ct§::u (u+ct) (u—|— < )fH(n+1)(t), (1)
n=0 !

n+1
where fi" denotes the n—fold convolution of the function fy defined by for t > 0
by
fH(t) = UtHilE}LH(*)\tH) (2)

where
k

Eap(z) = ; m

is the generalized two-parameter Mittag-Leffler function.

v

Proof : Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.
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With exponential claim amounts (2) : X; ~ E(u)

Proposition
For any x > 0 it holds that

€ [ ettt d =1y e { w1 - ()} . €>0

where y(§) is the unique solution of the equation

y(§) = A H
A+ (€4 en(1 - y())

Proof : Direct application of Theorem 1 in Malinovskii (1998).

, £€>0. (3)
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With exponential claim amounts (3) : X1 ~ E(u)

Proposition

Under the assumptions of this section, we have

v = (1-2) e,

7

where ~v > 0 is the unique solution of

A
’YH—M’YH1+C—H=0~ (4)

Proof : Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).
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With heavy-tailed claim amounts (1)

Proposition

If the distribution F of the claim sizes is sub-exponential, then

MH F(u)

Y(u,t) ~ [(EE:))

as u goes to +00.

Ny (t)
(ZX>u+ct)<w(ut (ZX>U);

i=1

Proof :

Ny (t) Ny (t)
P (Z X; > u+ct) ~P (Z Xi > U) ~ E(Ng(t)) F(u);

i1 -1

and from Lageras (2005) : E(Nu(t)) = _AT
nd f ¢ : .
r(1l+H)
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With heavy-tailed claim amounts (2) (In progress...)

Since (Ni(t))e>o0 is a renewal process, a random walk can be easily
exhibited :

5020,SnI(Xl—CV1)+~--+(Xn—CVn).

With
M = sup{S,, n > 0},

we have, for u > 0,
Y(u) =P(M > u).

So from Denisov et al. (2004), we get :
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With heavy-tailed claim amounts (3) (In progress...)

Proposition

Assume that P(X; > x) = L(x)x™“ for some slowly regularly varying

function L and o > 0 (so X1 € R_,).
o Ifa > H then

M (a
P(u) ~ %

o Ifa=H and [;F* M dt < yoo then

¢(u)NL/+wﬂdt, u— 0.

cHT(H) t

) - .
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Thank you for your attention !
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