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Risk process : Insurance company’s reserve evolution

R(t) = u + ct −
N(t)∑
i=1

Xi .
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Classical assumptions

R(t) = u + ct −
N(t)∑
i=1

Xi ,

where

(N(t))t≥0 : Poisson process with parameter λ > 0.

↪→ Claim inter-occurrence times (Vi )i≥1 : sequence of independent and
exponentially distributed with parameter λ random variables.

Claim amounts (Xi )i≥1 : sequence of independent and identically distributed
positive random variables.

(Xi )i≥1 is independent from (Vi )i≥1.

Remark : by convention,
∑N(t)

i=1 Xi = 0 if N(t) = 0.
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Classical problems

Finite-time ruin probability:

ψ(u,T ) = P(∃τ ∈ [0,T ] , R(τ) < 0|R(0) = u),

and infinite-time ruin probability:

ψ(u) = lim
T→∞

ψ(u,T ).
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Light-tailed vs Heavy-tailed

Light-tailed Heavy-tailed

A random variable X is said light-
tailed if

∃r > 0 , E
[
erX
]
< +∞ .

Examples : exponential, gamma,
Weibull with shape parameter
greater than 1.

A random variable X is said
heavy-tailed if

∀r > 0 , E
[
erX
]

= +∞ .

Examples : lognormal, Pareto,
Burr, Weibull with shape param-
eter less than 1.
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Subexponential distribution

A distribution K ∈ R+ is said to be subexponential if, with K = 1− K ,

lim
x→∞

K ∗ K (x)

K (x)
= 2 .

We denote K ∈ S.

In particular, if X1, . . . ,Xn are i.i.d. with distribution K , then

P(X1 + . . .+ Xn > x) ∼ P(max(X1, . . . ,Xn) > x) ∼ nK̄ (x) , x →∞ .

“Principle of a single big jump”

Examples : Log-normal, Pareto, Burr,...
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Regularly varying distribution

A distribution K ∈ R+ is said to be regularly varying with index α ≥ 0 if, with
K = 1− K ,

lim
x→∞

K (tx)

K (x)
= t−α .

We denote K ∈ R−α.

In particular, there exists a function L ∈ R0 such that

K (x) = L(x)x−α .

Examples : Pareto, Burr,...

9 / 28
N



Introduction Fractional Poisson process Direct applications in ruin theory

1 Introduction

2 Fractional Poisson process

3 Direct applications in ruin theory

10 / 28
N



Introduction Fractional Poisson process Direct applications in ruin theory

Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters λ > 0 and H ∈ (0, 1] if

P(V > t) = EH(−λtH) , for t ≥ 0

where

EH(z) =
∞∑
k=0

zk

Γ(1 + Hk)

is the Mittag-Leffler function (Γ denotes the Euler’s Gamma function)
which is defined for any complex number z .

It holds that
E
(
e−ξV

)
=

λ

λ+ ξH
.
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Definition 1 : Renewal process

NH(t) = max{n ≥ 0 : Un ≤ t} =
∑
k≥1

1Uk≤t ,

with
Un =

∑n
k=1 Vk for n ≥ 1 ;

and (Vk)k≥1 are i.i.d. with Mittag-Leffler distribution with parameters
λ > 0 and H ∈ (0, 1].

⇒ (NH(t))t≥0 is a fractional Poisson process with parameters λ and H.
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Definition 2 : Time-changed usual Poisson process

Let :

(N(t))t≥0 be a Poisson process with parameter λ > 0 ;

(EH(t))t≥0 be the right continuous inverse of a standard H-stable
subordinator (DH(t))t≥0. (i.e. EH(t) = inf{r > 0 : DH(r) > t}
where E

[
e−sDH(t)

]
= exp(−tsH)).

⇒ (NH(t))t≥0 := N(EH(t))t≥0 is a fractional Poisson process with
parameters λ > 0 and H ∈ (0, 1].

Remark: From Meerschaert et al. (2011), Definition 1 and Definition 2 are
equivalent.
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First properties
Let (NH(t))t≥0 be a fractional Poisson process with parameters λ > 0 and
H ∈ (0, 1].

We have that
(N1(t))t≥0 is a classical Poisson process with parameter λ > 0 ;

LH(ξ) := E(exp(−ξV1)) =
λ

λ+ ξH
;

if H ∈ (0, 1), then P(V1 > t) ∼t→∞
t−H

λΓ(1−H)
. ;

as a consequence, for H ∈ (0, 1) the inter-arrival times are regularly
varying with parameter H, so heavy-tailed, and with infinite mean ;

(NH(t))t≥0 is light-tailed, i.e. E [exp{ξNH(t)}] <∞ for any ξ ∈ R.
NH is not a second order stationary process.
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Long-range dependence

Let (XH
j )j≥1 be the fractional Poissonian noise, defined for j ≥ 1 by

XH
j := NH(j)− NH(j − 1).

Theorem
The fractional Poissonian noise (XH

j )j≥1 has the long-range dependence
property for any H ∈ (0;1).
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Long-range dependence

Renewal theory
As a renewal process (Nt)t≥0 has the property of long-range dependence if

lim supt→∞
Var(Nt)

t
=∞

it is stationary.

A similar point of view (Maheshwari and Vellaisamy)
A process (Xt)t≥0 is said to have the LRD propoerty if there exists
d ∈ (0, 1) (SRD if d ∈ (1,2)) such that

Corr(Xs ,Xt) ∼t→∞ c(s)t−d .

They proved that the fPn satisfies Corr(Xs ,Xt) ∼ t−
1
2 (3−H) and thus it

has short range dependence.
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LRD with non stationarity: an example

We consider the randow walk

Xj =

j∑
k=1

Zk

with an i.i.d. sequence (Zk)k≥1 with zero mean and variance 1.

The process (Xj)j≥1 is not a stationary process
It should be SRD because

Var(Xj)

j
<∞ or

∑
j≥1

Cov(X0,Xj) <∞ .

But the random walk is well known to produce long leads and rare sign of
changes despite being "fair".
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Definition (Heyde and Yang (1997))
A process (Xm)m≥1 (not necessarily stationary) has the property of
long-range dependence if the block mean process

Y
(m)
t =

∑j=tm
j=tm−m+1 Xj∑j=tm

j=tm−m+1 Var(Xj)

defined for an integer t ≥ 1 satisfies

lim
m→∞

 j=tm∑
j=tm−m+1

Var(Xj)

 Var
(
Y

(m)
t

)
= +∞ .

The random walk Xj =
∑j

k=1 Zk is LRD

Var
(∑tm

j=tm−m+1 Xj

)
∑tm

j=tm−m+1 E(X 2
j )
∼ c(t)×m .
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Applications

Storm origins, raindrop release and arrival on the ground, alluvial
events, earthquakes : see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds
of seconds : Lavergnat and Gole (1998) with H = 0.68.

Self-similarity of web traffic : Resnick (2000) with H = 0.66.
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In ruin theory

R(t) = u + ct −
NH(t)∑
i=1

Xi ,

where

(NH(t))t≥0 : fractional Poisson process with parameters λ > 0 and
H ∈ (0, 1).

↪→ Claim inter-occurrence times (Vi )i≥1 : sequence of independent and
Mittag-Leffler distributed with parameter λ and H ∈ (0, 1) random variables.

Claim amounts (Xi )i≥1 : sequence of independent and identically distributed
positive random variables.

(Xi )i≥1 is independent from (Vi )i≥1.

Remark : by convention,
∑NH(t)

i=1 Xi = 0 if NH(t) = 0.
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With exponential claim amounts (1) : X1 ∼ E(µ)
Proposition
The distribution of the ruin time τ has a density pτ given by

pτ (t) = e−µ(u+ct)
∞∑
n=0

µn(u + ct)n−1

n!

(
u +

ct

n + 1

)
f
∗(n+1)
H (t) , (1)

where f ∗nH denotes the n−fold convolution of the function fH defined by for t ≥ 0
by

fH(t) = utH−1EH,H(−λtH) (2)

where

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

is the generalized two-parameter Mittag-Leffler function.

Proof : Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.
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With exponential claim amounts (2) : X1 ∼ E(µ)

Proposition
For any x > 0 it holds that

ξ

∫ ∞
0

e−ξtψ(u, t)dt = 1− y(ξ) exp
{
− uµ

(
1− y(ξ)

)}
, ξ > 0

where y(ξ) is the unique solution of the equation

y(ξ) =
λ

λ+
(
ξ + cµ(1− y(ξ))

)H , ξ > 0. (3)

Proof : Direct application of Theorem 1 in Malinovskii (1998).
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With exponential claim amounts (3) : X1 ∼ E(µ)

Proposition
Under the assumptions of this section, we have

ψ(u) =

(
1− γ

µ

)
e−γu ,

where γ > 0 is the unique solution of

γH − µγH−1 +
λ

cH = 0 . (4)

Proof : Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).
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With heavy-tailed claim amounts (1)
Proposition
If the distribution F of the claim sizes is sub-exponential, then

ψ(u, t) ∼ λtH F (u)

Γ(1 + H)

as u goes to +∞.

Proof :

P

NH(t)∑
i=1

Xi > u + ct

 ≤ ψ(u, t) ≤ P

NH(t)∑
i=1

Xi > u

 ;

P

NH(t)∑
i=1

Xi > u + ct

 ∼ P

NH(t)∑
i=1

Xi > u

 ∼ E(NH(t))F (u) ;

and from Lageras (2005) : E(NH(t)) =
λtH

Γ(1 + H)
.
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With heavy-tailed claim amounts (2) (In progress...)

Since (NH(t))t≥0 is a renewal process, a random walk can be easily
exhibited :

S0 = 0 , Sn = (X1 − cV1) + · · ·+ (Xn − cVn) .

With
M = sup{Sn, n ≥ 0} ,

we have, for u > 0,
ψ(u) = P(M > u) .

So from Denisov et al. (2004), we get :
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With heavy-tailed claim amounts (3) (In progress...)

Proposition
Assume that P(X1 > x) = L(x)x−α for some slowly regularly varying
function L and α > 0 (so X1 ∈ R−α).

If α > H then

ψ(u) ∼ λΓ(α−H)

cHΓ(α)
u−α+HL(u) u →∞ .

If α = H and
∫ +∞
0

L(t)
t dt < +∞ then

ψ(u) ∼ λ

cHΓ(H)

∫ +∞

u

L(t)

t
dt , u →∞ .
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Thank you for your attention !
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