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Description of the model and the objective.
Remarks on the problem setup and on the approach.
Preliminaries for the main result.
Main result:

i) An approximation result leading to a ”value iteration”-type
algorithm analogous to that for infinite horizon discounted
Markov decision problems;

ii) a general dynamic programming principle



Model and objective

The model

Given are m risky assets with prices Si
t satisfying

dSi
t = Si

t{r i(θt )dt +
∑

j

σi
j (θt )dBj

t}

and let X i
t := log Si

t .
θt : is a hidden finite-state Markovian factor process

dθt = Q∗θtdt +dMt , θt ∈ E := {e1, · · · ,eN}, θ0 = ξ ∈ E

Q : transition intensity matrix; Mt : jump martingale on
(Ω,F ,Ft ,P).

→ pt := (p1
t , · · · ,pN

t ): state-probability vector, pi
t = P{θt = ei}



Model and objective

The model

Given is also a non-risky asset with price S0
t satisfying

dS0
t = r0S0

t dt

Let S̃i
t :=

Si
t

S0
t
, with X̃ i

t := log S̃i
t so that

dX̃ i
t = {r i(θt )− r0 − d(σσ∗(θt ))i}dt +

m∑
j=1

σi
j (θt )dBj

t

with d(σσ∗(θ)) = (1
2(σσ∗)11(θ), . . . , 1

2(σσ∗)mm(θ)) (column
vector).



Model and objective

The model

Prices (and thus also the logarithms of their discounted values)
are only observed at the random times τ0, τ1, τ2, · · · so that,
putting X̃ i

k := X̃ i
τk

, the observations (τk , X̃k ) form a multivariate
marked point process with counting measure

µ(dt ,dx) =
∑

k

1{τk<∞}δ{τk ,X̃k}(t , x)dtdx

→ The corresponding counting process

Λt :=

∫ t

0

∫
Rm
µ(dt ,dx)

is supposed to be a Cox process with intensity n(θt ), i.e.

Λt −
∫ t

0
n(θs)ds is an (Ft ,P)−martingale.



Model and objective

The model

Random time observations are more realistic in comparison
with diffusion-type models, especially on small time scales:
prices do not vary continuously but by tick-size at random
times in reaction to arrival of significant new information.
Restricting observations and trading to random times
corresponds to the fact that portfolios cannot be re-balanced
continuously: think of transaction costs and/or liquidity
restrictions (see Pham,Tankov 08/09 for a case of full
observations).
The partial information setup allows for continuous updating
of the underlying model.



Model and objective

Investment strategies, portfolios

N i
t : number of assets of type i in the portfolio at time t :

N i
t =

∑
k

1[τk ,τk+1)(t)N i
τk

The wealth process at time t is then Vt :=
∑m

i=0 N i
t S

i
t . and

the investment ratios

hi
t :=

N i
t S

i
t

Vt
, (hi

k := hi
τk

)

are defined on

H̄m := {(h1, . . . ,hm); h1+h2+. . .+hm ≤ 1,0 ≤ hi , i = 1,2, . . . ,m}

→ No shortselling is allowed and H̄m is closed and bounded.



Model and objective

Investment strategies, portfolios

The dynamics of a self-financing portfolio are (ht ∈ H̄m)

dVt = Vt
{

h′t{r(θt ) dt + h′tσ(θt )dBt
}

→ Defining γ : Rm × H̄m → H̄m by

γ i(z,h) :=
hi exp(z i)

1 +
m∑

i=1
hi(exp(z i)− 1)

, i = 1, , . . . ,m

one has that, for t ∈ [τk , τk+1),

hi
t = γ i(X̃t − X̃k ,hk )

→ ht is thus determined by hk , X̃k , X̃t where X̃t is unobserved
for t ∈ (τk , τk+1).



Model and objective

Investment strategies, portfolios

The set A of admissible strategies is

A := {{hk}∞k=0|hk ∈ H̄m, Gk measurable}
where

Gk := F0 ∨ σ{τ0, X̃0, τ1, X̃1, τ2, X̃2, . . . , τk , X̃k}

For n > 0 let

An := {h ∈ A|hn+i = hτn+i− for all i ≥ 1}

→ For h ∈ An one has Nn+k = Nn+k−1 = Nn

→ A0 ⊂ A1 ⊂ · · ·An ⊂ An+1 · · · ⊂ A.



Model and objective

log-utility

Considering a log-utility and recalling

dVt = Vt
{

h′t{r(θt ) dt + h′tσ(θt )dBt
}
,

for any given T > 0 one has

log VT = log v0 +
∫ T

0 h′tσ(θt )dBt

+
∫ T

0 h′t r(θt )− 1
2h′tσσ

′(θt )ht ]dt

= log v0 +
∫ T

0 h′tσ(θt )dBt +
∫ T

0 f (θt ,ht ) dt

having put f (θ,h) := h′ − 1
2h′σσ′(θ)h

→ Our problem can now be formulated as follows



Model and objective

The problem (log-utility)

Problem (Log-utility): Given a finite planning horizon T > 0,
determine the optimal value

suph∈A E {log VT |τ0 = 0,p0 = p}

= log v0 + suph∈A E
{∫ T

0 f (θt ,ht )dt |τ0 = 0,p0 = p
}

as well as an optimal maximizing strategy

ĥ ∈ A

→ The optimal strategy maximizes the expected log-value
obtained at a fixed terminal time (T is not considered a
rebalancing/liquidation time).



Remarks on the problem and on the approach

Remarks on problem setup

→ A stochastic control problem under incomplete information.
→ Standard approach: transform them into a complete

information problem, the so-called ”separated problem”,
where instead of the unobservable quantities one
considers their distributions, conditional on the
observations.

This requires:
i) solving the associated filtering problem;
ii) formulating the separated problem so that its

solution is indeed a solution of the original
incomplete information problem.



Remarks on the problem and on the approach

Remarks on problem setup

The associated filtering problem has been solved in work
by Cvitanic, Liptser, Rozovskii and it was found that ”the
given problem does not fit into a standard diffusion or point
process filtering framework”.
Not only the filtering problem, but also the control part of
the problem does not fit into any standard framework and
so there remained the task to find an approach also for the
control part.



Remarks on the problem and on the approach

Remarks on problem setup

Our problem is defined over a finite horizon, but the
number of transitions is random, possibly infinite and so it
becomes intuitive to look for an algorithm analogous to
those for infinite horizon Markovian decision problems (e.g.
Value Iteration).
We show that also in our setup, which is intermediate
between continuous and discrete time, one can obtain
results that are analogous to the classical ones, in
particular, we also obtain myopic optimal policies.

This can however not be shown directly as in the classical
cases (the number of observation/rebalancing times τk up to
the horizon T is a.s. finite, but their number depends on ω and
is not bounded from above.



Preliminary results

Filtering

To summarize the filtering results in Cvitanic, Liptser, Ro-
zovskii (2006), denote by πt (f ) = E [f (θt )|Gt ] the filter of f (θt )
given Gt with Gt := F0 ∨ σ{µ((0, s]× B) : s ≤ t ,B ∈ B(Rm)}.

→ Being θt ∈ {e1, · · · ,eN}, we have f (θt ) =
∑

i f (ei)1ei (θt ). It
thus suffices to consider πi

t = πt (1ei (θt ))

→ Since the observations take place only along τ1, τ2, · · · ,
useful information also arrives only along that sequence
and we have

πi
τk+1

= M i
(
τk+1 − τk , X̃τk+1 − X̃τk , πτk

)
for suitable functions M i(·) and with πτk :=

(
π1
τk
, · · · , πN

τk

)



Preliminary results

Filtering

Putting πk = πτk , we obtain the Markov process{
τk , πτk , X̃τk

}∞
k=1

with respect to Gk that will turn out to be the
state process for the ”separated” (completely observed) con-
trol problem.



Preliminary results

Preliminaries to value iteration

Considering the expected log-utility at a generic time
t ∈ [0,T ] with p = pt we may write

E{log VT |τ0 = t ,p0 = p}
= log Vt + E

{∫ T
t f (θs,hs)ds|τ0 = t ,p0 = p

}
→ What matters is

E

{∫ T

t
f (θs,hs)ds|τ0 = t , π0 = π

}

(notice the π instead of p)



Preliminary results

Preliminaries to value iteration

A standard approach to Value Iteration is to consider, for an
admissible strategy h. = (ht ), the value function

W (t , π,h.) := E

{∫ T

t
f (θs,hs)ds|τ0 = t , π0 = π

}

and put
W (t , π) := sup

h∈A
W (t , π,h)

W n(t , π) := sup
h∈An

W (t , π,h)

→ Working directly with the above leads to various difficulties
and so we consider a modified approach via auxiliary value
functions.



Preliminary results

A contraction operator

Let

SN :=

{
p ∈ RN |

N∑
i=1

pi = 1 ; 0 ≤ pi , i = 1, · · · ,N

}

so that also πt = (π1
t , · · · , πN

t ) ∈ SN .
On SN consider the Hilbert metric

dH(π, π̄) := log

(
sup

π̄(A)>0,A⊂E

π(A)

π̄(A)
sup

π(A)>0,A⊂E

π̄(A)

π(A)

)

and put Σ := [0,∞)× SN .



Preliminary results

A contraction operator

Let Cb(Σ) be the set of bounded continuous functions
g : Σ → R with norm ‖g‖ := maxx∈Σ | g(x) | .
Let Cb,lip(Σ) be the set of bounded and Lipschitz
continuous functions g : Σ → R with norm

Nλ(g) := λ‖g‖+ [g]lip

where
[g]lip := sup

τ,τ̄ , π,π̄∈SN

|g(τ, π)− g(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

→ Cb,lip(Σ) is a Banach space with norm Nλ(g), ∀λ > 0.



Preliminary results

A contraction operator

Definition: Let J : Cb(Σ) → Cb(Σ) be the operator

Jg(τ, π) = E {g(τ1 ∧ T , πτ1 ∧ T ) | τ0 = τ, π0 = π}

Lemma 1: J is a contraction operator on Cb(Σ) with contraction
constant c := 1− e−n̄T < 1, where n̄ := max n(θ) = maxi n(ei).

Lemma 2: J is a contraction operator on Cb,lip(Σ) having con-
traction constant c′ := (c + max(n̄, 2

log 3) 1
λ) with λ large enough so

that c′ < 1.



Preliminary results

Preliminaries to the optimal strategy

Recalling

E{log VT |τ0 = t , π0 = π}
= log Vt + E

{∫ T
t f (θs,hs)ds|τ0 = t , π0 = π

}
let
Definition:

Ĉ(τ, π, h) = E

{∫ T∧τ1

τ
f (θs,hs)ds|τ0 = τ, π0 = π

}



Preliminary results

Preliminaries to the optimal strategy

Lemma: We have

i) E
{∫ T

t f (θs,hs)ds|τ0 = t , π0 = π
}

= E
{∑

k
Ĉ(τk , πk ,hk )1{τk<T}|τ0 = t , π0 = π

}

ii) Ĉ is bounded and continuous on [0,T ]× SN × H̄m
for the metric |t − t̄ |+ dH(π, π̄) +

∑m
i=1 |hi − h̄i |

iii) ∃ ĥ(τ, π) measurable s.t. suph∈H̄m
Ĉ(τ, π, h) =

= Ĉ(τ, π, ĥ(τ, π)) := C(t , π)

iv) C(t , π) is Lipschitz for the metric on [0,T ]× SN .



Preliminary results

Preliminaries to the optimal strategy

The result in the previous point i) is rather crucial: the various hk
are chosen at the various τk but the objective function depends
on ht also between observation times, which in turn depends on
the unobservable θt and Xt between observation times.

→ The optimal strategy will turn out to be myopic and given
by a maximizer of the individual terms in the sum on the
RHS in i). Due to the infinite sum, this however does not
follow directly.

→ Next we describe our procedure and the results.



Preliminary results

Preliminaries to value function

Definition: Based on the contraction property of J on Cb,lip(Σ)
with norm Nλ(·), let

W̄ (t , π) :=
∞∑

k=0

JkC(t , π)

Lemma: W̄ ∈ Cb,lip(Σ) and

W̄ (t , π) = C(t , π) + JW̄ (t , π)



Preliminary results

”Value iteration” for the auxiliary value function

Recall that, for t ∈ [τk , τk+1) we have hi
t = γ i(X̃t − X̃k ,hk )

Definition: For h ∈ H̄m let (no rebalancing)

W̄ 0(t , π,h) := E

{∫ T

t
f (θs, γ(X̃s − X̃t ,h))ds|τ0 = t , π0 = π

}

which is bounded and continuous.



Preliminary results

”Value iteration” for the auxiliary value function

Define, then, recursively,

W̄ 0(t , π) := maxh∈H̄m
W̄ 0(t , π,h)

W̄ n(t , π) := C(t , π) + JW̄ n−1(t , π)

=
n−1∑
k=0

JkC(t , π) + JnW̄ 0(t , π)

thereby recalling that

C(t , π) = suph∈H̄m
Ĉ(τ, π,h)

Jg(τ, π) = E
{

g(τ1, π1)1{τ1<T}|τ0 = τ, π0 = π
}

(notice that J0C(t , π) = C(t , π)).



Main result

Main theorem

”Approximation theorem”. Given ε > 0, let
nε := (log(1− c′) + log ε− log Nλ(W̄ 1 − W̄ 0))/ log c′. Then

Nλ(W − W̄ n) < ε ∀ n ≥ nε

i.e. the recursive algorithm for computing W̄ n is a ”value
iteration algorithm” for the actual optimal value function W.

→ Being Nλ(W − W̄ n) = λ ‖W − W̄ n‖+ [W − W̄ n]lip the
above implies that W − W̄ n is small for all (t , π) and does
not vary abruptly.



Main result

Main theorem

”Dynamic Programming Principle” (concerns the actual
optimal value function). For any n > 0

W (t , π) = sup
h∈An

E

{
n∑

k=0

Ĉ(τk , πk ,hk )1{τk<T}

+W (τn+1, πn+1)1{τn+1<T}|τ0 = t , π0 = π
}



Main result

Main theorem (contd.)

3. Optimal value and optimal strategy

Given V0 = v0, τ0 = 0, π0 = π we have

sup
h∈A

E {log VT |τ0 = 0, π0 = π}

= log v0 + sup
h∈A

E

{∫ T

0
f (θt ,ht )dt |τ0 = 0, π0 = π]

}

= log v0 + C(0, π)
+
∑∞

k=1 E
{

C(τk , πk )1{τk<T}|τ0 = 0, π0 = π
}



Main result

Main theorem (contd.)

The optimal strategy is given by
i) for t = τk : ĥk = ĥ(τk , πτk ) such that

C(t , π) = sup
h∈H̄m

Ĉ(τ, π, h) = Ĉ(τ, π, ĥ(τ, π))

ii) for t ∈ [τk , τk+1) : ĥi
t = γ i(X̃t − X̃k , ĥk )

→ The optimal strategy is derived directly on the basis of the
local dynamics of the asset prices and not on the basis of
the value function (no corresponding regularity is thus
required on the value function).

→ The value function has of course its own interest.
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Happy Birthday, Yura!
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