Time Consistency of the Mean-Risk Problem

Birgit Rudloff

Vienna University of Economics and Business

joint work with Gabriela Kovacova

Happy Birthday, Yuri!

Birgit Rudloff Time Consistency of the Mean-Risk



Mean-Risk Problem: Motivation
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Portfolio Selection

Markowitz (1952)
@ expected return (mean) is
desirable, risk is undesirable
@ portfolios not dominated in the
mean-risk sense are efficient

o static mean-variance problem

@ extentions: multiple time
periods, various measurements s
of risk
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Mean-Risk via Scalarization

o Maximize mean under a risk constraint, or vice versa
max E[vr] s.t. p(vr) <7

o mean-variance: Merton (1972); Li, Ng (2000)
o mean-CVaR: Béuerle, Mundt (2009)
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Mean-Risk via Scalarization

o Maximize mean under a risk constraint, or vice versa
max E[vr] s.t. p(vr) <7

o mean-variance: Merton (1972); Li, Ng (2000)
o mean-CVaR: Béuerle, Mundt (2009)

@ Specify a risk aversion A
max (1 — A)E[vp] — Ap(vp)

o mean-variance: Li, Ng (2000); Zhou, Li (2000)
o mean-CVaR: Rudloff, Street, Valladdo (2014)

Birgit Rudloff Time Consistency of the Mean-Risk



Mean-Risk via Scalarization

o Maximize mean under a risk constraint, or vice versa
max E[vr] s.t. p(vr) <7

o mean-variance: Merton (1972); Li, Ng (2000)
o mean-CVaR: Béuerle, Mundt (2009)

@ Specify a risk aversion A
max (1 — A)E[vp] — Ap(vp)

o mean-variance: Li, Ng (2000); Zhou, Li (2000)
o mean-CVaR: Rudloff, Street, Valladdo (2014)

@ Dynamic problems - time inconsistency
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Some Approaches to Time Inconsistency

@ Pre-commitment

o Li, Ng (2000); Zhou, Li (2000)
o Game-theoretic approach

o Bjork, Murgoci, Zhou (2014)
e Time-varying risk aversion

o Basak, Chabakauri (2010); Cui, Li, Wang, Zhu (2012); Bjork,
Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)

Certainty equivalent w.r.t. a time consistent dynamic utility
o Rudloff, Street, Valladao (2014)
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Some Approaches to Time Inconsistency

@ Pre-commitment
o Li, Ng (2000); Zhou, Li (2000)
o Game-theoretic approach
o Bjork, Murgoci, Zhou (2014)
e Time-varying risk aversion
o Basak, Chabakauri (2010); Cui, Li, Wang, Zhu (2012); Bjork,
Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)
Certainty equivalent w.r.t. a time consistent dynamic utility
o Rudloff, Street, Valladao (2014)

o Here: Consider the mean-risk as a vector optimization
problem
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Vector Optimization
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Vector Optimization Problem

@ Image space: a partially ordered vector space (Y, <¢)

e An ordering cone C CY : y1 <gcypa &y €y +C

min f: X =Y wrt. <¢ over S C X (VOP) J
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Vector Optimization Problem

@ Image space: a partially ordered vector space (Y, <¢)

e An ordering cone C CY : y1 <gcypa &y €y +C

min f: X =Y wrt. <¢ over S C X (VOP) J

e Image of the feasible set f[S]:= {f(z) |z € S}

@ Upper image

P=cl (f[S]+C) J
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Vector Optimization Problem

@ Image space: a partially ordered vector space (Y, <¢)

e An ordering cone C CY : y1 <gcypa &y €y +C

min f: X =Y wrt. <¢ over S C X (VOP) J

e Image of the feasible set f[S]:= {f(z) |z € S}

@ Upper image

P=cl (f[S]+C) J

® A minimizer of the (VOP) is # € S such that
{f@}-c\{o}) n f[S] = 0

o A weak minimizer of the (VOP) is Z € S such that
({f@}—int C) N f[S] =0
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Mean-Risk as a VOP
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
o Finite (Q, ]:, (]:t)tzo,...,Ta P)
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
o Finite (Q, ]:, (]:t)tzo,...,Ta P)

o d assets with price process (S¢)i=o,.. 7
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
o Finite (Q, ]:, (Ft)tzo,...,Ta P)
e d assets with price process (St)i=o,... 17

o Investor with an initial wealth vg
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
o Finite (Q, ]:, (Ft)tzo,...,Ta P)

o d assets with price process (S¢)i=o,.. 7

Investor with an initial wealth vg

Portfolio = trading strategy (¢s)s=o,...7-1
o constraints ¢; € ®, (e.g. ¥s > 0), cond. convex and closed P,
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
o Finite (Q, ]:, (Ft)tzo,...,Ta P)

o d assets with price process (S¢)i=o,.. 7

Investor with an initial wealth vg

Portfolio = trading strategy (¢s)s=o,...7-1
o constraints ¢; € ®, (e.g. ¥s > 0), cond. convex and closed P,

portfolio value ve1 = ST, 115
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Market and Feasible Portfolios

e Discrete time with a finite horizon T = {0,1,...,T'}
e Finite (Q, F, (Ft)=o,..1,P)

e d assets with price process (St)i=o,... 17

o Investor with an initial wealth vg

e Portfolio = trading strategy (vs)s=o,... 7-1
o constraints ¢; € ®, (e.g. ¥s > 0), cond. convex and closed P,

e portfolio value vsy1 = SL_ﬂ/Js

e Feasible portfolios at time ¢ with wealth v; € L,

i(v1) = { W)smton—1 | ST, =5, Vo1 = STrts,

s € Dy, s:t,...,T—l}
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Measuring the Mean and the Risk

e Conditional expectation of the terminal value E;(vr)
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Measuring the Mean and the Risk

e Conditional expectation of the terminal value E;(vr)
@ Value of a time consistent dynamic convex risk measure
pt(vr)
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Measuring the Mean and the Risk

e Conditional expectation of the terminal value E;(vr)
@ Value of a time consistent dynamic convex risk measure
p(vr)
A family of mappings p; : Ly — Ly, such that Yv,w € Lp,V\ € L,
o translation invariance: p;(v + A) = pi(v) — A,
o monotonicity: v < w = pi(v) > pr(w),
o convexity: pi(Av+ (1 — N)w) < Apt(v) + (1 — N pe(w) for 0 < A < 1,
o recursiveness: pi(v) = pi(—pi+1(v)),
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Measuring the Mean and the Risk

e Conditional expectation of the terminal value E;(vr)

@ Value of a time consistent dynamic convex risk measure
pt(vr)

A family of mappings p; : Ly — Ly, such that Yv,w € Lp,V\ € L,

o translation invariance: p;(v + A) = pi(v) — A,

o monotonicity: v < w = pi(v) > pr(w),

o convexity: pi(Av+ (1 — N)w) < Apt(v) + (1 — N pe(w) for 0 < A < 1,
o recursiveness: pi(v) = pi(—pi+1(v)),

o Given a wealth v; € L; we consider a problem

- —E¢(vr)
(¢s)srf:.r.l.,T_1 ( pt(vr) LR SLt(Ri)

s.t. STps = vs, (Di(vt))
Us+1 = S;r+1¢57
Vs € Py, s=1,..., T —1.
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Efficient and Weakly Efficient Portfolios

Definition: Efficient Portfolio

A feasible portfolio (¢s)s=t,..7—1 € ¥¢(vy) is efficient at a time t for an
investment v, if and only if there exists no feasible portfolio
(¢s)s=t.... . 7—1 € ¥y(vy), such that

E;(v5)
Pt(’U?)

Y%

Et(”;b“)’
1
pt(vg}“)a ( )

IN

and at least one of the above is not attained as an equality P-a.s..
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Efficient and Weakly Efficient Portfolios

Definition: Efficient Portfolio

A feasible portfolio (¢s)s=t,..7—1 € ¥¢(vy) is efficient at a time t for an
investment v, if and only if there exists no feasible portfolio
(¢s)s=t.... . 7—1 € ¥y(vy), such that

Y%

E:(v3)
[0}
t\Up

Ei(v})
pe(vy) < pe

(v7),

and at least one of the above is not attained as an equality P-a.s..

IN

Portfolio (9s)s=¢,...7—1 € V¢(v:) is weakly efficient at a time t for an
investment vy if both inequalities (1) are strict in every state of the world
we .
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Efficient and Weakly Efficient Portfolios

Definition: Efficient Portfolio

A feasible portfolio (¢s)s=t,..7—1 € ¥¢(vy) is efficient at a time t for an
investment v, if and only if there exists no feasible portfolio
(¢s)s=t.... . 7—1 € ¥y(vy), such that

Y%

E:(v3)
[0}
t\Up

Ei(v})
pe(vy) < pe

(v7),

and at least one of the above is not attained as an equality P-a.s..

IN

Portfolio (9s)s=¢,...7—1 € V¢(v:) is weakly efficient at a time t for an
investment vy if both inequalities (1) are strict in every state of the world
we .

@ (hs)s=¢,... 7—1 is a (weakly) efficient portfolio < it is a (weak) minimizer
of the problem D;(v;)
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Time Consistency and

a Set-Valued Bellman’s Principle
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Mean-Risk and Time Consistency

e Recall: Scalar mean-risk (for a fixed risk aversion) is time
inconsistent
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Mean-Risk and Time Consistency

e Recall: Scalar mean-risk (for a fixed risk aversion) is time
inconsistent

e For a mean-risk VOP we obtain a time consistency in the
sense of weak minimizers (weakly efficient portfolios)

The family of mean-risk problems D has the following property,

(ts)s=t,..., 7—1 being a weak minimizer of Dy(vy)
implies
(1) s=t41,..., 7—1 being a weak minimizer of Dyiq (S;'—Hwt) .
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Mean-Risk and Time Consistency

e Recall: Scalar mean-risk (for a fixed risk aversion) is time
inconsistent

e For a mean-risk VOP we obtain a time consistency in the
sense of weak minimizers (weakly efficient portfolios)

The family of mean-risk problems D has the following property,

(ts)s=t,..., 7—1 being a weak minimizer of Dy(vy)
implies
(1) s=t41,..., 7—1 being a weak minimizer of Dyiq (S;'—Hwt) .

e A weaker notion than the scalar time consistency
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Scalar Time Consistency and Bellman’s Principle
y

Recall:

@ scalar problem with value function J;(v;)

T—1
Jt(”l)t) = inf Et Zfs(vsausvzs)+fT(vT)
Ut yeo oy UT -1 ——t
st Vgy1 = gs(vs, Us, Zs)v

us € Ug(vg), s=t,...,T—1

Birgit Rudloff Time Consistency of the Mean-Risk



Scalar Time Consistency and Bellman’s Principle
y

Recall:

@ scalar problem with value function J;(v;)

T—1
Ji(w) = inf By | Y fu(vs ug, z) + frvr)

Utyee, WD —1
s=t

s.t. Vst1 :gs(USausaZs)v
us € Ug(vg), s=t,...,T—1

@ ... is time consistent if Bellman’s equation is satisfied,

Ji(ve) = ., Eirljlf(v )Et [fe(ve, e, 2e) + Jey1(ge(ve, ue, 20))]

JT(’UT) = fT(’UT).
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Scalar Time Consistency and Bellman’s Principle
y

Recall:

@ scalar problem with value function J;(v;)

T—1
Ji(w) = inf By | Y fu(vs ug, z) + frvr)

Uty UT—1
s=t

s.t. Vst1 :gs(USausaZs)v
us € Ug(vg), s=t,...,T—1

@ ... is time consistent if Bellman’s equation is satisfied,

Ji(ve) = ., Eirljlf(v )Et [fe(ve, e, 2e) + Jey1(ge(ve, ue, 20))]

JT(’UT) = fT(’UT).

@ The Bellman’s equation provides a possibility to solve the problem
recursively
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Scalar Time Consistency and Bellman’s Principle
y

Recall:

@ scalar problem with value function J;(v;)

T—1
Ji(w) = inf By | Y fu(vs ug, z) + frvr)

Utyee, WD —1
s=t

s.t. Vst1 :gs(USausaZs)v
us € Ug(vg), s=t,...,T—1

@ ... is time consistent if Bellman’s equation is satisfied,

Ji(ve) = ., Eirljlf(v )Et [fe(ve, e, 2e) + Jey1(ge(ve, ue, 20))]

JT(’UT) = fT(’UT).

@ The Bellman’s equation provides a possibility to solve the problem
recursively
@ Is there a similar recursive relation for a vector optimization mean-risk

problem?
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Scalar Time Consistency and Bellman’s Principle
y

Recall:

@ scalar problem with value function J;(v;)

T—1
Jt(vt) = inf Et Zfs(vsausvzs)—’_fT(vT)
Ut yeo oy UT -1 ——t
st Vgy1 = gs(Us, Us, Zs)v

us € Ug(vg), s=t,...,T—1

@ ... is time consistent if Bellman’s equation is satisfied,

Ji(ve) = ., Eirljlf(v )Et [fe(ve, e, 2e) + Jey1(ge(ve, ue, 20))]

JT(’UT) = fT(’UT).

@ The Bellman’s equation provides a possibility to solve the problem
recursively

@ Is there a similar recursive relation for a vector optimization mean-risk
problem? What is the value function???
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?

@ Infimum in the classical sense of vector ordering is unsuitable
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?
@ Infimum in the classical sense of vector ordering is unsuitable

@ Set optimization approach provides a candidate
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?
@ Infimum in the classical sense of vector ordering is unsuitable

@ Set optimization approach provides a candidate
o space of closed upper sets F(Y,C) = {ACY | cl(A+C) = A}
with D is a partially ordered conlinear space and a complete lattice
with infimum
Jnf A=cl U4
AeA
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?
@ Infimum in the classical sense of vector ordering is unsuitable
@ Set optimization approach provides a candidate
o space of closed upper sets F(Y,C) = {ACY | cl(A+C) = A}
with D is a partially ordered conlinear space and a complete lattice
with infimum

mf A=cl U A
A€cA

o consider a set-extention of the problem with F(z) := f(x) + C
min F: X - FY,C)wrt. D over S C X
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Value Function for a VOP

min f: X =Y wrt. <¢ over S C X (VOP) J

@ Value function should be an infimum - in what sense for a VOP?
@ Infimum in the classical sense of vector ordering is unsuitable

@ Set optimization approach provides a candidate
o space of closed upper sets F(Y,C) = {ACY | cl(A+C) = A}
with D is a partially ordered conlinear space and a complete lattice
with infimum

mf A=cl U A
A€cA

o consider a set-extention of the problem with F(z) := f(x) + C
min F: X - FY,C)wrt. D over S C X

e its set-valued infimum is the upper image,

1an y=cd|J f@)+C=P

zeS
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A Set-Valued Bellman’s Principle for the Mean-Risk

The following recursive form of the upper image (value function) is
obtained

Pt (v) =cl {<_Et(_$1)> ‘ STy = vi, Yy € By,

pr(—2) ®)

(2) € Pii1 (&11%)}

Pr(vr) = { (:Z;) } + Lp(R2).

with
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Recursion and a One-Time-Step Problem

@ This corresponds to a sequence of one-time-step problem

g _Et(—.’l?l)
Tt <
gina} ( pt(—z2) Wb SLED)
s.t. S;rl/Jt = Uy, ~

¢t € (btv
7z
<m;> € Piy1 (S;-lwt) .
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Recursion and a One-Time-Step Problem

@ This corresponds to a sequence of one-time-step problem

g _Et(—.’l?l)
Tt <
gina} ( pt(—z2) Wb SLED)
s.t. S;rl/}t = Uy, ~

¢t € (btv
7z
(é) € Piy1 (S;-lwt) .

@ D;(v;) shares the upper image P;(v;) of the mean-risk problem
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Recursion and a One-Time-Step Problem

@ This corresponds to a sequence of one-time-step problem

g _Et(—.’l?l)
Tt <
gina} ( pt(—z2) Wb SLED)
s.t. S;rl/}t = Uy, ~

¢t € (btv
7z
(é) € Piy1 (S;-lwt) .

o Dy(v;) shares the upper image P;(v;) of the mean-risk problem

@ Dy(v;) is a convex vector optimization problem

Birgit Rudloff Time Consistency of the Mean-Risk



Recursion and a One-Time-Step Problem

@ Py (vp) is obtained recursively via a sequence of one-time-step convex
VOPs

Birgit Rudloff ime Co stency of the Mean-Risk



Recursion and a One-Time-Step Problem

@ Py (vp) is obtained recursively via a sequence of one-time-step convex
VOPs

@ computation of P; (v;) uses Pyy1(S7,1¢¢) in constraints — a Bellman’s
principle
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Recursion and a One-Time-Step Problem

@ Py (vp) is obtained recursively via a sequence of one-time-step convex
VOPs

@ computation of Py (v;) uses Pyi1(S[ 19) in constraints — a Bellman’s
principle

@ based on a set-optimization notion of infimum — set-valued
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Recursion and a One-Time-Step Problem

@ Py (vp) is obtained recursively via a sequence of one-time-step convex
VOPs

@ computation of Py (v;) uses Pyi1(S[ 19) in constraints — a Bellman’s
principle

@ based on a set-optimization notion of infimum — set-valued

@ (B) corresponds to a set-valued infimum with T'4(X) := (_Et(Xl))

pe(X2)
Pi(vi) = stipnf Le(=Pes1(Sa0))
zptte;tt’
= inf inf Iy (—z).
STpi=vs, TEPr41(S{ %)
P €Dy
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Backward Computation of the Efficient Frontier
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Implementation of the One-Time-Step Problems

Now assume additionally
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Implementation of the One-Time-Step Problems

Now assume additionally
e a coherent risk measure (p¢)i=o,... 71,
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Implementation of the One-Time-Step Problems

Now assume additionally
e a coherent risk measure (p¢)i=o,... 71,
o short-selling constraints ¥s > 0,
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Implementation of the One-Time-Step Problems

Now assume additionally
e a coherent risk measure (pt)t=o,...,7—1,
o short-selling constraints s > 0,
e a positive wealth vg > 0 and prices Ss > 0.
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Implementation of the One-Time-Step Problems

Now assume additionally
e a coherent risk measure (pt)t=o,...,7—1,
o short-selling constraints s > 0,
e a positive wealth vg > 0 and prices Ss > 0.

@ (Weakly) efficient portfolios and upper images scale, Py (v:) = v; - Pe(1).
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Implementation of the One-Time-Step Problems

Now assume additionally
e a coherent risk measure (pt)t=o,...,7—1,
o short-selling constraints s > 0,
e a positive wealth vg > 0 and prices Ss > 0.

@ (Weakly) efficient portfolios and upper images scale, Py (v:) = v; - Pe(1).

@ problem D, (v;) reduces to

. —Et(—l‘l)
min ( pi(—o) w.r.t. SLt(Ri)

s.t. S;ri/)t = V¢, T,Z)t > 0,
AS (S;r+17/1t) - Prya(1).
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Efficient Trading Strategy

For every efficient mean-risk profile x§ € Py(vg) there exists a portfolio
(¥¥)s=0,... 7—1 efficient at every time point ¢
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Efficient Trading Strategy

For every efficient mean-risk profile x§ € Py(vg) there exists a portfolio
(¥¥)s=0,... 7—1 efficient at every time point ¢

@ stronger than time consistency in the sense of weak minimizers
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Efficient Tradi

Theorem

For every efficient mean-risk profile x§ € Py(vg) there exists a portfolio
(¥¥)s=0,... 7—1 efficient at every time point ¢

@ stronger than time consistency in the sense of weak minimizers

1: fort=0,...,7—1do
2: update wealth v} = ST¢F |
3: position v and mean-risk profile z;_l come from I¢(v;, x})(we) for wy €
min p¢(—Z¢41,2|we)
st Sl =vf, ¢ >0,
. (e(vf, f)(we))
41 € (Spqp1¥t) - Pry1 (1),
Bt (wey11]we) < gy
4: end for
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Efficient Tradi

Theorem

For every efficient mean-risk profile x§ € Py(vg) there exists a portfolio
(¥¥)s=0,... 7—1 efficient at every time point ¢

@ stronger than time consistency in the sense of weak minimizers

1: fort=0,...,7—1do
2: update wealth v} = ST¢F |
3: position v and mean-risk profile z;_l come from I¢(v;, x})(we) for wy €
min p¢(—Z¢41,2|we)
st Sl =vf, ¢ >0,
. (e(vf, f)(we))
41 € (Spqp1¥t) - Pry1 (1),
Bt (wey11]we) < gy
4: end for

@ solves sequence of scalar convex OPs on a realized path wo, w1 ...,wr—1
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Efficient Trading Strategy

Theorem

For every efficient mean-risk profile x§ € Py(vg) there exists a portfolio
(¥¥)s=0,... 7—1 efficient at every time point ¢

@ stronger than time consistency in the sense of weak minimizers

1: fort=0,...,7—1do
2: update wealth v} = ST¢F |
3: position v and mean-risk profile z;_l come from I¢(v;, x})(we) for wy €
min p¢(—Z¢41,2|we)
st Sl = vf, >0,
ze41 € (ST qve) - Pey1 (1),
Ee(zet1,1lwe) <7 5.

(Te(vy, z3) (we))

4: end for

@ solves sequence of scalar convex OPs on a realized path wo, w1 ...,wr—1

@ if upper images are polyhedral: only arithmetic operations (instead of solving
convex OP)
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Moving Scalarization and Risk Aversion

@ To an efficient portfolio (¢s)s=o,... 7—1 corresponds a sequence of weights
wy, . .., wr—1, where each w, € L;(R%)\{0}

o (ts)s=t,...,T—1 is an optimal solution to

we%li?vt) —we,1 - Ee(vr) + we 2 - pe(vr)
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ving Scalarization and Risk Aversion

@ To an efficient portfolio (¢s)s=o,... 7—1 corresponds a sequence of weights
wy, . .., wr—1, where each w, € L;(R%)\{0}

o (ts)s=t,...,T—1 is an optimal solution to

we%li?vt) —we,1 - Ee(vr) + we 2 - pe(vr)

o weights (ws)s=o,...,7—1 can be interpreted as a time varying, state
dependent risk aversion
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Moving Scalarization and Risk Aversion

@ To an efficient portfolio (¢s)s=o,... 7—1 corresponds a sequence of weights
wy, . .., wr—1, where each w, € L;(R%)\{0}

o (ts)s=t,...,T—1 is an optimal solution to

we%li?vt) —we,1 - Ee(vr) + we 2 - pe(vr)

o weights (ws)s=o,...,7—1 can be interpreted as a time varying, state
dependent risk aversion

@ Compare to Bjork, Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)
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Moving Scalarization and Risk Aversion

@ To an efficient portfolio (¢s)s=o,... 7—1 corresponds a sequence of weights
wy, . .., wr—1, where each w, € L;(R%)\{0}

o (ts)s=t,...,T—1 is an optimal solution to

we%li?vt) —we,1 - Ee(vr) + we 2 - pe(vr)

o weights (ws)s=o,...,7—1 can be interpreted as a time varying, state
dependent risk aversion

@ Compare to Bjork, Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)

e for mean-variance there exists risk aversion ¢; making problems

u 1 u
sup E (X5") — 2—ctVar(Xf,: )

uEU T

time consistent
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Two Examples
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Examples

@ Scalable market setting with i.i.d. asset returns

Birgit Rudloff



@ Scalable market setting with i.i.d. asset returns

e conditionally on the same wealth problems and upper images
identical across nodes
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@ Scalable market setting with i.i.d. asset returns

e conditionally on the same wealth problems and upper images
identical across nodes
e T node-wise problems to be solved to compute the efficient frontier
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Examples

@ Scalable market setting with i.i.d. asset returns
e conditionally on the same wealth problems and upper images
identical across nodes
e T node-wise problems to be solved to compute the efficient frontier

e Risk measured by a (time consistent version of) a Conditional
Value at Risk
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Examples

@ Scalable market setting with i.i.d. asset returns
e conditionally on the same wealth problems and upper images
identical across nodes
e T node-wise problems to be solved to compute the efficient frontier

e Risk measured by a (time consistent version of) a Conditional
Value at Risk

e polyhedral risk measure = a linear VOP
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Examples

@ Scalable market setting with i.i.d. asset returns

e conditionally on the same wealth problems and upper images
identical across nodes
e T node-wise problems to be solved to compute the efficient frontier

e Risk measured by a (time consistent version of) a Conditional
Value at Risk

e polyhedral risk measure = a linear VOP

@ Bensolve and Bensolve Tools used for computations
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Example 1: Binomial Market Model

170
160
@ 10 years with 250 trading
150 L days, T" = 2500
[0}
<—§ o rg = 1%, 75 = 5% p.a.,
S 1401 vo = 100
g @ Selected mean-risk profile
F 130
E() (’UT) =160
1201 po(vr) = —104.27
110 |

-115 -110 -105 -100 -95 -90 -85 -80
Risk measure p
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Example 1: T

rading Strategy along a Path

100

1000

Time 0, v, = 100.00, A = 0.51
g 160 g 190" 3 140
g T g
g R i
3 g 5
T T 160 Sm 3 3
o o
T ] 0 M0 a0 a
Risk measuro Risk moasuro Risk moasuro
150 Time 750, v, = 97.47, 3, = 095 Time 1250,
140 3
] g™ ER
3@ H T
3 3= H
140 fo H Eus
[— 3% in stock| |3 |4 |-
3o 3o 3
105
130 w oo w s e w e e
3 Risk moasuro Risk masuro Risk moasuro
]
> Time 1500, v, = 100.35, 3, = 0.93 Time 1750, v, = 101.79, 3, = 0.81
= 16
120 g 2 ER
3 g5 3
2 K N
S0 g e
3 3 LR
110 105 s .
a0 w0 e 405 100 95 o0 85 105 a0 o5 90
Risk measure Risk measure Risk measure
100 Time 2250, v, = 108.23, 3, =012 Time 2498, v, = 106.86, , < 0.03 Time 2499, v, = 10720, , < 0.05
e s
s 3 ] g
1500 2000 2500 S 3 1000 2 izt
3 H H
£ m 5 1000 8 1o
G 3 s b
10687 107.205
100
W0 a0 a0 9 068 1066 1064 1062 Doz aona 07 -0ee
Risk measure Risk measure Risk measure
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Example 2: Multiple asset classes

@ one year of monthly trading, 7' = 12
@ 1 bond class (rg = 0%) 7 stock classes (Fs = 5.17%), vp = 100

Expected value

a=1% a=2% a=5%
— — —
105 105
® ®
3 E
[} [}
> 104 >
3 3
2 2104
8 8
£ 103 Z
w w
103
102
4100 9995 -99.9 -99.85 -99.8

-100 -99.9 -99.8 -99.7 -99.6

Risk measure p

a=1%
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-100

-99.9 -99.8 -99.7
Risk measure p

o =2%

Risk measure p

a=5%




ic, Myopic and Naive Strategy

e mean-risk profiles of myopic and naive strategy can be computed
e time 0, level o = 2% of CVaR

e dynamic and myopic for risk aversion 0.5

106 -
8105+ v
S <
o 104 -
(]
ke]
8103
h
102 ‘-Upper image EMl Frontier (@) Dynamic A = 1 X/ Myopic Dynamic M <] Naive DDynamic N
L 1 I I

-100 -99.5 -99 -98.5 -98
Risk measure p
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A Kovécova G., Rudloff B.: Time consistency of the mean-risk
problem, submitted for publication, 2018
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