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Mean-Risk Problem: Motivation
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Portfolio Selection

Markowitz (1952)

expected return (mean) is
desirable, risk is undesirable

portfolios not dominated in the
mean-risk sense are efficient

static mean-variance problem

extentions: multiple time
periods, various measurements
of risk
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Mean-Risk via Scalarization

Maximize mean under a risk constraint, or vice versa

max E[vT ] s.t. ρ(vT ) ≤ r

mean-variance: Merton (1972); Li, Ng (2000)
mean-CVaR: Bäuerle, Mundt (2009)

Specify a risk aversion λ

max (1− λ)E[vT ]− λρ(vT )

mean-variance: Li, Ng (2000); Zhou, Li (2000)
mean-CVaR: Rudloff, Street, Valladão (2014)

Dynamic problems - time inconsistency
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Some Approaches to Time Inconsistency

Pre-commitment

Li, Ng (2000); Zhou, Li (2000)

Game-theoretic approach

Björk, Murgoci, Zhou (2014)

Time-varying risk aversion

Basak, Chabakauri (2010); Cui, Li, Wang, Zhu (2012); Björk,
Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)

Certainty equivalent w.r.t. a time consistent dynamic utility

Rudloff, Street, Valladão (2014)

Here: Consider the mean-risk as a vector optimization
problem
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Vector Optimization
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Vector Optimization Problem

Image space: a partially ordered vector space (Y,≤C)

An ordering cone C ⊆ Y : y1 ≤C y2 ⇔ y2 ∈ y1 + C

min f : X → Y w.r.t. ≤C over S ⊆ X (VOP)

Image of the feasible set f [S] :=
{
f(x) | x ∈ S

}
Upper image

P := cl (f [S] + C)

A minimizer of the (VOP) is x̄ ∈ S such that({
f(x̄)

}
− C\{0}

)
∩ f [S] = ∅

A weak minimizer of the (VOP) is x̄ ∈ S such that({
f(x̄)

}
− int C

)
∩ f [S] = ∅
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Mean-Risk as a VOP

Birgit Rudloff Time Consistency of the Mean-Risk 8 / 30



Market and Feasible Portfolios

Discrete time with a finite horizon T = {0, 1, . . . , T}
Finite (Ω,F , (Ft)t=0,...,T ,P)

d assets with price process (St)t=0,...,T

Investor with an initial wealth v0

Portfolio = trading strategy (ψs)s=0,...,T−1

constraints ψs ∈ Φs (e.g. ψs ≥ 0), cond. convex and closed Φs

portfolio value vs+1 = ST
s+1ψs

Feasible portfolios at time t with wealth vt ∈ Lt

Ψt(vt) :=
{

(ψs)s=t,...,T−1

∣∣ ST
s ψs = vs, vs+1 = ST

s+1ψs,

ψs ∈ Φs, s = t, . . . , T − 1
}
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Measuring the Mean and the Risk

Conditional expectation of the terminal value Et(vT )

Value of a time consistent dynamic convex risk measure
ρt(vT )

A family of mappings ρt : LT → Lt, such that ∀v, w ∈ LT ,∀λ ∈ Lt
translation invariance: ρt(v + λ) = ρt(v)− λ,
monotonicity: v ≤ w ⇒ ρt(v) ≥ ρt(w),
convexity: ρt(λv + (1− λ)w) ≤ λρt(v) + (1− λ)ρt(w) for 0 ≤ λ ≤ 1,
recursiveness: ρt(v) = ρt(−ρt+1(v)),

Given a wealth vt ∈ Lt we consider a problem

min
(ψs)s=t,...,T−1

(
−Et(vT )
ρt(vT )

)
w.r.t. ≤Lt(R2

+)

s.t. ST
s ψs = vs,

vs+1 = ST
s+1ψs,

ψs ∈ Φs, s = t, . . . , T − 1.

(Dt(vt))
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Efficient and Weakly Efficient Portfolios

Definition: Efficient Portfolio

A feasible portfolio (ψs)s=t,...,T−1 ∈ Ψt(vt) is efficient at a time t for an
investment vt, if and only if there exists no feasible portfolio
(φs)s=t,...,T−1 ∈ Ψt(vt), such that

Et(v
φ
T ) ≥ Et(v

ψ
T ),

ρt(v
φ
T ) ≤ ρt(vψT ),

(1)

and at least one of the above is not attained as an equality P-a.s..

Portfolio (ψs)s=t,...,T−1 ∈ Ψt(vt) is weakly efficient at a time t for an
investment vt if both inequalities (1) are strict in every state of the world
ω ∈ Ω.

(ψs)s=t,...,T−1 is a (weakly) efficient portfolio ⇔ it is a (weak) minimizer
of the problem Dt(vt)
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Time Consistency and
a Set-Valued Bellman’s Principle
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Mean-Risk and Time Consistency

Recall: Scalar mean-risk (for a fixed risk aversion) is time
inconsistent

For a mean-risk VOP we obtain a time consistency in the
sense of weak minimizers (weakly efficient portfolios)

Theorem

The family of mean-risk problems D has the following property,

(ψs)s=t,...,T−1 being a weak minimizer of Dt(vt)
implies

(ψs)s=t+1,...,T−1 being a weak minimizer of Dt+1

(
ST
t+1ψt

)
.

A weaker notion than the scalar time consistency
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Scalar Time Consistency and Bellman’s Principle

Recall:
scalar problem with value function Jt(vt)

Jt(vt) := inf
ut,...,uT−1

Et

[
T−1∑
s=t

fs(vs, us, zs) + fT (vT )

]
s.t. vs+1 = gs(vs, us, zs),

us ∈ Us(vs), s = t, . . . , T − 1

... is time consistent if Bellman’s equation is satisfied,

Jt(vt) = inf
ut∈Ut(vt)

Et [ft(vt, ut, zt) + Jt+1(gt(vt, ut, zt))] ,

JT (vT ) := fT (vT ).

The Bellman’s equation provides a possibility to solve the problem
recursively
Is there a similar recursive relation for a vector optimization mean-risk
problem? What is the value function???
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Value Function for a VOP

min f : X → Y w.r.t. ≤C over S ⊆ X (VOP)

Value function should be an infimum - in what sense for a VOP?

Infimum in the classical sense of vector ordering is unsuitable

Set optimization approach provides a candidate

space of closed upper sets F(Y,C) = {A ⊆ Y | cl(A+ C) = A}
with ⊇ is a partially ordered conlinear space and a complete lattice
with infimum

inf
(F,⊇)

A = cl
⋃
A∈A

A

consider a set-extention of the problem with F (x) := f(x) + C,

min F : X → F(Y,C) w.r.t. ⊇ over S ⊆ X

its set-valued infimum is the upper image,

inf
x∈S

F (x) = cl
⋃
x∈S

f(x) + C = P
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A Set-Valued Bellman’s Principle for the Mean-Risk

The following recursive form of the upper image (value function) is
obtained

Theorem

Pt (vt) = cl

{(
−Et(−x1)
ρt(−x2)

) ∣∣∣ ST
t ψt = vt, ψt ∈ Φt,(

x1

x2

)
∈ Pt+1

(
ST
t+1ψt

)} (B)

with

PT (vT ) =

{(
−vT
−vT

)}
+ LT (R2

+).
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Recursion and a One-Time-Step Problem

This corresponds to a sequence of one-time-step problem

min
ψt,x

(
−Et(−x1)
ρt(−x2)

)
w.r.t. ≤Lt(R2

+)

s.t. ST
t ψt = vt,

ψt ∈ Φt,(
x1

x2

)
∈ Pt+1

(
ST
t+1ψt

)
.

(D̃t(vt))

D̃t(vt) shares the upper image Pt(vt) of the mean-risk problem

D̃t(vt) is a convex vector optimization problem
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Recursion and a One-Time-Step Problem

P0 (v0) is obtained recursively via a sequence of one-time-step convex
VOPs

computation of Pt (vt) uses Pt+1(ST
t+1ψt) in constraints → a Bellman’s

principle

based on a set-optimization notion of infimum → set-valued

(B) corresponds to a set-valued infimum with Γt(X) :=

(
−Et(X1)
ρt(X2)

)
,

Pt (vt) = inf
ST
t ψt=vt,
ψt∈Φt

Γt(−Pt+1(ST
t+1ψt))

= inf
ST
t ψt=vt,
ψt∈Φt

inf
x∈Pt+1(ST

t+1ψt)
Γt (−x) .
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Backward Computation of the Efficient Frontier
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Implementation of the One-Time-Step Problems

Now assume additionally

a coherent risk measure (ρt)t=0,...,T−1,
short-selling constraints ψs ≥ 0,
a positive wealth v0 > 0 and prices Ss > 0.

(Weakly) efficient portfolios and upper images scale, Pt(vt) = vt · Pt(1).

problem D̃t(vt) reduces to

min

(
−Et(−x1)
ρt(−x2)

)
w.r.t. ≤Lt(R2

+)

s.t. ST
t ψt = vt, ψt ≥ 0,

x ∈
(
ST
t+1ψt

)
· Pt+1(1).
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Efficient Trading Strategy

Theorem

For every efficient mean-risk profile x∗0 ∈ P0(v0) there exists a portfolio
(ψ∗s )s=0,...,T−1 efficient at every time point t

stronger than time consistency in the sense of weak minimizers

1: for t = 0, . . . , T − 1 do
2: update wealth v∗t = ST

t ψ
∗
t−1

3: position ψ∗t and mean-risk profile x∗t+1 come from It(v∗t , x
∗
t )(ωt) for ωt ∈ Ωt

min ρt(−xt+1,2|ωt)

s.t. ST
t ψt = v∗t , ψt ≥ 0,

xt+1 ∈ (ST
t+1ψt) · Pt+1 (1) ,

Et(xt+1,1|ωt) ≤ x∗t,1.

(It(v∗t , x
∗
t )(ωt))

4: end for

solves sequence of scalar convex OPs on a realized path ω0, ω1 . . . , ωT−1

if upper images are polyhedral: only arithmetic operations (instead of solving
convex OP)
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Moving Scalarization and Risk Aversion

To an efficient portfolio (ψs)s=0,...,T−1 corresponds a sequence of weights
w0, . . . , wT−1, where each wt ∈ Lt(R2

+)\{0}
(ψs)s=t,...,T−1 is an optimal solution to

min
ψ∈Ψt(vt)

−wt,1 · Et(vT ) + wt,2 · ρt(vT )

weights (ws)s=0,...,T−1 can be interpreted as a time varying, state
dependent risk aversion

Compare to Björk, Murgoci, Zhou (2014); Karnam, Ma, Zhang (2016)

for mean-variance there exists risk aversion ct making problems

sup
u∈U[t,T ]

Et(X
t,u
T )− 1

2ct
V ar(Xt,u

T )

time consistent
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Two Examples
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Examples

Scalable market setting with i.i.d. asset returns

conditionally on the same wealth problems and upper images
identical across nodes
T node-wise problems to be solved to compute the efficient frontier

Risk measured by a (time consistent version of) a Conditional
Value at Risk

polyhedral risk measure ⇒ a linear VOP

Bensolve and Bensolve Tools used for computations
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Example 1: Binomial Market Model

10 years with 250 trading
days, T = 2 500

rB = 1%, r̄S = 5% p.a.,
v0 = 100

Selected mean-risk profile

E0(vT ) = 160

ρ0(vT ) = −104.27
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Example 1: Trading Strategy along a Path
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Example 2: Multiple asset classes

one year of monthly trading, T = 12

1 bond class (rB = 0%) 7 stock classes (r̄S = 5.17%), v0 = 100
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Example 2: Dynamic, Myopic and Naive Strategy

mean-risk profiles of myopic and naive strategy can be computed

time 0, level α = 2% of CV aR

dynamic and myopic for risk aversion 0.5
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Löhne A.: Vector Optimization with Infimum and Supremum,
Springer-Verlag Berlin Heidelberg, 2011
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