Robust utility maximization in markets with transaction costs

Miklós Rásonyi¹

based on joint work with N. H. Chau¹ and A. M. Rodrigues²

1:Alfréd Rényi Institute, Budapest; 2: University of York

Luminy, 4th September 2018

Outline

- Introduction
- 2 Utility functions on the positive real line
- 3 Utility functions on the whole real line
- 4 Frictionless case

- A - E - N

3

Uncertainty is usually modeled by a family of prior measures ${\cal P}$ on the same canonical space. Source of troubles.

E.g. definition of value process similtaneously under each $P \in \mathcal{P}$, compactness substitutes. Approach in e.g. L^0_+ is not feasible.

Existence results in a fairly general class of models are available only in discrete time: Nutz (2016), Blanchard and Carassus (2018), Neufeld and Šikić (2017), Bartl (2017), Bartl et al. (2017).

Formulation of the problem

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, P)$ a filtered probability space.

 Θ be a (non-empty) set of parameters (may be infinite dimensional).

There are two assets: a riskless asset $S^0 = 1$ and a risky asset, whose dynamics is unknown.

A family S^{θ} , $\theta \in \Theta$ of adapted, continuous positive processes. No condition is imposed on Θ and on S^{θ} .

Example: The robust Black-Scholes market model

$$dS_t^{(\mu,\sigma)} = S_t^{(\mu,\sigma)}(\mu dt + \sigma dW_t).$$

 $\Theta = \{\theta = (\mu,\sigma) \in \mathbb{R}^2 : \underline{\mu} \le \mu \le \overline{\mu}, \ \underline{\sigma} \le \sigma \le \overline{\sigma}\}.$

Advantages

This approach

- is particularly tractable and easily implemented when it comes to calibration.
- simplifies technical issues: the canonical setting with problems concerning null events, filtration completion, etc. The measurable selection arguments, the analytic properties, etc..
- Time consistency assumption typical in discrete time. (See Bartl et al. (2017), however.) Not needed here.

Drawbacks and solutions

- Recall: $\sup_H \inf_{\theta} EU(W_T(\theta, H))$ and $\sup_H \inf_{Q \in \mathcal{P}} E^Q U(W_T(H))$.
- No "abstract" versions.
- Komlós-type arguments on the space L^0 cannot be employed.
- No convexity in θ . Dual problem?
- The candidate dual problem in this setting does not, in general, admit a solution (see Remark 2.3 of Bartl (2017)).
- Work with the primal problem.
- Under proportional transaction costs.
- Work directly with finite variation processes. Guasoni (2002)

A topological space of FV processes

 \mathcal{V} : the family of non-decreasing, right-continuous functions on [0, T] which are 0 at 0.

Let r_k , $k \in \mathbb{N}$ be an enumeration of $Q := (\mathbb{Q} \cap [0, T]) \cup \{T\}$ with $r_0 = T$. For $f, g \in \mathcal{V}$, define a metric

$$w(f,g) := \sum_{k=0}^{\infty} 2^{-k} |f(r_k) - g(r_k)|.$$

Let **V** denote the set of $H = (H_0, H^{\uparrow}, H^{\downarrow})$ where $H_t^{\uparrow}, H_t^{\downarrow}$, $t \in [0, T]$ are optional processes, $H^{\uparrow}(\omega), H^{\downarrow}(\omega) \in \mathcal{V}$. H_0 : initial transfer.

We equip ${f V}$ with the metric

 $\varrho(H,G) := E[\rho(H^{\uparrow},G^{\uparrow}) \wedge 1] + E[\rho(H^{\downarrow},G^{\downarrow}) \wedge 1], + |H_0 - G_0| \ H, G \in \mathbf{V}.$

A compactness result

Lemma

Let $H(n) \in \mathbf{V}$, $n \in \mathbb{N}$ be such that

$$\sup_{n\in\mathbb{N}}E^{Q}[H_{T}^{\uparrow}(n)+H_{T}^{\downarrow}(n)]<\infty$$

for some $Q \sim P$. Then there is $H \in \mathbf{V}$ and there are convex weights $\alpha_j^n \geq 0, j = n, \dots, M(n), \sum_{j=n}^{M(n)} \alpha_j^n = 1, n \in \mathbb{N}$ such that

$$\tilde{H}(n) := \sum_{j=n}^{M(n)} \alpha_j^n H(j)$$

satisfy $\tilde{H}^{\uparrow}(n) \to H^{\uparrow}$ and $\tilde{H}^{\downarrow}(n) \to H^{\downarrow}$, $n \to \infty$ almost surely in \mathcal{V} .

Kabanov (1999)

Trading strategies

- Trading strategies: *H* ∈ V.
- Denote: H^{\uparrow} for buying and H^{\downarrow} for selling.
- The position in the risky asset $\phi = H^{\uparrow} H^{\downarrow}$.
- Assume $\phi_T = 0$.

The liquidation value is defined by

$$W_t^{x,\text{liq}}(\theta, H) := x - \int_0^t S_u^\theta dH_u^\uparrow + \int_0^t (1-\lambda) S_u^\theta dH_u^\downarrow + \phi_t^+ (1-\lambda) S_t^\theta - \phi_t^- S_t^\theta.$$
(1)

Consistent price systems

Definition

A λ -consistent price system (λ -CPS) for S is a pair (\tilde{S}, Q) of a probability measure $Q \sim P$ and a Q local martingale \tilde{S} such that

$$(1-\lambda)S_t \leq \tilde{S}_t \leq S_t, \quad a.s. \quad \forall t \in [0, T].$$
 (2)

A λ -strictly consistent price system (λ -SCPS) is a CPS such that the inequalities are strict in (2).

A B K A B K

Utility functions on \mathbb{R}_+

Definition (Admissibility)

Let x > 0. Denote

$$\mathcal{A}_0^{\theta}(x) := \{ H \in \mathcal{A}^{\theta}(x) : W_t^{x, \text{liq}}(\theta, H) \ge 0 \text{ a.s.}, \phi_T = H_T^{\uparrow} - H_T^{\downarrow} = 0 \},$$

and $\mathcal{A}(x) = \bigcap_{\theta \in \Theta} \mathcal{A}_0^{\theta}(x).$

3

11 / 24

・ 同下 ・ ヨト ・ ヨト

The first result

Theorem

Let $U: (0,\infty) \to \mathbb{R}$ be a nondecreasing, concave function and $U(\infty) > 0$. Assume that

- For each $\theta \in \Theta$ and for all $0 < \mu < \lambda$, the price process S^{θ} admits a μ -CPS.
- The dual problem for the model θ , is finite for all $\theta \in \Theta$.

The robust utility maximization problem admits a solution.

 $u(x) < \infty$? Candidate for H^* ? Admissibility? Upper semicontinuity?

Nutz (2016): an example with $u(x) < \infty$ but there is no optimizer. Reason: lack of upper-semicontinuity property in one model. Condition: $E^P U^+(x + h\Delta S) < \infty, \forall h, P$ from Nutz (2016), Blanchard and Carassus (2018)

Utility functions on \mathbb{R}

Assumption

 $U : \mathbb{R} \to \mathbb{R}$ is bounded from above, nondecreasing, concave, U(0) = 0. Define the convex conjugate by

$$V(y) := \sup_{x \in \mathbb{R}} (U(x) - xy), \qquad y > 0.$$

We also assume that

$$\lim_{x \to -\infty} \frac{U(x)}{x} = \infty,$$
(3)

$$\limsup_{y \to \infty} \frac{V(2y)}{V(y)} < \infty.$$
(4)

M. Rásonyi	(Rényi	Institute)
------------	--------	------------

3

Admissibility

- $X_t \ge -C, \forall t$. Too small when S is non locally bounded.
- $X_t \ge -cW$ where $EU(-\alpha W) > -\infty$. Biagini and Frittelli (2005).
- Supermartingale property. Owen and Žitković (2009)
- \mathcal{M}_V^{θ} : set of probabilities $Q \sim P$ with $EV(dQ/dP) < \infty$.

Admissibility

Define

 $\mathcal{M}^{\theta}_{V} := \{ Q^{\theta} : (\tilde{S}^{\theta}, Q^{\theta}) \text{ is a consistent price system, } EV(dQ^{\theta}/dP) < \infty \},$

$$V^{ imes}(heta,H)=x-\int_{0}^{t}S^{ heta}_{u}dH^{\uparrow}_{u}+\int_{0}^{t}(1-\lambda)S^{ heta}_{u}dH^{\downarrow}_{u}+\phi_{t} ilde{S}^{ heta}_{t}$$

Definition

We define

$$\mathcal{A}^{\theta}(x) = \{ H \in \mathbf{V} : \phi_{T} = 0, \ V^{\times}(\theta, H) \text{ is a } Q^{\theta} \text{-supermartingale}$$
for each consistent price system $(\tilde{S}^{\theta}, Q^{\theta})$ such that $Q^{\theta} \in \mathcal{M}_{V}^{\theta}$ and $\mathcal{A}(x) := \bigcap_{\theta \in \Theta} \mathcal{A}^{\theta}(x).$

- 3

< 回 ト < 三 ト < 三 ト

The second result

The optimization problem

$$u(x) = \sup_{H \in \mathcal{A}(x)} \inf_{\theta \in \Theta} EU(W_T^{x, liq}(\theta, H)).$$
(5)

Theorem

Let the above Assumption hold, and suppose that for each $\theta \in \Theta$, the price process S^{θ} admits a λ -SCPS $(Q^{\theta}, \tilde{S}^{\theta})$ such that $Q^{\theta} \in \mathcal{M}_{V}^{\theta}$. Then there exists a solution for the problem (5).

 $u(x) < \infty$? Candidate for H^* ? Admissibility? Upper semicontinuity?

Orlicz spaces

 $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ is a Young function if it is convex with $\Phi(0) = 0$ and $\lim_{x \to \infty} \Phi(x)/x = \infty$. The set

$$\mathcal{L}^{\Phi} := \{ X \in \mathcal{L}^{0} : E\Phi(\gamma|X|) < \infty \text{ for some } \gamma > 0 \}$$

is a Banach space with the following norm

$$||X||_{\Phi} := \inf\{\gamma > 0 : X \in \gamma B_{\Phi}\}$$

where $B_{\Phi} := \{X \in L^0 : E\Phi(|X|) \le 1\}$, the unit ball of L^{Φ} . Define the conjugate function $\Phi^*(y) := \sup_{x \ge 0} (xy - \Phi(x)), y \in \mathbb{R}_+$. This is also a Young function and $(\Phi^*)^* = \Phi$. Φ is of class Δ_2 if $\lim_{x \to \infty} \frac{\Phi(2x)}{\Phi(x)} < \infty$.

A compactness result

Lemma (Delbaen, Owari 2018)

Let Φ be a Young function of class Δ_2 and let $\xi_n, n \ge 1$ be a norm-bounded sequence in L^{Φ^*} . Then there are convex weights $\alpha_j^n \ge 0$, $n \le j \le M(n), \sum_{j=n}^{M(n)} \alpha_j^n = 1$ such that

$$\xi'_n := \sum_{j=n}^{M(n)} \alpha_j^n \xi_j$$

converges almost surely to some $\xi \in L^{\Phi^*}$ as $n \to \infty$, and $\sup_n |\xi'_n|$ is in L^{Φ^*} .

Discrete-time frictionless setting

Assume that there is a discrete-time filtration \mathcal{F}_t , t = 0, ..., T. Trading strategy ϕ : predictable. Initial capital: c. Portfolio terminal value: $W_T^c(\phi) := c + \sum_{i=1}^T \phi_i(S_i - S_{i-1})$.

글 에 너 글 어

Assumptions

There is θ^* such that S^{θ^*} is arbitrage-free and $P(D_t = \mathbb{R}^d) = 1$ for all $t = 1, \ldots T$ where D_t is the smallest linear space containing the \mathcal{F}_{t-1} -conditional support of S_t . In plain English: there is no redundant asset.

A B < A B </p>

20 / 24

Theorem. There is an optimal strategy if $U(\infty) < \infty$. **Theorem.** Under convenient integrability conditions for all $\theta \in \Theta$ there is an optimal strategy even if U is unbounded.

The latter result is the first of its kind.

Continuous-time: serious difficulties.

21 / 24

Conclusion

- Looking at the problem under a new angle.
- Existence results.
- Future: duality?

E + 4 E +

3

- Bartl, D. (2017). Exponential utility maximization under model uncertainty for unbounded endowments. *Preprint*. Retrieved from https://arxiv.org/abs/1610.00999v2.
- Bartl, D., Cheridito, P., and Kupper, M. (2017). Robust utility maximization with medial limits. *Preprint, arXiv:1712.07699*.
- Blanchard, R. and Carassus, L. (2018). Multiple-priors optimal investment in discrete time for unbounded utility function. Annals of Applied Probability. Retrieved from http://www.imstat.org/aap/future_papers.html.
- Guasoni, P. (2002). Optimal investment with transaction costs and without semimartingales. *Annals of Applied Probability*, 12(4):1227–1246.
- Kabanov, Y. M. (1999). Hedging and liquidation under transaction costs in currency markets. *Finance and Stochastics*, 3(2):237–248.
- Neufeld, A. and Šikić, M. (2017). Robust utility maximization in discrete-time markets with friction. *Preprint*. Retrieved from

https://arxiv.org/abs/1610.09230v1.

Nutz, M. (2016). Utility maximization under model uncertainty in discrete time. *Mathematical Finance*, 26(2):252–268.

Owen, M. P. and Žitković, G. (2009). Optimal investment with an unbounded random endowment and utility-based pricing. *Mathematical Finance*, 19(1):129–159.

M. Rásonyi (Rényi Institute)

Thank you for your attention!

A.

э