Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

 $\mathsf{IBNR}\xspace$ process with Markovian batches 00000000

Asymptotics for IBNR/infinite queue processes

L.Rabehasaina, joint with J.K.Woo (Univ. New South Wales)

Laboratoire de Mathématiques Besançon, Université Bourgogne-Franche Comté, France.

Innovative Research in Mathematical Finance, CIRM, 5th September 2018.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches

Content

Incurred but not reported claims

Discounted IBNR processes , i.i.d. batches

IBNR process with Markovian batches

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches 00000000

Content

Incurred but not reported claims

Discounted IBNR processes , i.i.d. batches

IBNR process with Markovian batches

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches 00000000

Incurred but not reported claims

Modelling of a situation where incoming claims are reported with some delay :

Number of non reported claims at time t:

$$Z(t) = \sum_{i=1}^{\infty} \mathbf{1}_{[T_i \leq t < T_i + L_i]}$$

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches

Queueing point of view

Link with $G/G/\infty$ queues :

With this point of view, $Z(t) = \sum_{i=1}^{\infty} \mathbf{1}_{[T_i \leq t < T_i + L_i]}$ is the number of customers in the queue at time *t*.

IBNR process with Markovian batches 00000000

Extension for model in dim. 1

$$Z(t) = Z^{\delta}(t) = \sum_{i=1}^{\infty} \mathbf{1}_{[T_i \leq t < T_i + L_i]} X_i e^{-\delta(T_i + L_i)},$$

- { $\tau_i := T_{i+1} T_i$, $i \in \mathbb{N}$ } i.i.d. interclaim times, { L_i , $i \in \mathbb{N}$ } i.i.d. delay times,
- $\{X_i, i \in \mathbb{N}\}$ **i.i.d.** batch sizes,
- $\delta \geq 0$ discount rate.

Discounted IBNR processes , i.i.d. batches 000000000

IBNR process with Markovian batches

Model in dim. k

$$k$$
 branches $Z(t)=(Z_1(t),\ldots,Z_k(t))=Z^\delta(t),\ t\geq 0$, where

$$Z_j(t) = Z_j^{\delta}(t) := \sum_{i=1}^{\infty} \mathbf{1}_{\{T_i \le t < T_i + \mathbf{L}_{i,j}\}} X_{i,j} e^{-\delta(T_i + \mathbf{L}_{i,j})}, \quad j \in \{1, ..., k\}.$$

- $\{\tau_i := T_{i+1} T_i, i \in \mathbb{N}\}$ i.i.d. interclaim times,
- {(L_{i,1},..., L_{i,k}), i ∈ N} i.i.d. delay times, with independent components L_{i,1}, ..., L_{i,k},
- $\{(X_{i,1},...,X_{i,k}), i \in \mathbb{N}\}$ i.i.d. batch sizes, with *correlated* components $X_{i,1}, ..., X_{i,k}$ and generic distribution of r.v. $X = (X_1,...,X_k)$.

Queueing interpretation

 $\delta = 0$, Batches of sizes $(X_{i,1}, ..., X_{i,k}) \sim \mathcal{M}(M, p_1, ..., p_k)$ for some $M \in \mathbb{N}^*$, Batch *j* of size $X_{i,j}$ with customers with same service time L_{ij} , $\implies Z_1(t), ..., Z_k(t)$ are *correlated* $G/G/\infty$ queues.

Example M = 1: an arriving customer is sent to queue $Z_j(t)$ with probability p_j .

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches 00000000

Known results

(Non discounted) IBNR process in dim 1/ Infinite queue, i.e.

$$Z(t) = \sum_{i=1}^{\infty} \mathbf{1}_{[T_i \leq t < T_i + L_i]} X_i$$

 \rightarrow Distribution available in Takács (1962) for exponential interclaims or delays and $X_i = 1$, in Willmot & Drekic (2002/2009), Guo & al (2014), Landriault & al (2014/2016), when interclaims are Matrix Exponential distributed.

Discounted IBNR process in dim k, i.e.

$$Z_j(t) = \sum_{i=1}^{\infty} \mathbf{1}_{[T_i \le t < T_i + L_{ij}]} X_{ij} e^{-\delta(T_i + L_{ij})}, \quad j = 1, ..., k.$$

 \longrightarrow Recursive renewal equation for joint moments in Woo (2016) .

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches 00000000

Known results and objective of talk

In general : compact expression for either distribution (LT or cdf) or moments are not available.

$$\Longrightarrow$$
 Goal : We define $ilde{Z}(t) = ilde{Z}^{\delta}(t) := e^{\delta t} Z(t)$

- Asymptotics for joint moments or Convergence in distribution as t → ∞ for the k dimensional process Z̃(t) for light tailed delays and *i.i.d.* X_i's,
- Extreme behaviour/Convergence in distribution for the 1 dimensional process when arrivals are Poisson and (X_i)_{i∈ℕ} is a finite *Markov chain*.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle \bullet 000000000}$

IBNR process with Markovian batches 00000000

Content

Incurred but not reported claims

Discounted IBNR processes , i.i.d. batches

IBNR process with Markovian batches

IBNR process with Markovian batches

Assumptions

Recall that

$$Z_{j}(t) = Z_{j}^{\delta}(t) := \sum_{i=1}^{\infty} \mathbf{1}_{\{T_{i} \leq t < T_{i} + L_{i,j}\}} X_{i,j} e^{-\delta(T_{i} + L_{i,j})}, \ j \in \{1, ..., k\}$$

and $\tilde{Z}(t) = \tilde{Z}^{\delta}(t) := e^{\delta t} Z(t).$

Main assumptions :

- $X = (X_1, ..., X_k)$ admits joined moments of all order,
- density f of τ_1 is bounded and light tailed.

Incurred but not reported claims

IBNR process with Markovian batches 00000000

Notation

We let, for all
$$n=(n_1,...,n_k)\in\mathbb{N}^k$$
 and $s=(s_1,...,s_k)\in\mathbb{R}^k$,

$$\begin{split} \eta_n &:= \sum_{j=1}^k n_j, \\ \tilde{M}_n(t) &= \tilde{M}_n(t, \delta) &:= \mathbb{E}\left[\prod_{j=1}^k \left(\tilde{Z}_j(t)\right)^{n_j}\right], \\ \psi(s, t) &= \mathbb{E}\left[e^{\langle s, Z(t) \rangle}\right], \quad \tilde{\psi}(s, t) = \mathbb{E}\left[e^{\langle s, \tilde{Z}(t) \rangle}\right]. \end{split}$$

And we define the *partial order* on \mathbb{N}^k :

$$\begin{split} \ell = (\ell_1,...,\ell_k) < n = (n_1,...,n_k) \\ \iff \quad \ell_j \leq n_j, \ j = 1,...,k, \ \text{and} \ \exists j_0, \ \ell_{j_0} < n_{j_0}. \end{split}$$

Discounted IBNR processes , i.i.d. batches ${\scriptstyle \texttt{OOO} \bullet \texttt{OOOOOO}}$

IBNR process with Markovian batches 00000000

Renewal equation for $t \mapsto \tilde{M}_n(t)$

Theorem (Woo (2016))

For all $n \in \mathbb{N}^k$, $t \mapsto \tilde{M}_n(t)$ satisfies the renewal equation

$$ilde{M}_n(t) = ilde{b}_n(t) + ilde{M}_n \star F(t), \qquad t \ge 0,$$
 (1)

where F is the cdf of τ_1 , and

for some explicit $\Pi_{n,\ell}(.)$.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches 00000000

Explicit expression (sort of...)

Solving (1) :
$$\tilde{M}(t)$$

$$\tilde{M}_n(t) = \sum_{j=0}^{\infty} F^{\star(j)} \star \tilde{b}_n(t)$$

 \longrightarrow need to truncate sum with many integrals,

$$\longrightarrow \tilde{b}_n(.)$$
 depends on $\tilde{M}_{\ell}(.)$ for $\ell < n$.

 \Longrightarrow Hardly tractable in practice.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches

(Real) Explicit expression, Poisson arrivals

$$\text{Let } \mathcal{M}^*_{t,X}(s) = \mathbb{E}\left[\exp\left(\sum_{j=1}^k s_j e^{-\delta L_j} X_{ij} \mathbf{1}_{[L_j > t]}\right)\right], \ t \geq 0, \ s \in \mathbb{R}^k.$$

Proposition

If $au_1 \sim \mathcal{E}(\lambda)$ then one has the following expression

$$ilde{\psi}(s,t) = \exp\left[\lambda\int_0^t \left(M^*_{
u,X}(e^{\delta
u}s)-1
ight)d
u
ight], \quad t\geq 0, \,\, s\in \mathbb{R}^k,$$

and the mgf of Z(t) is obtained explicitly by $\psi(s,t) = \tilde{\psi}(e^{-\delta t}s,t)$.

Discounted IBNR processes , i.i.d. batches ${\tt 0000000000}$

IBNR process with Markovian batches 00000000

Asymptotics and limiting distribution

Theorem (R., Woo (2016))

For all $n \in \mathbb{N}^k$:

$$\tilde{M}_n(t) \stackrel{t \to \infty}{\longrightarrow} \chi_n, \qquad t \to \infty,$$
 (2)

where $\chi_n = \chi_n(\delta) := \frac{\int_0^\infty \tilde{b}_n(t)dt}{\mathbb{E}[\tau_1]}$. Besides, if $||X|| \le M$ constant or if X is New Better than Used :

$$e^{\delta t}Z(t) \xrightarrow{\mathcal{D}} \mathcal{Z}_{\infty}, \quad t \to \infty,$$
 (3)

where $Z_{\infty} = (Z_{\infty,1}, \dots, Z_{\infty,k}) = Z_{\infty}(\delta)$ is a light tailed vector valued rv with the joint moments

$$\mathbb{E}\bigg[\prod_{i=1}^{k} \mathcal{Z}_{\infty,i}^{n_i}\bigg] = \chi_n = \chi_n(\delta), \quad n = (n_1, ..., n_k) \in \mathbb{N}^k.$$

7 / 28

Hint of Proof

Convergence of moments : (2) is obtained thanks to renewal equation (1) for $\tilde{M}_n(t)$ + Smith's renewal theorem.

Convergence in distribution : (3) is obtained thanks to Convergence of moments (2) + Haviland (1935)'s criterion, then proving convergence of the LT of $e^{\delta t}Z(t)$.

Case of exponential delays

 χ_n depends on $\tilde{b}_n(.)$, which in turn depends on the $\tilde{M}_{\ell}(t)$ for $\ell < n$ \implies no explicit expression in general.

One particular case :

Theorem (Exponential delays) Suppose that delays $L = (L_1, ..., L_k)$ verifies $L_j \sim \mathcal{E}(\mu)$ for all j = 1, ..., k. Then the χ_n 's, $n \in \mathbb{N}^k$, have an explicit expression, computable recursively in function of LT of τ_1 , μ , the joint moments of $X = (X_1, ..., X_k)$.

First two moments of the workload $D(t) := \sum_{i=1}^{\infty} (T_i + L_i - t) \mathbf{1}_{\{T_i \le t < T_i + L_i\}} \text{ are also available.}$ Discounted IBNR processes , i.i.d. batches ${\scriptstyle \texttt{OOOOOOOO}} \bullet$

IBNR process with Markovian batches

Queueing point of view : $\delta = 0$

When $\delta = 0$, back to example of batches of sizes $(X_{i,1}, ..., X_{i,k}) \sim \mathcal{M}(M, p_1, ..., p_k)$ for some $M \in \mathbb{N}^*$, and service times L_{ij} for customers of batch j of size $X_{i,j}$. Then :

• $Z_1(t),..., Z_k(t)$ queue sizes of *correlated* $G/G/\infty$ queues,

•
$$(Z_1(t), ..., Z_k(t)) \xrightarrow{\mathcal{D}}_{t \to \infty} \mathcal{Z}_{\infty} = (\mathcal{Z}_{\infty,1}, ..., \mathcal{Z}_{\infty,k})$$

stationary regime of the queues.

Besides, when service times are $\mathcal{E}(\mu)$ then we get k (correlated) $G/M/\infty$ queues, and the distribution of $\mathcal{Z}_{\infty} = (\mathcal{Z}_{\infty,1}, \dots, \mathcal{Z}_{\infty,k})$ is **explicit**.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches ${\scriptstyle \bullet o o o o o o o }$

Content

Incurred but not reported claims

Discounted IBNR processes , i.i.d. batches

IBNR process with Markovian batches

Incurred		reported	

Discounted IBNR processes , i.i.d. batches 0000000000

IBNR process with Markovian batches

Notation

Put k = 1. Recall that

$$Z(t) = \sum_{i=1}^{\infty} X_i \mathbf{1}_{[T_i \leq t < T_i + L_i]},$$

where $\{X_i, i \in \mathbb{N}\}$ finite Markov chain with state space $\{0, ..., K\}$, transition matrix P, stationary distribution π .

We define the joint Laplace transform/mgf for $t\geq 0,\ s\leq 0$

$$\psi(s,t) := \left[\mathbb{E} \left(e^{sZ(t)} \mathbf{1}_{[X_{N_t}=y]} \middle| X_0 = x \right) \right]_{(x,y) \in \{0,\ldots,K\}^2}.$$

where N_t : total number of customers arrived within [0, t]. Two issues :

- How to determine the distribution of $(Z(t), X_{N_t})$ (e.g. $\psi(s, t)$) for some fixed t?
- **2** Behaviour as $t \to \infty$?

Discounted IBNR processes , i.i.d. batches 000000000

IBNR process with Markovian batches

Some results (R. & Woo (2017) and (2018))

- In general, $\psi(s, t)$ not computable, but $\mathbb{E}(Z(t))$, $\mathbb{E}(Z(t)^2)$ are available in some cases, for $t \leq +\infty$.
- When $T_{i+1} T_i \sim \mathcal{E}(\lambda)$ (Poisson arrival with intensity λ) then

$$\partial_t \psi(s,t) = [-\lambda I + \lambda \tilde{Q}(s,t)]\psi(s,t), \quad \psi(s,0) = I,$$

for some (substochastic) matrix $(\tilde{Q}(s,t))_{s \le 0,t \ge 0}$. Unfortunately, this matrix ODE does not admit a closed form solution !

Fast arrivals, Slow service in the Poisson arrival case

- \implies Rescaling approach :
 - speed up arrivals $\lambda \longrightarrow \lambda n^{\gamma}$ for some $\gamma > 0$,
 - renormalize transition matrix $P \longrightarrow (1 1/n^{\gamma})I + P/n^{\gamma}$,
 - suppose that L_j 's are fat tailed with index $\alpha \in (0,1)$ and slow down services $L_j \longrightarrow L_j/n$.

How does the corresponding queue $Z^{(n)}(t)$ jointly to corresponding state $X_{N_t^{(n)}}^{(n)}$ behave when *n* grows large, and $t \in [0, 1]$ is fixed? \implies different behaviour whether $\gamma < \alpha$, $\gamma > \alpha$ or $\gamma = \alpha$.

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches

Fast arrivals, Slow service

Theorem (R. (2018), in progress)

Let $\beta := 1/(1 - \alpha)$, $\{\mathcal{X}(t), t \in [0, 1]\}$ a continuous time Markov chain with infinitesimal generating matrix $\lambda(P - I)$ with $\mathcal{X}(0) \sim \pi$, $\{\mathcal{X}^{\beta}(t), t \in [0, 1]\}$ a continuous time inhomogeneous Markov chain with infinitesimal generating matrix $\beta(1 - t)^{\beta - 1}\lambda(P - I)$ with $\mathcal{X}^{\beta}(0) \sim \pi$. Let $t \in [0, 1]$. One has one of the three limiting behaviours as $n \to \infty$:

• Slow arrivals : If $\gamma < \alpha$ then

$$\mathcal{D}\left(\left(Z^{(n)}(t), X^{(n)}_{N^{(n)}_t}\right) \middle| X^{(n)}_0\right) \longrightarrow \mathcal{D}\left((\mathbf{0}, \mathcal{X}(t)) \middle| \mathcal{X}(\mathbf{0})\right),$$

 $n o \infty$, where $\mathbf{0} = (0, ..., 0) \in \mathbb{R}^k$,

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches ${\scriptstyle 00000000}$

Fast arrivals, Slow service

Theorem (R. (2018), Cont'd)

• Fast arrivals : If $\gamma > \alpha$ then, as $n \to \infty$,

$$\mathcal{D}\left(\left(\frac{Z^{(n)}(t)}{n^{\gamma-\alpha}}, X^{(n)}_{N^{(n)}_t}\right) \middle| X^{(n)}_0\right) \longrightarrow$$
$$\mathcal{D}\left(\left(\beta\lambda \int_{1-t^{1/\beta}}^1 \mathcal{X}^{\beta}(v) \, dv, \, \mathcal{X}^{\beta}(1)\right) \middle| \mathcal{X}^{\beta}(1-t^{1/\beta})\right),$$
$$n \to \infty.$$

Discounted IBNR processes , i.i.d. batches ${\scriptstyle 000000000}$

IBNR process with Markovian batches

Fast arrivals, Slow service

Theorem (R. (2018), Cont'd)

• Equilibrium : If $\gamma = \alpha$ then, as $n \to \infty$,

$$\mathcal{D}\left(\left(Z^{(n)}(t), X_{N_{t}^{(n)}}^{(n)}\right) \middle| X_{0}^{(n)}\right) \longrightarrow$$

$$\mathcal{D}\left(\left(\left(\int_{1-t^{1/\beta}}^{1} \mathcal{X}_{j}^{\beta}(v) \nu_{j}^{\beta}(dv)\right)_{j=1}^{k}, \ \mathcal{X}^{\beta}(1)\right) \middle| \mathcal{X}^{\beta}(1-t^{1/\beta})\right)$$

 $n \to \infty$, with $\{\nu_j^{\beta}(t), t \ge 0\}$, j = 1, ..., k, are k independent Poisson processes with same intensity $\beta\lambda$, independent from $\{\mathcal{X}^{\beta}(t), t \in [0, 1]\}$.

Discounted IBNR processes , i.i.d. batches

IBNR process with Markovian batches

Merci!