Asymptotics for IBNR/infinite queue processes

L.Rabehasaina, joint with J.K.Woo (Univ. New South Wales)
Laboratoire de Mathématiques Besançon, Université Bourgogne-Franche Comté, France.

Innovative Research in Mathematical Finance, CIRM, 5th September 2018.

Content

Incurred but not reported claims

Discounted IBNR processes, i.i.d. batches

IBNR process with Markovian batches

Content

Incurred but not reported claims

Discounted IBNR processes, i.i.d. batches

IBNR process with Markovian batches

Incurred but not reported claims

Modelling of a situation where incoming claims are reported with some delay :

Number of non reported claims at time t :

$$
Z(t)=\sum_{i=1}^{\infty} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i}\right]}
$$

Queueing point of view

Link with $G / G / \infty$ queues:

With this point of view, $Z(t)=\sum_{i=1}^{\infty} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i}\right]}$ is the number of customers in the queue at time t.

Extension for model in dim. 1

$$
Z(t)=Z^{\delta}(t)=\sum_{i=1}^{\infty} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i}\right]} X_{i} e^{-\delta\left(T_{i}+L_{i}\right)}
$$

- $\left\{\tau_{i}:=T_{i+1}-T_{i}, i \in \mathbb{N}\right\}$ i.i.d. interclaim times, $\left\{L_{i}, i \in \mathbb{N}\right\}$ i.i.d. delay times,
- $\left\{X_{i}, i \in \mathbb{N}\right\}$ i.i.d. batch sizes,
- $\delta \geq 0$ discount rate.

Model in dim. k

k branches $Z(t)=\left(Z_{1}(t), \ldots, Z_{k}(t)\right)=Z^{\delta}(t), t \geq 0$, where

$$
Z_{j}(t)=Z_{j}^{\delta}(t):=\sum_{i=1}^{\infty} \mathbf{1}_{\left\{T_{i} \leq t<T_{i}+L_{i, j}\right\}} X_{i, j} e^{-\delta\left(T_{i}+L_{i, j}\right)}, \quad j \in\{1, \ldots, k\}
$$

- $\left\{\tau_{i}:=T_{i+1}-T_{i}, i \in \mathbb{N}\right\}$ i.i.d. interclaim times,
- $\left\{\left(L_{i, 1}, \ldots, L_{i, k}\right), i \in \mathbb{N}\right\}$ i.i.d. delay times, with independent components $L_{i, 1}, \ldots, L_{i, k}$,
- $\left\{\left(X_{i, 1}, \ldots, X_{i, k}\right), i \in \mathbb{N}\right\}$ i.i.d. batch sizes, with correlated components $X_{i, 1}, \ldots, X_{i, k}$ and generic distribution of r.v. $X=\left(X_{1}, \ldots, X_{k}\right)$.

Queueing interpretation

$\delta=0$, Batches of sizes $\left(X_{i, 1}, \ldots, X_{i, k}\right) \sim \mathcal{M}\left(M, p_{1}, \ldots, p_{k}\right)$ for some $M \in \mathbb{N}^{*}$,
Batch j of size $X_{i, j}$ with customers with same service time $L_{i j}$, $\Longrightarrow Z_{1}(t), \ldots, Z_{k}(t)$ are correlated $G / G / \infty$ queues.

Example $M=1$: an arriving customer is sent to queue $Z_{j}(t)$ with probability p_{j}.

Known results

(Non discounted) IBNR process in dim 1/ Infinite queue, i.e.

$$
Z(t)=\sum_{i=1}^{\infty} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i}\right]} X_{i}
$$

\longrightarrow Distribution available in Takács (1962) for exponential interclaims or delays and $X_{i}=1$, in Willmot \& Drekic (2002/2009), Guo \& al (2014), Landriault \& al (2014/2016), when interclaims are Matrix Exponential distributed.

Discounted IBNR process in $\operatorname{dim} k$, i.e.

$$
Z_{j}(t)=\sum_{i=1}^{\infty} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i j}\right]} X_{i j} e^{-\delta\left(T_{i}+L_{i j}\right)}, \quad j=1, \ldots, k
$$

\longrightarrow Recursive renewal equation for joint moments in Woo (2016) .

Known results and objective of talk

In general : compact expression for either distribution (LT or cdf) or moments are not available.
\Longrightarrow Goal: We define $\tilde{Z}(t)=\tilde{Z}^{\delta}(t):=e^{\delta t} Z(t)$

- Asymptotics for joint moments or Convergence in distribution as $t \rightarrow \infty$ for the k dimensional process $\tilde{Z}(t)$ for light tailed delays and i.i.d. X_{i} 's,
- Extreme behaviour/Convergence in distribution for the 1 dimensional process when arrivals are Poisson and $\left(X_{i}\right)_{i \in \mathbb{N}}$ is a finite Markov chain.

Content

Incurred but not reported claims

Discounted IBNR processes, i.i.d. batches

IBNR process with Markovian batches

Assumptions

Recall that

$$
Z_{j}(t)=Z_{j}^{\delta}(t):=\sum_{i=1}^{\infty} \mathbf{1}_{\left\{T_{i} \leq t<T_{i}+L_{i, j}\right\}} X_{i, j} e^{-\delta\left(T_{i}+L_{i, j}\right)}, j \in\{1, \ldots, k\}
$$

and $\tilde{Z}(t)=\tilde{Z}^{\delta}(t):=e^{\delta t} Z(t)$.
Main assumptions :

- $X=\left(X_{1}, \ldots, X_{k}\right)$ admits joined moments of all order,
- density f of τ_{1} is bounded and light tailed.

Notation

We let, for all $n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ and $s=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{R}^{k}$,

$$
\begin{aligned}
\eta_{n} & :=\sum_{j=1}^{k} n_{j} \\
\tilde{M}_{n}(t)=\tilde{M}_{n}(t, \delta) & :=\mathbb{E}\left[\prod_{j=1}^{k}\left(\tilde{Z}_{j}(t)\right)^{n_{j}}\right], \\
\psi(s, t) & =\mathbb{E}\left[e^{<s, Z(t)>}\right], \quad \tilde{\psi}(s, t)=\mathbb{E}\left[e^{<s, \tilde{Z}(t)>}\right] .
\end{aligned}
$$

And we define the partial order on \mathbb{N}^{k} :

$$
\begin{aligned}
\ell=\left(\ell_{1}, \ldots, \ell_{k}\right) & <n=\left(n_{1}, \ldots, n_{k}\right) \\
& \Longleftrightarrow \quad \ell_{j} \leq n_{j}, j=1, \ldots, k, \text { and } \exists j_{0}, \ell_{j_{0}}<n_{j_{0}} .
\end{aligned}
$$

Renewal equation for $t \mapsto \tilde{M}_{n}(t)$

Theorem (Woo (2016))

For all $n \in \mathbb{N}^{k}, t \mapsto \tilde{M}_{n}(t)$ satisfies the renewal equation

$$
\begin{equation*}
\tilde{M}_{n}(t)=\tilde{b}_{n}(t)+\tilde{M}_{n} \star F(t), \quad t \geq 0 \tag{1}
\end{equation*}
$$

where F is the cdf of τ_{1}, and

$$
\begin{aligned}
\tilde{b}_{n}(t):=\sum_{\ell<n}\binom{n_{1}}{\ell_{1}} \cdots\binom{n_{k}}{\ell_{k}} & \mathbb{E}\left[\prod_{j=1}^{k} X_{j}^{n_{j}-\ell_{j}}\right] \\
& \mathbb{E}\left[\tilde{M}_{\ell}\left(t-\tau_{1}\right) \Pi_{n, \ell}\left(t-\tau_{1}\right) \cdot \mathbf{1}_{\left[\tau_{1}<t\right]}\right]
\end{aligned}
$$

for some explicit $\Pi_{n, \ell}($.$) .$

Explicit expression (sort of...)

Solving (1) :

$$
\tilde{M}_{n}(t)=\sum_{j=0}^{\infty} F^{\star(j)} \star \tilde{b}_{n}(t)
$$

\longrightarrow need to truncate sum with many integrals,
$\longrightarrow \tilde{b}_{n}($.$) depends on \tilde{M}_{\ell}($.$) for \ell<n$.
\Longrightarrow Hardly tractable in practice.

(Real) Explicit expression, Poisson arrivals

Let $M_{t, X}^{*}(s)=\mathbb{E}\left[\exp \left(\sum_{j=1}^{k} s_{j} e^{-\delta L_{j}} X_{i j} \mathbf{1}_{\left[L_{j}>t\right]}\right)\right], t \geq 0, s \in \mathbb{R}^{k}$.

Proposition

If $\tau_{1} \sim \mathcal{E}(\lambda)$ then one has the following expression

$$
\tilde{\psi}(s, t)=\exp \left[\lambda \int_{0}^{t}\left(M_{v, X}^{*}\left(e^{\delta v} s\right)-1\right) d v\right], \quad t \geq 0, s \in \mathbb{R}^{k}
$$

and the mgf of $Z(t)$ is obtained explicitly by $\psi(s, t)=\tilde{\psi}\left(e^{-\delta t} s, t\right)$.

Asymptotics and limiting distribution

Theorem (R., Woo (2016))

For all $n \in \mathbb{N}^{k}$:

$$
\begin{equation*}
\tilde{M}_{n}(t) \xrightarrow{t \rightarrow \infty} \chi_{n}, \quad t \rightarrow \infty \tag{2}
\end{equation*}
$$

where $\chi_{n}=\chi_{n}(\delta):=\frac{\int_{0}^{\infty} \tilde{b}_{n}(t) d t}{\mathbb{E}\left[\tau_{1}\right]}$. Besides, if $\|X\| \leq M$ constant or if X is New Better than Used:

$$
\begin{equation*}
e^{\delta t} Z(t) \xrightarrow{\mathcal{D}} \mathcal{Z}_{\infty}, \quad t \rightarrow \infty, \tag{3}
\end{equation*}
$$

where $\mathcal{Z}_{\infty}=\left(\mathcal{Z}_{\infty, 1}, \ldots, \mathcal{Z}_{\infty, k}\right)=\mathcal{Z}_{\infty}(\delta)$ is a light tailed vector valued $r v$ with the joint moments

$$
\mathbb{E}\left[\prod_{i=1}^{k} \mathcal{Z}_{\infty, i}{ }^{n_{i}}\right]=\chi_{n}=\chi_{n}(\delta), \quad n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}
$$

Hint of Proof

Convergence of moments : (2) is obtained thanks to renewal equation (1) for $\tilde{M}_{n}(t)+$ Smith's renewal theorem.

Convergence in distribution : (3) is obtained thanks to Convergence of moments (2) + Haviland (1935)'s criterion, then proving convergence of the LT of $e^{\delta t} Z(t)$.

Case of exponential delays

χ_{n} depends on $\tilde{b}_{n}($.$) , which in turn depends on the \tilde{M}_{\ell}(t)$ for $\ell<n$ \Longrightarrow no explicit expression in general.

One particular case :

Theorem (Exponential delays)

Suppose that delays $L=\left(L_{1}, \ldots, L_{k}\right)$ verifies $L_{j} \sim \mathcal{E}(\mu)$ for all $j=1, \ldots, k$.
Then the χ_{n} 's, $n \in \mathbb{N}^{k}$, have an explicit expression, computable recursively in function of $L T$ of τ_{1}, μ, the joint moments of $X=\left(X_{1}, \ldots, X_{k}\right)$.

First two moments of the workload
$D(t):=\sum_{i=1}^{\infty}\left(T_{i}+L_{i}-t\right) \mathbf{1}_{\left\{T_{i} \leq t<T_{i}+L_{i}\right\}}$ are also available.

Queueing point of view : $\delta=0$

When $\delta=0$, back to example of batches of sizes
$\left(X_{i, 1}, \ldots, X_{i, k}\right) \sim \mathcal{M}\left(M, p_{1}, \ldots, p_{k}\right)$ for some $M \in \mathbb{N}^{*}$, and service times $L_{i j}$ for customers of batch j of size $X_{i, j}$. Then :

- $Z_{1}(t), \ldots, Z_{k}(t)$ queue sizes of correlated $G / G / \infty$ queues,
- $\left(Z_{1}(t), \ldots, Z_{k}(t)\right) \xrightarrow{\mathcal{D}}_{t \rightarrow \infty} \mathcal{Z}_{\infty}=\left(\mathcal{Z}_{\infty, 1}, \ldots, \mathcal{Z}_{\infty, k}\right)$ stationary regime of the queues.

Besides, when service times are $\mathcal{E}(\mu)$ then we get k (correlated) $G / M / \infty$ queues, and the distribution of $\mathcal{Z}_{\infty}=\left(\mathcal{Z}_{\infty, 1}, \ldots, \mathcal{Z}_{\infty, k}\right)$ is explicit.

Content

Incurred but not reported claims

Discounted IBNR processes, i.i.d. batches

IBNR process with Markovian batches

Notation

Put $k=1$. Recall that

$$
Z(t)=\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\left[T_{i} \leq t<T_{i}+L_{i}\right]}
$$

where $\left\{X_{i}, i \in \mathbb{N}\right\}$ finite Markov chain with state space $\{0, \ldots, K\}$, transition matrix P, stationary distribution π.

We define the joint Laplace transform/mgf for $t \geq 0, s \leq 0$

$$
\psi(s, t):=\left[\mathbb{E}\left(e^{s Z(t)} \mathbf{1}_{\left[X_{N_{t}}=y\right]} \mid X_{0}=x\right)\right]_{(x, y) \in\{0, \ldots, K\}^{2}}
$$

where N_{t} : total number of customers arrived within $[0, t]$. Two issues:
(1) How to determine the distribution of $\left(Z(t), X_{N_{t}}\right)$ (e.g. $\left.\psi(s, t)\right)$ for some fixed t ?
(2) Behaviour as $t \rightarrow \infty$?

Some results (R. \& Woo (2017) and (2018))

- In general, $\psi(s, t)$ not computable, but $\mathbb{E}(Z(t)), \mathbb{E}\left(Z(t)^{2}\right)$ are available in some cases, for $t \leq+\infty$.
- When $T_{i+1}-T_{i} \sim \mathcal{E}(\lambda)$ (Poisson arrival with intensity λ) then

$$
\partial_{t} \psi(s, t)=[-\lambda I+\lambda \tilde{Q}(s, t)] \psi(s, t), \quad \psi(s, 0)=I,
$$

for some (substochastic) matrix $(\tilde{Q}(s, t))_{s \leq 0, t \geq 0}$.
Unfortunately, this matrix ODE does not admit a closed form solution!

Fast arrivals, Slow service in the Poisson arrival case

\Longrightarrow Rescaling approach :

- speed up arrivals $\lambda \longrightarrow \lambda n^{\gamma}$ for some $\gamma>0$,
- renormalize transition matrix $P \longrightarrow\left(1-1 / n^{\gamma}\right) I+P / n^{\gamma}$,
- suppose that L_{j} 's are fat tailed with index $\alpha \in(0,1)$ and slow down services $L_{j} \longrightarrow L_{j} / n$.

How does the corresponding queue $Z^{(n)}(t)$ jointly to corresponding state $X_{N_{t}^{(n)}}^{(n)}$ behave when n grows large, and $t \in[0,1]$ is fixed ?
\Longrightarrow different behaviour whether $\gamma<\alpha, \gamma>\alpha$ or $\gamma=\alpha$.

Fast arrivals, Slow service

Theorem (R. (2018), in progress)

Let $\beta:=1 /(1-\alpha),\{\mathcal{X}(t), t \in[0,1]\}$ a continuous time Markov chain with infinitesimal generating matrix $\lambda(P-I)$ with $\mathcal{X}(0) \sim \pi$, $\left\{\mathcal{X}^{\beta}(t), t \in[0,1]\right\}$ a continuous time inhomogeneous Markov chain with infinitesimal generating matrix $\beta(1-t)^{\beta-1} \lambda(P-I)$ with $\mathcal{X}^{\beta}(0) \sim \pi$. Let $t \in[0,1]$. One has one of the three limiting behaviours as $n \rightarrow \infty$:

- Slow arrivals: If $\gamma<\alpha$ then

$$
\begin{aligned}
& \mathcal{D}\left(\left(Z^{(n)}(t), X_{N_{t}^{(n)}}^{(n)}\right) \mid X_{0}^{(n)}\right) \longrightarrow \mathcal{D}((\mathbf{0}, \mathcal{X}(t)) \mid \mathcal{X}(0)), \\
n & \rightarrow \infty, \text { where } \mathbf{0}=(0, \ldots, 0) \in \mathbb{R}^{k},
\end{aligned}
$$

Fast arrivals, Slow service

Theorem (R. (2018), Cont'd)

- Fast arrivals : If $\gamma>\alpha$ then, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \mathcal{D}\left(\left.\left(\frac{Z^{(n)}(t)}{n^{\gamma-\alpha}}, X_{N_{t}^{(n)}}^{(n)}\right) \right\rvert\, X_{0}^{(n)}\right) \longrightarrow \\
& \\
& \quad \mathcal{D}\left(\left(\beta \lambda \int_{1-t^{1 / \beta}}^{1} \mathcal{X}^{\beta}(v) d v, \mathcal{X}^{\beta}(1)\right) \mid \mathcal{X}^{\beta}\left(1-t^{1 / \beta}\right)\right)
\end{aligned}
$$

$$
n \rightarrow \infty
$$

Fast arrivals, Slow service

Theorem (R. (2018), Cont'd)

- Equilibrium : If $\gamma=\alpha$ then, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \mathcal{D}\left(\left(Z^{(n)}(t), X_{N_{t}^{(n)}}^{(n)}\right) \mid X_{0}^{(n)}\right) \longrightarrow \\
& \mathcal{D}(\left.\left(\left(\int_{1-t^{1 / \beta}}^{1} \mathcal{X}_{j}^{\beta}(v) \nu_{j}^{\beta}(d v)\right)_{j=1}^{k}, \mathcal{X}^{\beta}(1)\right) \mid \mathcal{X}^{\beta}\left(1-t^{1 / \beta}\right)\right)
\end{aligned}
$$

$n \rightarrow \infty$, with $\left\{\nu_{j}^{\beta}(t), t \geq 0\right\}, j=1, \ldots, k$, are k independent Poisson processes with same intensity $\beta \lambda$, independent from $\left\{\mathcal{X}^{\beta}(t), t \in[0,1]\right\}$.

Merci!

