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Motivations

Liéanard Oscillator

We consider the Liéanard Oscillator driven by random force given by the
second order stochastic differential equation

εz̈t + żt − h(zt) = δ ẇt ,

where 0 < ε < 1, δ > 0 are some parameters, ẇt is the white noise. This
model arises in the description of the motion of a small particle in a
viscous media. Setting x ε

t = zt and y ε
t = żt we can represent this physical

model in the stochastic calculus form
dx ε

t

dt
= y ε

t , x ε
0 = x0 ;

εdy ε
t = −y

ε
t + h(x ε

t ) + δ dwt , y ε
0 = y0 ,

where (wt)0≤t≤T is the Wiener process.
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Motivations

Stochastic volatility models

Fouque, Papanicolaou and Sicar (2000) considered the financial markets
(B, S) in which the bond B = (B ε

t )0≤t≤T and the stock S = (S ε
t )0≤t≤T

are defined as
dB ε

t = r(y ε
t )B

ε
tdt , B ε

0 = 1 ;

dS ε
t = µ(y ε

t )S
ε
tdt + σ(y ε

t )S
ε
tdw s

t , S ε
0 = S0 ;

εdy ε
t = F (y ε

t )dt + β
√

εG (y ε
t )dw

y
t , y ε

0 = y0 ,

where the market coefficients r(·), µ(·), σ(·) are some functions,
(w s

t )0≤t≤T and (w y
t )0≤t≤T are two Wiener processes, F (·) and G (·)

satisfy some conditions for which one can study the behavior of the
process (y ε

t )0≤t≤T .
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Tikhonov theory

Singular perturbations for ODE

The system 
dx ε

t

dt
= f (t, x ε

t , y ε
t ) , x ε

0 = x0 ;

ε
dy ε

t

dt
= F (t, x ε

t , y ε
t ) , y ε

0 = y0 .

The ”slow” variable x ε
t ∈ Rk and the ”fast” variable y ε

t ∈ Rn,
0 < ε < 1 is a small parameter.

The problem is to study the limit behavior for the solutions (x ε
t )0≤t≤T and

(y ε
t )0≤t≤T when ε→ 0?
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Tikhonov theory

Limit form

We define now the following system

dxt
dt

= f (t, xt , ϕ(t, xt)) , x0 = x0 ,

where the [0,T ]×Rk → Rn function ϕ is the stable root

F (t, x , ϕ(t, x)) = 0 .

Theorem (Tikhonov, 1952)

lim
ε→0

sup
0≤t≤T

|x ε
t − xt | = 0 and lim

ε→0
sup

t0≤t≤T
|y ε

t − ϕ(t, xt)| = 0

for any fixed 0 < t0 < T .
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Stochastic version of Tikhonov theorem

Stochastic systems

The system
dx ε

t = f (t, x ε
t , y ε

t )dt + g(t, x ε
t , y ε

t )dw x
t , x ε

0 = x0 ;

εdy ε
t = F (t, x ε

t , y ε
t )dt + β

√
εG (t, x ε

t , y ε
t )dw

y
t , y ε

0 = y0 ,

where β = βε = o(1/| ln ε|) as ε→ 0.

The coefficients satisfy some technical conditions under which this system
has an unique strong solution for any ε > 0.

The problem is to study the asymptotic behavior of the solution when
ε→ 0.
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Stochastic version of Tikhonov theorem

Limit form

To describe the limit form for the slow variables we set

dxt = f (t, xt , ϕ(t, xt))dt + g(t, xt , ϕ(t, xt))dw x
t , x0 = x0 .

Theorem (Kabanov and Pergamenchtchikov, 1990)

P− lim
ε→0

sup
0≤t≤T

|x ε
t − xt | = 0 and P− lim

ε→0
sup

t0≤t≤T
|y ε

t − ϕ(t, xt)| = 0

for any fixed 0 < t0 < T .
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Fast variables

Fast processes

We consider the fast process

εdy ε
t = F (y ε

t )dt + β
√

εG (y ε
t )dwt , y ε

0 = y0 .

Main condition:

There exists a stable root ϕ∞ of the equation F (y) = 0, i.e. such
that the continuous derivative matrix F ′(·) exists and the real parts
of all eigenvalues A = F ′(ϕ∞) are strictly negative

P− lim
ε→0

sup
t0≤t≤T

|y ε
t − ϕ∞| = 0

for any fixed 0 < t0 < T .
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Fast variables

Boundary layer

To study the correction we need to consider the following system

dỹt
dt

= F (ỹt) , ỹ0 = y0 .

Vasil’eva and Butusov (1973)

ỹt = ϕ∞ + Π(t)

the boundary layer function Π(·) is such that Π(0) = y0 − ϕ∞ and for
some positive constants c > 0 and γ > 0

|Π(t)| ≤ c e−γt

for any t ≥ 0.
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Fast variables

First order correction

In the neighborhood of zero:

y ε
t = ỹr + βη̃r + β∆̃ε

t , r = t/ε ,

where
dη̃s = F ′(ỹs)η̃sds + G (ỹs)dw̃s , η̃0 = 0

and

w̃s =
1√

ε
ws/ε .

The rest term

P− lim
ε→0

max
0≤t≤T

|∆̃ε
t | = 0 .
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Fast variables

First order correction

In the outside of any neighborhood of zero:

y ε
t = ϕ∞ + β ηr + β∆ε

t , r = t/ε ,

where
dηs = Aηsds + Bdw̃s , η0 = 0

A = F ′(ϕ∞), B = G (ϕ∞) and the rest term

P− lim
ε→0

max
t0≤t≤T

|∆ε
t | = 0

for any fixed 0 < t0 < T .
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Large deviations

Uniform metric

To describe the large deviation in the uniform metric we need to introduce
the following C(R+)→ R+ functional. For any y ∈ C1(R+) this
functional is defined as

S(y) :=
1

2

∫ ∞

0
|Σ−1/2(ys) (ẏs − F (ys)) |2 ds ,

where Σ(y) = G (y)G ′(y). Moreover, we set S(y) = +∞ for
y /∈ C1(R+).
This is the well-known Freidlin - Wentzell functional on the interval
[0,+∞].
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Large deviations

Uniform metric

We remind that for the process ỹ ε
r = y ε

r ε

dỹ ε
r = F (ỹ ε

r )dr + βG (ỹ ε
r )dw̃r , w̃r =

1√
ε
wr/ε

and y ε
0 = y0.

In this case for 0 ≤ r ≤ T/ε

ỹ ε
r = ỹr + βη̃r + . . .

where

dỹr
dr

= F (ỹr ) , ỹ0 = y0 .
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Large deviations

Uniform metric

Theorem

For any ν > 0

lim
ε→0

β2 lnP
(

max
0≤r≤T/ε

∣∣ỹ ε
r − ỹr

∣∣ > ν
)
= − inf

y∈B(ν)
S(y) ,

where

B(ν) =

{
y ∈ C(R+) : sup

r≥0
|yr − ỹr | > ν , y0 = y0

}
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Large deviations

Deviation in the metric L2[0,T ]

To describe the deviation in the integral metric we need to define
C[0,T ]→ R+ as

ŠT (y) :=
1

2

∫ T

0
|Σ−1/2(yt) F (yt)|2dt ,

where Σ(y) = G (y)G ′(y). Remind that the usually for regular
perturbations Freidlin - Wentzell functional is defined as

ST (y) :=
1

2

∫ T

0
|Σ−1/2(yt) (ẏt − F (yt)|2dt .

Serguei Pergamenchtchikov LMRS, University of Rouen, France, and SSP-QF, Tomsk State University, Russia (joint work with Kabanov, Yu.M.[2mm] September 3 - 8, 2018, CIRM, Marseille France)Singular Perturbations 16 / 32



Large deviations

Deviation in the metric L2[0,T ]

Theorem

For any ν > 0

lim
ε→0

β2ε lnP

(∫ T

0

∣∣y ε
t − ϕ∞

∣∣2dt > ν

)
= − inf

y∈B̌(ν)
ŠT (y) ,

where

B̌(ν) =

{
y ∈ C[0,T ] :

∫ T

0
|yt − ϕ∞|2dt > ν

}
.
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Applications

Applications PDEs

Let us consider the following Cauchy problem:
∂

∂t
v ε(t, x) =

β2

ε
G 2(x)

∂2

(∂x)2
v ε(t, x) +

1

ε
F (x)

∂

∂x
v ε(t, x)

+r(x) v ε(t, x) + h(x) ;

v ε(0, x) = b(x) , x ∈ R .

The limit equation for t > 0

∂

∂x
v(t, x) = 0 .
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Applications

Applications PDEs

Using the ”fast” process

εdy x ,εt = F (y x ,εt )dt + β
√

εG (y x ,εt )dwt , y x ,ε0 = x ,

we can represent the PDE solution as

v ε(t, x) = Eb(y x ,εt ) e
∫ t

0
r (yx ,ε

u
)du + E

∫ t

0
h(y x ,εu ) e

∫ u

0
r (yx ,ε

v
)dvdu .

If the equation F (x) = 0 has unique stable root ϕ∞ then for any t > 0
and any x ∈ R

lim
ε→0

v ε(t, x) = b∞er∞t + h∞
er∞t − 1

r∞
,

where b∞ = b(ϕ∞), r∞ = r(ϕ∞) and h∞ = h(ϕ∞).
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Applications

Applications PDEs

Let us consider now the following problem:
∂

∂t
v ε(t, z) = Lε v ε(t, z) ;

v ε(0, z) = b(z) ,

where z = (x , y) ∈ R2 and

Lε :=g2(t, z)
∂2

∂x2
+

β2

ε
G 2(t, z)

∂2

∂y2

+ f (t, z)
∂

∂x
+

1

ε
F (t, z)

∂

∂y
.
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Applications

Applications PDEs

By the probability representation we can write that

v ε(t, z) = v ε(t, x , y) = Eb(X x ,ε
t ,Y y ,ε

t ) ,

where
dX ε

t = f (t,X x ,ε
t ,Y y ,ε

t )dt + g(t,X x ,ε
t ,Y y ,ε

t )dw x
t , X x ,ε

0 = x ;

εdY ε
t = F (t,X x ,ε

t ,Y y ,ε
t )dt + β

√
εG (t,X x ,ε

t ,Y y ,ε
t )dw y

t , Y y ,ε
0 = y .
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Applications

Applications PDEs

The stochastic Tikhonov theorem implies that

lim
ε→0

v ε(t, x , y) = v0(t, x) ,

where
v0(t, x) = Eb(t,X x

t , ϕ(t,X x
t ))

and

dX x
t = f (t,X x

t , ϕ(t,X x
t ))dt + g(t,X x

t , ϕ(t,X x
t ))dw x

t , X x
0 = x .
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Applications

Applications PDEs

Using the probability representation we obtain that


∂

∂t
v0(t, x) = g2(t, ϕ(t, x))

∂2

∂x2
v0(t, x) + f (t, ϕ(t, x))

∂

∂x
v0(t, x) ;

v0(0, x) = b(0, x , ϕ(0, x)) .

Example. Let consider the stochastic volatility model, i.e. B ≡ 1 and{
dS ε

t = σ(y ε
t )S

ε
tdw s

t , S ε
0 = S0 ;

εdy ε
t = F (y ε

t )dt + β
√

εG (y ε
t )dw

y
t , y ε

0 = y0

Stable root: F (ϕ∞) = 0.
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Applications

Pricing problem

Consider now the european option with the payoff h

∂

∂t
vε(t, x , y) + Lε vε(t, x , y) = 0 , vε(T , x) = h(x)

and

Lε := σ2(y)
∂2

∂x2
+

1

ε
F (y)

∂

∂y
+

β2

ε
G 2(y)

∂2

∂y2

If we change the variable variable s = T − t we obtain the initial Cauchy
problem and by making use the previous convergence we obtain that

lim
ε→0

vε(t, x , y) = v0(t, x) ,

where v0(t, x) is the option price for the Black-Scholes market with the
volatility σ(ϕ∞).
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Applications

Filtering of Nearly Observed processes

Let us consider the model described by two processes xt ∈ Rn

(unobservable signal) and y ε
t ∈ Rn (observations), both given by dxt = ft dt + g dw x

t , x ε
0 = x0 ;

dy ε
t = xtdt + ε dw y

t , y ε
0 = y0 ,

where w x
t ∈ Rm and w y

t ∈ Rn are independent Wiener processes and g is
n×m nonrandom known. We use the filter x̂ ε defined as

dx̂ ε
t = f̂ ε

t dt − ε−1A
(
dy ε

t − x̂ ε
tdt
)

,

where f̂ ε
t is measurable with respect to σ{yu , 0 ≤ u ≤ t} and A is

symmetric negative defined matrix. For example, we can take A = −κIn
(In is the identity matrix of order n) or A = − (gg ′)1/2.
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Applications

Filtering accuracy

We study the deviation ∆ε
t = x̂ ε

t − xt . We obtain that

d∆ε
t = ε−1A∆ε

tdt + (f̂ ε
t − ft)dt + Gdw̃t ,

where the matrix G = (AA′ + gg ′)1/2. Assume that the function ft is
linear, i.e.

ft = bt +Dtxt ,

where bt is unknown and Dt is known. In this case we chose f̂t = Dt x̂t
and, therefore,

dx̂ ε
t = Dt x̂tdt − ε−1A

(
dy ε

t − x̂ ε
tdt
)

.

Serguei Pergamenchtchikov LMRS, University of Rouen, France, and SSP-QF, Tomsk State University, Russia (joint work with Kabanov, Yu.M.[2mm] September 3 - 8, 2018, CIRM, Marseille France)Singular Perturbations 26 / 32



Applications

Filtering accuracy

Therefore, in the linear case

d∆ε
t = ε−1A∆ε

tdt + (Dt∆
ε
t − bt)dt + Gdw̃t .

Asymptotically, as ε→ 0, the accuracy ∆ε
t ≈ ηε

t , where

dηε
t = ε−1Aηε

tdt + Gdw̃t .

In this case ϕ∞ = 0, β =
√

ε and

ŠT (y) =
1

2

∫ T

0
y ′tA(A

2 + gg ′)−1 Aytdt .

Serguei Pergamenchtchikov LMRS, University of Rouen, France, and SSP-QF, Tomsk State University, Russia (joint work with Kabanov, Yu.M.[2mm] September 3 - 8, 2018, CIRM, Marseille France)Singular Perturbations 27 / 32



Applications

Filtering accuracy

For any ν > 0

lim
ε→0

ε2 lnP

(∫ T

0
|∆ε

t |
2dt > ν

)
= − inf

y∈B(η)
ŠT (y)

where

B̌(ν) =

{
y ∈ C[0,T ] :

∫ T

0
|yt |2dt > ν

}
.

In this case

inf
y∈B(η)

ŠT (y) =
ν

2
λmin(A(A

2 + gg ′)−1A) ,

and λmin(B) is minimal eigenvalue of the matrix B.
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Applications

Filtering accuracy

For any ν > 0

lim
ε→0

ε2 lnP

(∫ T

0
|∆ε

t |
2dt > ν

)
= −ν

2
λmin(A(A

2 + gg ′)−1A) .

Note that if n = m = 1 and A = −κ we obtain that for any ν > 0

lim
ε→0

ε2 lnP

(∫ T

0
|∆ε

t |
2dt > ν

)
= − κ2ν

2(κ2 + g2)
.
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Applications

Signal estimation

If in the model g = 0 we obtain that for any ν > 0

lim
ε→0

ε2 sup
x∈Θ

lnP

(∫ T

0
|x̂ ε

t − xt |2dt > ν

)
= −ν

2
.

This is the best estimator in the sense that for any estimator (x̃t)0≤t≤T

lim
ε→0

ε2 sup
x∈Θ

lnP

(∫ T

0
|x̃ ε

t − xt |2dt > ν

)
≥ −ν

2
.
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Conclusion

Conclusion

The stochastic version of the Tikhonov theorem is shown. The
boundary layer and the asymptotic expansions are studied.

The large deviations methods for the fast variables in the uniform
metric and in the metric L2[0,T ] are developed. The rate functions
are found.

Applications of the stochastic singular perturbation method: statistic
of stochastic processes, financial markets, optimal control, PDE
analysis.
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Conclusion

Thanks

THANK YOU VERY MUCH

FOR YOUR ATTENTION

HAPPY BIRTHDAY YOURI !!!
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