

Limit order books: Tractable SPDE models

Marvin S. Müller (ETHZ)
joint work with R. Cont (Oxford)
Innovative Research in Mathematical Finance
celebration of 70 years of Yuri Kabanov
CIRM, Luminy, 7th September 2018

The Beginning

Bachelier (1900): BM as stock price model at Paris Bourse:

$$
\mathrm{d} s_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} B_{t}, \quad t \geq 0,
$$

$B \mathrm{BM}, \mu \in \mathbb{R}, \sigma>0$.

The Beginning

Bachelier (1900): BM as stock price model at Paris Bourse:

$$
\mathrm{d} s_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} B_{t}, \quad t \geq 0,
$$

$B \mathrm{BM}, \mu \in \mathbb{R}, \sigma>0$.

- 30y later: Rigorous framework due to Kolmogorov
- Several extensions: Black-Scholes-Merton, local-vol, stochastic-vol etc.

The Beginning

Bachelier (1900): BM as stock price model at Paris Bourse:

$$
\mathrm{d} s_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} B_{t}, \quad t \geq 0,
$$

$B \mathrm{BM}, \mu \in \mathbb{R}, \sigma>0$.

- 30y later: Rigorous framework due to Kolmogorov
- Several extensions: Black-Scholes-Merton, local-vol, stochastic-vol etc.
- 77y later: Toronto Stock Exchange introduced CATS (Computer Assisted Trading System)

Exchanges and LOBs

Orders are submitted and electronically stored /matched.

- Limit Order: buy / sell quantity of q orders at price level p or better
- Market Order: buy / sell quantity q at best market price, executed directly against matching LOs

Exchanges and LOBs

Orders are submitted and electronically stored /matched.

- Limit Order: buy / sell quantity of q orders at price level p or better
- Market Order: buy / sell quantity q at best market price, executed directly against matching LOs
- Execution of market orders decreased from sec or min to less than msec
- Much more information available than bid-ask quotes
- In 2002: more than 60% of world largest stock exchanges are fully order driven, 80 \% at least partially. (Jain (2005))

Limit Order Books

Xetra Open Orderbook

Ticker: DBK, Date: 20/04/2016 Time: 14:55:14 (GMT + 1)

High-Dimensional Modeling

Mid price: $s:=\left(p_{\text {oid }}+p_{\text {ask }}\right) / 2$
LOB Model: $v_{t}(p)$ density of LOB, centered: $u_{t}(p):=v_{t}\left(p+s_{t}\right)$

Observations and Assumptions

- HFT: > 1000 orders per 10 sec on average for some US stocks (Cont et al 2011)
- On average, orders arrive at prices p

$$
\sim a\left(b+\left|p-s_{t}\right|\right)^{-1-\mu}, \quad \mu \in[0.6,1.5]
$$

(Bouchaud et al (2002), Zovko, Farmer (2006))
\longrightarrow price-time-continuous model,
\longrightarrow no spread, $p_{\text {bid }}=p_{\text {ask }}=s$.

Limit Order Books: Discrete Reality

Xetra Open Orderbook
Ticker: DBK, Date: 20/04/2016 Time: 14:55:14 (GMT + 1)

Limit Order Books: Density $v_{t}(p)$

Space time continuous apprpoxixmation:

Macroscopic Order Book Dynamics I

Fixed frame: $u_{t}(p):=v_{t}\left(p+s_{t}\right)$:

1. Small order readjustments of HF-traders: rate η
2. Tendency to shift orders in direction to bid/ask (HF-traders): rate β
3. Net impact rate for order volume, of LF and HF-traders: α
4. LF-net impact due to exogeneous information: $f(p)$
5. HF-trader impact on volume: $\mathrm{d} X_{t}$

Order book density

With $\mathrm{d} p, \mathrm{~d} t \rightarrow 0$, we impose for the centered order book density

$$
\mathrm{d} u_{t}(p)=\underbrace{\left[\eta_{a} \Delta u_{t}(p)+\beta_{a} \nabla u_{t}(p)+\alpha_{a} u_{t}(p)+f_{a}(p)\right]}_{=A_{a} u_{t}+f_{a}} \mathrm{~d} t+u_{t-}(p) \mathrm{d} X_{t}^{a} .
$$

for $p>0$ (<0 resp.) where X^{a} is a \mathbb{R}-valued semimartingale.

Linear Models

On an abstract level,

$$
\begin{cases}\mathrm{d} u_{t}(p)=A_{a} u_{t}(p) \mathrm{d} t+u_{t-}(p) \mathrm{d} X_{t}^{a}, & p \in(0, L) \tag{1}\\ \mathrm{d} u_{t}(p)=A_{b} u_{t}(p) \mathrm{d} t+u_{t-}(p) \mathrm{d} X_{t}^{b}, & p \in(-L, 0)\end{cases}
$$

X^{a}, X^{b} are real semimartingales $\mathrm{w} /$ jumps >-1 and A_{a}, A_{b} are densely defined and closed linear maps on $L^{2}(-L, L)$

AlHzürich

Linear Models

On an abstract level,

$$
\begin{cases}\mathrm{d} u_{t}(p)=A_{a} u_{t}(p) \mathrm{d} t+u_{t-}(p) \mathrm{d} X_{t}^{a}, & p \in(0, L), \tag{1}\\ \mathrm{d} u_{t}(p)=A_{b} u_{t}(p) \mathrm{d} t+u_{t-}(p) \mathrm{d} X_{t}^{b}, & p \in(-L, 0) .\end{cases}
$$

X^{a}, X^{b} are real semimartingales $\mathrm{w} /$ jumps >-1 and A_{a}, A_{b} are densely defined and closed linear maps on $L^{2}(-L, L)$

Theorem
$g:[0, \infty) \rightarrow L^{2}(-L, L)$ solves (1) for $X^{a / b} \equiv 0$, iff

$$
u_{t}(p):=g_{t}(p)\left[\mathcal{E}_{t}\left(X^{b}\right) \mathbf{1}_{(-L, 0)}(p)+\mathcal{E}_{t}\left(X^{a}\right) \mathbf{1}_{(0, L)}(p)\right], \quad p \in(-L, L),
$$

solves (1) (in analytically weak sense).

Examples

Ex 1: Level-1 Models

$L:=d p$, best bid and ask queues are modeled by positive semimartingales Z^{a}, Z^{b}. Then X^{a} and X^{b} are such that $Z^{\star}=\mathcal{E}\left(X^{\star}\right)$, $\star \in\{a, b\}$.

Examples

Ex 1: Level-1 Models

$L:=\mathrm{d} p$, best bid and ask queues are modeled by positive semimartingales Z^{a}, Z^{b}. Then X^{a} and X^{b} are such that $Z^{\star}=\mathcal{E}\left(X^{\star}\right)$, $\star \in\{a, b\}$.

Ex 2: Intra-Book dynamics

$L>0$ very large (e.g. $L=1000$), A_{a} and A_{b} model intra-book dynamics, as above:

$$
A_{a}:=\eta_{a} \Delta+\beta_{a} \nabla+\alpha_{a}, \quad A_{b}:=\eta_{b} \Delta-\beta_{b} \nabla+\alpha_{b}
$$

AlHzürich

Spectral Analysis

Imposing Dirichlet bdry cond., the eigenvalues and eigenfcts of $A:=\eta \Delta+\beta \nabla+\alpha$ on $(0, L)$ are

$$
\nu_{k}:=\alpha-k^{2} \frac{\eta \pi^{2}}{L^{2}}-\frac{\beta^{2}}{4 \eta}, \quad e_{k}(p):=e^{-\frac{\beta}{2 \eta} p} \sin \left(\frac{k \pi}{L} p\right), k \in \mathbb{N},
$$

Observation

- Solution of $\mathrm{d} u_{t}=A u_{t} \mathrm{~d} t+u_{t-} \mathrm{d} X_{t}$ is

$$
\begin{equation*}
u_{t}(p)=\mathcal{E}_{t}(X) \sum_{k=1}^{\infty} e^{\nu_{k} t}\left(\int_{0}^{L} u_{0}(x) e_{k}(x) e^{\frac{\beta}{\eta} x} d x\right) e_{k}(p) \tag{2}
\end{equation*}
$$

- The only positive eigenfct is e_{1} for the principlec eigenvalue $\nu:=\nu_{1}$.

$$
\left\{\begin{aligned}
\mathrm{d} u_{t}(p) & =\left[\eta^{a} \Delta u_{t}(p)+\beta^{a} \nabla u_{t}(p)+\alpha^{a} u_{t}(p)\right] \mathrm{d} t+\sigma^{a} u_{t}(p) \mathrm{d} W_{t}^{a}, \quad p \in(0, L) \\
\mathrm{d} u_{t}(p) & =\left[\eta^{b} \Delta u_{t}(p)-\beta^{b} \nabla u_{t}(p)+\alpha^{b} u_{t}(p)\right] \mathrm{d} t+\sigma^{b} u_{t}(p) \mathrm{d} W_{t}^{b}, \quad p \in(-L, 0) \\
u_{t}(0+) & =u_{t}(0-)=u(-L)=u(L)=0, \\
u_{t}(p) & >0, \quad p \in(0, L), \quad u_{t}(p)<0, \quad p \in(-L, 0), \quad t>0
\end{aligned}\right.
$$

From parametrization theorem: $u_{t}(p)$ explicitly computable

$$
\left\{\begin{aligned}
\mathrm{d} u_{t}(p) & =\left[\eta^{a} \Delta u_{t}(p)+\beta^{a} \nabla u_{t}(p)+\alpha^{a} u_{t}(p)\right] \mathrm{d} t+\sigma^{a} u_{t}(p) \mathrm{d} W_{t}^{a}, \quad p \in(0, L) \\
\mathrm{d} u_{t}(p) & =\left[\eta^{b} \Delta u_{t}(p)-\beta^{b} \nabla u_{t}(p)+\alpha^{b} u_{t}(p)\right] \mathrm{d} t+\sigma^{b} u_{t}(p) \mathrm{d} W_{t}^{b}, \quad p \in(-L, 0) \\
u_{t}(0+) & =u_{t}(0-)=u(-L)=u(L)=0, \\
u_{t}(p) & >0, \quad p \in(0, L), \quad u_{t}(p)<0, \quad p \in(-L, 0), \quad t>0
\end{aligned}\right.
$$

From parametrization theorem: $u_{t}(p)$ explicitly computable, and

Corollary

For $u_{0}(p)=h(p):=\sin \left(\frac{\pi}{L} p\right) \exp \left(\pm \frac{\beta^{b / a}}{2 \eta_{b / a}} p\right)$ the unique solution is

$$
u_{t}(p)=h(p)\left(Y_{t}^{b} \mathbf{1}_{(-L, 0)}(p)+Y_{t}^{a} \mathbf{1}_{(0, L)}(p)\right),
$$

where $\mathrm{d} Y_{t}^{a / b}=\nu_{a / b} Y_{t}^{a / b} \mathrm{~d} t+\sigma_{a / b} Y_{t}^{a / b} \mathrm{~d} W_{t}^{a / b}$

Fit to data:

Fit to averaged order book profile

Fit to data:

Linear Inhomogeneous Models II

Consider now the one-sided problems,

$$
\begin{equation*}
\mathrm{d} u_{t}(p)=\left[A u_{t}(p)+\lambda f(p)\right] \mathrm{d} t+\sigma u_{t}(p) \mathrm{d} W_{t}, \quad u_{0}(p)=z_{0} f(p) \tag{3}
\end{equation*}
$$

$p \in(0, L)$, with initial data $z_{0} \in \mathbb{R}$.

Theorem

- If f is an eigenfct for A with eigenvalue $-\nu$, then $u_{t}(p)=f(p) Z_{t}$, where $Z_{0}=Z_{0}$ and

$$
\mathrm{d} Z_{t}=\left[\lambda-\nu Z_{t}\right] \mathrm{d} t+\sigma Z_{t} \mathrm{~d} W_{t} .
$$

- If f is not an eigenfct, then no "reasonable" parametrization!

EHHzürich

Price Prediction

- Empirical observation (Cont et al. '13):

$$
\mathrm{ds} s_{t}^{b / a} \approx \pm \delta \frac{\mathrm{OF}_{b / a}(t)}{D_{b / a}(t)}, \quad D \ldots \text { depths, } \quad \text { OF } \ldots \text { order flow. }
$$

Price Prediction

- Empirical observation (Cont et al. '13):

$$
\mathrm{d} s_{t}^{b / a} \approx \pm \delta \frac{\mathrm{OF}_{b / a}(t)}{D_{b / a}(t)}, \quad D \ldots \text { depths, } \quad \text { OF } \ldots \text { order flow. }
$$

- First order approx for tick size $\delta=\mathrm{d} p$,

$$
\begin{gather*}
D_{a / b}(t)= \pm \int_{0}^{\delta} u_{t}(\pm p) \mathrm{d} p \approx \frac{\delta}{2} \nabla u_{t}(0 \pm)=\frac{\delta \pi}{2 L} Z_{t}^{a / b} \tag{4}\\
\mathrm{OF}_{b / a}(t) \approx \mathrm{d} D_{b / a}(t) \tag{5}
\end{gather*}
$$

After reparametrization:

$$
\mathrm{d} D_{a / b}(t)=\nu_{a / b}\left(\mu_{a / b}-D_{a / b}(t)\right) \mathrm{d} t+\sigma_{a / b} D_{a / b}(t) \mathrm{d} W_{t}^{a / b}
$$

Price Dynamics

Induced Price Model I

$$
\mathrm{d} s_{t}=\frac{1}{2}\left(\mathrm{~d} s_{t}^{b}+\mathrm{d} s_{t}^{a}\right)=c_{s} \delta\left(\frac{\mathrm{~d} Z_{t}^{b}}{Z_{t}^{b}}-\frac{\mathrm{d} Z_{t}^{a}}{Z_{t}^{a}}\right)
$$

where $c_{s} \approx 1 / 2, Z^{a}$ and Z^{b} are the factor processes from before.

Price Dynamics

Induced Price Model I

$$
\mathrm{d} s_{t}=\frac{1}{2}\left(\mathrm{~d} s_{t}^{b}+\mathrm{d} s_{t}^{a}\right)=c_{s} \delta\left(\frac{\mathrm{~d} Z_{t}^{b}}{Z_{t}^{b}}-\frac{\mathrm{d} Z_{t}^{a}}{Z_{t}^{a}}\right)
$$

where $c_{s} \approx 1 / 2, Z^{a}$ and Z^{b} are the factor processes from before.
When $Z^{a}=\mathcal{E}\left(\sigma_{a} W^{a}\right)$ and $Z^{b}=\mathcal{E}\left(\sigma_{b} W^{b}\right)$:

- Bachelier model with coefficients from order flow!
- $\langle s\rangle_{t}=\sigma_{s}^{2} t$, where

$$
\sigma_{s}=c_{s} \delta \sqrt{\sigma_{a}^{2}+\sigma_{b}^{2}-2 \varrho_{a, b} \sigma_{a} \sigma_{b}}
$$

Price Dynamics

Induced Price Model II

Summarizing the price dynamics are

$$
\begin{gathered}
\mathrm{d} s_{t}=c_{s} \delta\left(\frac{\mu_{b}}{D_{b}(t)}-\frac{\mu_{a}}{D_{a}(t)}+\left(\nu_{b}-\nu_{a}\right)\right) \mathrm{d} t+\sigma_{b} \mathrm{~d} W_{t}^{b}-\sigma_{a} \mathrm{~d} W_{t}^{a} \\
\mathrm{~d} D_{a / b}(t)=\nu_{a / b}\left(\mu_{a / b}-D_{a / b}(t)\right) \mathrm{d} t+\sigma_{a / b} D_{a / b}(t) \mathrm{d} W_{t}^{a / b}
\end{gathered}
$$

AlHzürich

Price Dynamics

Induced Price Model II

Summarizing the price dynamics are

$$
\begin{gathered}
\mathrm{d} s_{t}=c_{s} \delta\left(\frac{\mu_{b}}{D_{b}(t)}-\frac{\mu_{a}}{D_{a}(t)}+\left(\nu_{b}-\nu_{a}\right)\right) \mathrm{d} t+\sigma_{b} \mathrm{~d} W_{t}^{b}-\sigma_{a} \mathrm{~d} W_{t}^{a}, \\
\mathrm{~d} D_{\mathrm{a} / b}(t)=\nu_{\mathrm{a} / \mathrm{b}}\left(\mu_{\mathrm{a} / b}-D_{a / b}(t)\right) \mathrm{d} t+\sigma_{a / b} D_{\mathrm{a} / b}(t) \mathrm{d} W_{t}^{\mathrm{a} / b}
\end{gathered}
$$

- Time inhom. extension of classical Bachelier model, based on empirical observations!
- D_{b} and D_{a} are the market depth at bid and ask side.

Calibration: Setup

Model for depths:

$$
\begin{equation*}
\mathrm{d} D_{a / b}(t)=\nu_{a / b}\left(\mu_{a / b}-D_{a / b}(t)\right) \mathrm{d} t+\sigma_{a / b} D_{a / b}(t) \mathrm{d} W_{t}^{a / b} \tag{6}
\end{equation*}
$$

with $\left[W^{a}, W^{b}\right]_{t}=\rho t$. First try:

1. Split trading day in 10 ms time intervals
\rightarrow observations $D_{a}\left(t_{i}\right), D_{b}\left(t_{i}\right)$ of depths in first two levels, $i=1, \ldots, N$.
2. For t_{i} estimate parameters based on $D_{a}\left(t_{j}\right)$ and $D_{b}\left(t_{j}\right)$,

$$
t_{j} \in\left[t_{i}-30 \mathrm{~min}, t_{i}\right]
$$

3. Recalibrate at $t_{i+5}=t_{i}+50 \mathrm{~ms}$.

Run on NASDAQ data for some of most liquid large-tick stocks and SPY+QQQ.

SPY 2016-11-16, depth (av in first 2 levels):

Price variations

Recall that for $c_{s} \approx \frac{1}{2}$,

$$
\langle s\rangle_{t}=\sigma_{s}^{2} t, \quad \sigma_{s}=c_{s} \delta \sqrt{\sigma_{a}^{2}+\sigma_{b}^{2}-2 \varrho_{a, b} \sigma_{a} \sigma_{b}}
$$

\longrightarrow Absolute (!) price variation determined by order flow volatility

Price variations

Recall that for $c_{s} \approx \frac{1}{2}$,

$$
\langle s\rangle_{t}=\sigma_{s}^{2} t, \quad \sigma_{s}=c_{s} \delta \sqrt{\sigma_{a}^{2}+\sigma_{b}^{2}-2 \varrho_{a, b} \sigma_{a} \sigma_{b}}
$$

\longrightarrow Absolute (!) price variation determined by order flow volatility

- Allows to check on market data if price model makes sense

Price variations

SPY 2016-11-17

С днем рождения
Bon anniversaire
Happy birthday
Buon compleanno
Herzlichen Glückwunsch zum Geburtstag
R. Cont, A. Kukanov, and S. Stoikov.

The price impact of order book events.
Journal of Financial Econometrics, 12(1):47-88, 2014.
J. Donier, J. Bonart, I. Mastromatteo, and J.-P. Bouchaud.

A fully consistent, minimal model for non-linear market impact.
Quantitative Finance, 15(7):1109-1121, 2015.
M. S. Müller.

A stochastic Stefan-type problem under first-order boundary conditions.
Ann. Appl. Probab., 28(4):2335-2369, 2018.

Symmetric Case

Assume $\mu_{a}=\mu_{b}=\mu$ and $\nu_{a}=\nu_{b}=\nu$, then

$$
\mathbb{P}\left[s_{t}>s_{0}+\frac{\delta}{2}\right] \approx \mathbb{P}\left[N<\frac{\nu \sqrt{t}}{2 \sigma_{s}} \frac{\mu\left(D_{0}^{a}-D_{0}^{b}\right)}{D_{0}^{b} D_{0}^{a}}-\frac{1}{2 \sigma_{s} \sqrt{t}}\right]
$$

for a standard normal RV N.

Symmetric Case

Assume $\mu_{a}=\mu_{b}=\mu$ and $\nu_{a}=\nu_{b}=\nu$, then

$$
\mathbb{P}\left[s_{t}>s_{0}+\frac{\delta}{2}\right] \approx \mathbb{P}\left[N<\frac{\nu \sqrt{t}}{2 \sigma_{s}} \frac{\mu\left(D_{0}^{a}-D_{0}^{b}\right)}{D_{0}^{b} D_{0}^{a}}-\frac{1}{2 \sigma_{s} \sqrt{t}}\right]
$$

for a standard normal RV N.
\rightarrow Invers to Volume Imbalance $\mathrm{VI}=D_{0}^{b}-D_{0}^{a}$!

GIHzürich

VI as Price Predictor

- Accepted prediction method in academia and industry (e.g. Lipton et al (2013)):

$$
\text { next price move } \sim \mathrm{VI}
$$

VI as Price Predictor

- Accepted prediction method in academia and industry (e.g. Lipton et al (2013)):

$$
\text { next price move } \sim \mathrm{VI}
$$

- Cartea et al. (2015): MO triggers LO (on small time horizons - up to 100ms)
- However: Mean reversion yields expected OFI might be inverse to initial VI

VI as Price Predictor

- Accepted prediction method in academia and industry (e.g. Lipton et al (2013)):

$$
\text { next price move } \sim \mathrm{VI}
$$

- Cartea et al. (2015): MO triggers LO (on small time horizons - up to 100ms)
- However: Mean reversion yields expected OFI might be inverse to initial VI
- Taking care of the time scales! (next price move vs scales of mean reversion)

