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Kabanov’s exchange cone model

v

X is p-integrable random vector in R? (gains on d
assets/currencies).

K is a random cone (e.g. generated by bid-ask
exchange rates for currencies).

K is the family of portfolios available at price zero.

K describes transaction rules at the time when the
gain X is assessed.

v

v

v



» Aim: measure the risk of X taking K into account.
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» Aim: measure the risk of X taking K into account.
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Vector-valued risk

» Tempting to describe the risk of X € RY by a vector
r(X) € RY (taking into account the cone K).
» Natural assumptions:
» r(X+a)=r(X)—a,
» if X <Y coordinatewisely, then r(X) > r(Y),
» r(cX) = cr(X),
» r(X+Y) < r(X)+ r(Y) coordinatewisely.

Theorem (l.Cascos, IM, 2007)
In this case

l’(X) = (f1 (X1), Cee fd(Xd)),

that is, all vector-valued coherent risk measures
marginalise.



Set-valued risk

» Capital a € RY that makes X + a acceptable can be
chosen in many incomparable ways.

» So the risk measure is a set in RY.

» The possible values of risk measures are upper sets,
i.e. sets F such that with each x it contains all y > x
(coordinatewisely).

» Position is acceptable if the risk measure contains the
origin.
» Larger set means lower risk.



Previous work

» Hamel & Heyde (2010) and Hamel et al. (2011, 2013)
derived dual representations for risk measures of
X+ K

» Ben Tahar & Lepinette (2014) and Feinstein & Rudloff
(2012,2013) worked out the dynamical setting.

» Molchanov and Cascos (2016): primal representation
in terms of selections.

» All previous work in the convex setting.



Set-valued portfolio

» Portfolio X is a random convex closed set such that
X =X+ R (lower set).

» Risk R(X) is an upper set; utility is a lower set.

» X is not necessarily convex.



Why set-valued portfolios?

» X incorporates rather general liquidity restrictions.

» In the simplest case, X = X + K for a cone K
(Kabanov’s model).

» In the dynamical setting the value of risk measure is
a random set and it is used as the argument of
another risk measure

» numerical case ri(—rs(X))
» set-valued setting R;(—Rs(X)), where

—F={—x: xeF}

denotes the central symmetric setto F c R,



Beyond Kabanov’s model

Only transactions that lead
to solvent positions and/or
disposal of assets are al-
lowed

X T~

1:1 transactions up to a
certain amount




Non-convex portfolio: fixed transaction costs

» In case of each transaction, fixed cost « is incurred.




Finite set of possible transactions




Selections and acceptability

» A random vector ¢ € R9 is called a selection of X if
ceXas.
Assume that X contains at least one p-integrable
selection, i.e. the set LP(X) is not empty, p € [1, o0].
» Consider d-tuple r = (ry, ..., ry) of univariate
monetary LP-risk measures.

» Random set X is acceptable if it possesses at least
one acceptable selection £, meaning that

r) = (r(6), ., ra(a)) <0,

i.e. all individual coordinates of ¢ are acceptable.



Example: cones

T

X+K

» X = X + K has an acceptable selections exactly if
there exists a transfer (selection) n € K such that
¢ = X +nis acceptable.



Equivalent definition

» Let A C LP(RY) be a family of acceptable random
vectors in RY.
» Then portfolio X is acceptable iff L°(X, F) N A # 0,

equivalently,
L°(—X,3) +A>0.



Selection risk measure

» The selection risk measure R(X) is the topological
closure of the set

{acR?: X+ ais acceptable} .

» Equivalently,

» This is the primal representation of the risk measure.

» In other words, the risk is the closed union of risks
determined by singletons chosen from X.



Duality-based approach

>

Conical setting X = X + K: Hamel & Heyde (2010)
and Hamel et al. (2011, 2013).

Convex X is the union of singletons (primal) and the
intersection of half-spaces (dual).

Portfolio X is acceptable if all half-spaces containing
X are acceptable, that is,

{x eR?: (x,u) < h(X,u)}

is acceptable for all (possibly random) u.

The acceptability of such half-spaces is derived from
the support function h(X, u).

However, such approach converts X to its convex hull.



Fixed points

» If all components of r are essinf, that is, r(§) = essinf¢,

then
R(X) = —Fx,

where
Fx ={x: P{xeX}=1}

denotes the set of fixed points.

Proposition
For any selection risk measure, —Fx C R(X).



Selection (Aumann) expectation

» The closure of the set of expectations of all integrable
selections

EX =cl{E¢: ¢ € L'(X)}
is called the selection (Aumann) expectation of X.
» If r(§) = —E¢, then

R(X) = —EX

is a selection risk measure.
» ltis linear
E(X+Y) =cl(EX + EY)
and EX is always convex on non-atomic probability
spaces, no matter if X is convex or not.
» The primal and dual approaches yield the same set.



Non-linear functions constructed from

expectation
» If Xy,..., X, are independent copies of X, let
RA(X) = —E(X; N --- N Xp).
» It satisfies the property
Rn(X+Y) 2 R~(X) + Rn(Y),
however, 0 € R~ (X) does not imply the existence of
an acceptable selection with respect to the

underlying risk measure (expected minimum).
» The same applies to

Rz(X) = (1] E(—¢X),
CeZ

where Z is a family of g-integrable non-negative
random variables with expectation one.
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Selection risk measure (reminder)

» The selection risk measure R(X) is the topological
closure of the set

{acRY: X+ ais acceptable} .

» Equivalently,
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Main properties

Theorem
The selection risk measure (in the non-convex setting)
satisfies the following conditions

1. R(X+ a) = R(X) — a for all a € RY (cash invariance).
2. IfX C Y a.s., then R(X) C R(Y) (monotonicity).

3. Ifr is homogeneous, then R(cX) = cR(X) forallc > 0
(homogeneity).

4. Ifr is convex, then
R(AX+ (1 = X)Y) 2 AR(X) + (1 — MR(Y)
(superadditivity for inclusion, larger set means lower

risk).
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Univariate case

» Consider X € LP(R), and let X = (—o0, X].
» All selections ¢ € X are dominated by X.
» Then the selection risk measure of X is

R(X) = [r(X), ).

bk}



Finding acceptable selections

» 0X is the set of Pareto optimal points of X.
» X is called quasi-bounded if

107X} = sup{l|x]| - x € 07X}
is finite.
» Selections determining the risk should belong to
clotX.

otX
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Convexity: expectation

» R(X) = E(—X) is a selection risk measure.

» It takes convex values if the underlying probability
space is nonatomic, and then R(X) = R(conv X).

» This follows from Lyapunov’s theorem on ranges of
vector-valued measures.

» But this theorem generally does not hold for
measures with values in infinite-dimensional Banach
spaces.
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Convexity: example

Example
If X = {¢,1} +RY, then R(X) is convex if,

foreach t € (0, 1), there exists A € § such that

tr(§) + (1 = )r(n) = r(€1a+nla).
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Convexity: general

» Assume that

()= sup  (E(-)-a(Q). £eLP(RY),

CeLI(RY),E¢=1

where Oc(C) = (041 (61 ), ce ,Oéd(Cd)) and
aj: LI(R,) — (—o0, 00] are the penalty functions
corresponding to the components of r.

Theorem

Assume that the probability space is non-atomic and the
penalty function o has all infinite components unless (
belongs to a finite family. Then R(X) is convex.
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Convexity: deterministic sets

v

F is r-convex if R(F) = —F.
This is the case if and only if, for any x, x’ € F and
A € §, we have

v

r(X1A —|—X/1Ac) e —F.

Intersection of r-convex sets is r-convex.

Each lower closed set is convex with respect to the
essinf risk measure.

The set |, (fixed transaction costs) is convex with
respect to the Average Value-at-Risk at level o < 1/2.

v

v

v
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Law invariance

Theorem
Assume that the probability space is nonatomic and that r
is Lebesgue continuous, that is, it is continuous on a.s.

convergent uniformly p-integrably bounded sequences of
random vectors.

Then R(X) is law invariant on portfolios, such that |0 X||
is p-integrable.

» For convex X and coherent r, we always have law
invariance, see Molchanov & Cascos (2016).
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Law invariance: proof

>

If X and X’ share the same distribution, then cl9*tX
and cl 9" X’ are p-integrably bounded and share the
same distribution.

Let x € r(¢) + RY for ¢ € LP(cl 9+ X).

» Since the weak closures of L%(cl97X) and L°(cl 9+ X')

coincide, there is a sequence 7, € LP(clo™X')
converging weakly to . Then ||| < || clo™X'|], and
the latter random variable is integrable.

Thus, {n,, n > 1} is relatively compact in L'(RY). By
passing to a subsequence, it is possible to assume
that ,, — & almost surely.

The Lebesgue continuity property yields that

F(nn,) — (). Thus, r(&) € R(clo*X’), since the latter
set is closed. Finally, x € R(X’) since the latter set is

upper.
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Fixed transaction costs: bounds
» Let X=X +1., wherel, =R UH_,., and

d
Hi={xeR%: Y x<t}, teR
i=1

» Then
(r(X) = 1L)URX + H_.) C R(X +1.) C R(X + Hp).

X—|—H0

1



Selection risk of a half-space: coherent case

Let D= Xi +--- 4+ Xq.

If r is coherent, then R(X + Hy) = H_(p).
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Selection risk of a half-space
LetD=X;+---+ Xg,and letr = (nr1,..., rg).
Proposition
i) If all components of r are identical convex risk
measures r, then R(X + Hy) = —H_ar(p/q).
ii) If one of the components of r is the negative essential

infimum and all other are identical convex risk
measures r, then R(X + Ho) = —H_y_1),(2.)-

iii) If one of components of r is the negative expectation
and all others are identical convex risk measures r
such that r(¢) > —E¢ for all ¢ € L'(R), then

R(X + Ho) = —H_ep.

3



Calculating the selection risk

» X has too many selections.

» If X = X + F for p-integrable X and deterministic
lower closed F, then

R(X) 2 r(X) + R(F)

assuming that r is coherent.

Q4



Exact calculation: fixed transaction costs

» Let X =1, (deterministic) in dimension 2, and let
r = (r1, ) have coherent components.

» Then the risk of I, is determined by the set
B = {(n(14),r2(—14)) : A€ F},

where P(A) is varying between 0 and 1.
» If ris the Average Value-at-Risk at level o« < 1/2, then

R(IH) = _Im

which is the set of fixed points.
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Exact calculation: fixed transaction costs,
a>1/2

» The set R(l,.) becomes conv(—I,) = E(—1,) if a = 1.
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Two admissible transactions

» Consider the set X = M + R?, where

M = {(0,0), (x,—y)} with x,y > 0.
» Let r be the Average Value-at-Risk at level o > 1/2.
» Consider selections £ = (x, y)14. Then

r§) = (xr(1a), yr(—1a)).

xn] RX

(0,(a" = 1)y)

(Xv_y)
X |
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