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Kabanov’s exchange cone model

I X is p-integrable random vector in Rd (gains on d
assets/currencies).

I K is a random cone (e.g. generated by bid-ask
exchange rates for currencies).

I K is the family of portfolios available at price zero.
I K describes transaction rules at the time when the

gain X is assessed.
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I Aim: measure the risk of X taking K into account.

X

X + K
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Vector-valued risk
I Tempting to describe the risk of X ∈ Rd by a vector

r(X ) ∈ Rd (taking into account the cone K ).
I Natural assumptions:

I r(X + a) = r(X )− a,
I if X ≤ Y coordinatewisely, then r(X ) ≥ r(Y ),
I r(cX ) = cr(X ),
I r(X + Y ) ≤ r(X ) + r(Y ) coordinatewisely.

Theorem (I.Cascos, IM, 2007)
In this case

r(X ) = (r1(X1), . . . , rd(Xd)),

that is, all vector-valued coherent risk measures
marginalise.
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Set-valued risk

I Capital a ∈ Rd that makes X + a acceptable can be
chosen in many incomparable ways.

I So the risk measure is a set in Rd .
I The possible values of risk measures are upper sets,

i.e. sets F such that with each x it contains all y ≥ x
(coordinatewisely).

I Position is acceptable if the risk measure contains the
origin.

I Larger set means lower risk.
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Previous work

I Hamel & Heyde (2010) and Hamel et al. (2011, 2013)
derived dual representations for risk measures of
X + K.

I Ben Tahar & Lepinette (2014) and Feinstein & Rudloff
(2012,2013) worked out the dynamical setting.

I Molchanov and Cascos (2016): primal representation
in terms of selections.

I All previous work in the convex setting.
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Set-valued portfolio

I Portfolio X is a random convex closed set such that
X = X + Rd

− (lower set).
I Risk R(X) is an upper set; utility is a lower set.
I X is not necessarily convex.

8



Why set-valued portfolios?

I X incorporates rather general liquidity restrictions.
I In the simplest case, X = X + K for a cone K

(Kabanov’s model).
I In the dynamical setting the value of risk measure is

a random set and it is used as the argument of
another risk measure

I numerical case rt(−rs(X ))
I set-valued setting Rt(−Rs(X)), where

−F = {−x : x ∈ F}

denotes the central symmetric set to F ⊂ Rd .
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Beyond Kabanov’s model

1:1 transactions up to a
certain amount

X
X

Only transactions that lead
to solvent positions and/or
disposal of assets are al-
lowed

X

−KX
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Non-convex portfolio: fixed transaction costs

I In case of each transaction, fixed cost κ is incurred.

X = X + Iκ

−κ

−κ
Iκ
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Finite set of possible transactions

X + ξ

X
X + η

X
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Selections and acceptability

I A random vector ξ ∈ Rd is called a selection of X if
ξ ∈ X a.s.
Assume that X contains at least one p-integrable
selection, i.e. the set Lp(X) is not empty, p ∈ [1,∞].

I Consider d-tuple r = (r1, . . . , rd) of univariate
monetary Lp-risk measures.

I Random set X is acceptable if it possesses at least
one acceptable selection ξ, meaning that

r(ξ) = (r1(ξ1), . . . , rd(ξd)) ≤ 0 ,

i.e. all individual coordinates of ξ are acceptable.
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Example: cones

X

X + K

I X = X + K has an acceptable selections exactly if
there exists a transfer (selection) η ∈ K such that
ξ = X + η is acceptable.
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Equivalent definition

I Let A ⊂ Lp(Rd) be a family of acceptable random
vectors in Rd .

I Then portfolio X is acceptable iff L0(X,F) ∩ A 6= ∅,
equivalently,

L0(−X,F) +A 3 0.
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Selection risk measure

I The selection risk measure R(X) is the topological
closure of the set

{a ∈ Rd : X + a is acceptable} .

I Equivalently,

R(X) = cl
⋃

ξ∈Lp(X)

(
r(ξ) + Rd

+

)
.

I This is the primal representation of the risk measure.
I In other words, the risk is the closed union of risks

determined by singletons chosen from X.
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Duality-based approach

I Conical setting X = X + K: Hamel & Heyde (2010)
and Hamel et al. (2011, 2013).

I Convex X is the union of singletons (primal) and the
intersection of half-spaces (dual).

I Portfolio X is acceptable if all half-spaces containing
X are acceptable, that is,

{x ∈ Rd : 〈x ,u〉 ≤ h(X,u)}

is acceptable for all (possibly random) u.
I The acceptability of such half-spaces is derived from

the support function h(X,u).
I However, such approach converts X to its convex hull.
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Fixed points

I If all components of r are essinf, that is, r(ξ) = essinfξ,
then

R(X) = −FX,

where
FX = {x : P{x ∈ X} = 1}

denotes the set of fixed points.

Proposition
For any selection risk measure, −FX ⊆ R(X).
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Selection (Aumann) expectation
I The closure of the set of expectations of all integrable

selections
EX = cl{Eξ : ξ ∈ L1(X)}

is called the selection (Aumann) expectation of X.
I If r(ξ) = −Eξ, then

R(X) = −EX

is a selection risk measure.
I It is linear

E(X + Y) = cl(EX + EY)

and EX is always convex on non-atomic probability
spaces, no matter if X is convex or not.

I The primal and dual approaches yield the same set.
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Non-linear functions constructed from
expectation

I If X1, . . . ,Xn are independent copies of X, let

R∩(X) = −E(X1 ∩ · · · ∩ Xn).

I It satisfies the property

R∩(X + Y) ⊇ R∩(X) + R∩(Y),

however, 0 ∈ R∩(X) does not imply the existence of
an acceptable selection with respect to the
underlying risk measure (expected minimum).

I The same applies to

RZ(X) =
⋂
ζ∈Z

E(−ζX),

where Z is a family of q-integrable non-negative
random variables with expectation one.
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Selection risk measure (reminder)

I The selection risk measure R(X) is the topological
closure of the set

{a ∈ Rd : X + a is acceptable} .

I Equivalently,

R(X) = cl
⋃

ξ∈Lp(X)

(
r(ξ) + Rd

+

)
.
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Main properties

Theorem
The selection risk measure (in the non-convex setting)
satisfies the following conditions

1. R(X + a) = R(X)− a for all a ∈ Rd (cash invariance).
2. If X ⊂ Y a.s., then R(X) ⊂ R(Y) (monotonicity).
3. If r is homogeneous, then R(cX) = cR(X) for all c > 0

(homogeneity).
4. If r is convex, then

R(λX + (1− λ)Y) ⊇ λR(X) + (1− λ)R(Y)

(superadditivity for inclusion, larger set means lower
risk).
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Univariate case

I Consider X ∈ Lp(R), and let X = (−∞,X ].
I All selections ξ ∈ X are dominated by X .
I Then the selection risk measure of X is

R(X) = [r(X ),∞).
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Finding acceptable selections
I ∂+X is the set of Pareto optimal points of X.
I X is called quasi-bounded if

‖∂+X‖ = sup{‖x‖ : x ∈ ∂+X}
is finite.

I Selections determining the risk should belong to
cl ∂+X.

X

∂+X
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Convexity: expectation

I R(X) = E(−X) is a selection risk measure.
I It takes convex values if the underlying probability

space is nonatomic, and then R(X) = R(conv X).
I This follows from Lyapunov’s theorem on ranges of

vector-valued measures.
I But this theorem generally does not hold for

measures with values in infinite-dimensional Banach
spaces.
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Convexity: example

Example
If X = {ξ, η}+ Rd

−, then R(X) is convex if,

for each t ∈ (0,1), there exists A ∈ F such that

tr(ξ) + (1− t)r(η) ≥ r(ξ1A + η1Ac).
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Convexity: general

I Assume that

r(ξ) = sup
ζ∈Lq(Rd

+),Eζ=1

(
E(−ζξ)− α(ζ)

)
, ξ ∈ Lp(Rd),

where α(ζ) = (α1(ζ1), . . . , αd(ζd)) and
αi : Lq(R+) 7→ (−∞,∞] are the penalty functions
corresponding to the components of r.

Theorem
Assume that the probability space is non-atomic and the
penalty function α has all infinite components unless ζ
belongs to a finite family. Then R(X) is convex.
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Convexity: deterministic sets

I F is r-convex if R(F ) = −F .
I This is the case if and only if, for any x , x ′ ∈ F and

A ∈ F, we have

r(x1A + x ′1Ac) ∈ −F .

I Intersection of r-convex sets is r-convex.
I Each lower closed set is convex with respect to the

essinf risk measure.
I The set Iκ (fixed transaction costs) is convex with

respect to the Average Value-at-Risk at level α ≤ 1/2.
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Law invariance

Theorem
Assume that the probability space is nonatomic and that r
is Lebesgue continuous, that is, it is continuous on a.s.
convergent uniformly p-integrably bounded sequences of
random vectors.

Then R(X) is law invariant on portfolios, such that ‖∂+X‖
is p-integrable.

I For convex X and coherent r, we always have law
invariance, see Molchanov & Cascos (2016).
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Law invariance: proof
I If X and X′ share the same distribution, then cl ∂+X

and cl ∂+X′ are p-integrably bounded and share the
same distribution.

I Let x ∈ r(ξ) + Rd
+ for ξ ∈ Lp(cl ∂+X).

I Since the weak closures of L0(cl ∂+X) and L0(cl ∂+X′)
coincide, there is a sequence ηn ∈ Lp(cl ∂+X′)
converging weakly to ξ. Then ‖ηn‖ ≤ ‖ cl ∂+X′‖, and
the latter random variable is integrable.

I Thus, {ηn,n ≥ 1} is relatively compact in L1(Rd). By
passing to a subsequence, it is possible to assume
that ηnk → ξ almost surely.

I The Lebesgue continuity property yields that
r(ηnk )→ r(ξ). Thus, r(ξ) ∈ R(cl ∂+X′), since the latter
set is closed. Finally, x ∈ R(X′) since the latter set is
upper.
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Fixed transaction costs: bounds
I Let X = X + Iκ, where Iκ = Rd

− ∪ H−κ, and

Ht = {x ∈ Rd :
d∑

i=1

xi ≤ t}, t ∈ R.

I Then

(r(X )− Iκ) ∪ R(X + H−κ) ⊂ R(X + Iκ) ⊂ R(X + H0).

X + H0

X = X + Iκ

X
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Selection risk of a half-space: coherent case

Let D = X1 + · · ·+ Xd .

X

D

X = X + H0

If r is coherent, then R(X + H0) = H−r(D).
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Selection risk of a half-space
Let D = X1 + · · ·+ Xd , and let r = (r1, . . . , rd).

Proposition

i) If all components of r are identical convex risk
measures r , then R(X + H0) = −H−dr(D/d).

ii) If one of the components of r is the negative essential
infimum and all other are identical convex risk
measures r , then R(X + H0) = −H−(d−1)r( D

d−1 )
.

iii) If one of components of r is the negative expectation
and all others are identical convex risk measures r
such that r(ξ) ≥ −Eξ for all ξ ∈ L1(R), then

R(X + H0) = −H−ED.
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Calculating the selection risk

I X has too many selections.
I If X = X + F for p-integrable X and deterministic

lower closed F , then

R(X) ⊇ r(X ) + R(F )

assuming that r is coherent.
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Exact calculation: fixed transaction costs

I Let X = Iκ (deterministic) in dimension 2, and let
r = (r1, r2) have coherent components.

I Then the risk of Iκ is determined by the set

Br = {(r1(1A), r2(−1A)) : A ∈ F},

where P(A) is varying between 0 and 1.
I If r is the Average Value-at-Risk at level α ≤ 1/2, then

R(Iκ) = −Iκ,

which is the set of fixed points.
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Exact calculation: fixed transaction costs,
α > 1/2

I The set R(Iκ) becomes conv(−Iκ) = E(−Iκ) if α = 1.
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Two admissible transactions
I Consider the set X = M + R2

−, where
M = {(0,0), (x ,−y)} with x , y > 0.

I Let r be the Average Value-at-Risk at level α > 1/2.
I Consider selections ξ = (x , y)1A. Then

r(ξ) = (xr(1A), yr(−1A)).

X

R(X)

(x ,−y)

(0, (α−1 − 1)y)
(−x , y)
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