On Approximation of the Backward Stochastic Differential Equation.

Small noise, ergodic diffusion and unknown volatility cases.

Yury A. Kutoyants

Le Mans University, Le Mans, FRANCE

Tomsk State University, Tomsk, RUSSIA

Innovative Research in Mathematical Finance

CIRM, 3 September, 2018

Backward Stochastic Differential Equation **Problem**: We are given a stochastic differential equation (called *forward*)

$$dX_t = b(t, X_t) dt + a(t, X_t) dW_t, \quad X_0 = x_0, \ 0 \le t \le T,$$

and two functions f(t, x, y, z) and $\Phi(x)$. We have to construct a couple of processes (Y_t, Z_t) such that the solution of the equation

$$dY_t = -f(t, X_t, Y_t, Z_t) dt + Z_t dW_t, \quad Y_0, \ 0 \le t \le T,$$

(called *backward*) has the final value $Y_T = \Phi(X_T)$.

For the existence and uniqueness of the solution see Pardoux and Peng (1990). The *Markovian case* considered here was discussed by Pardoux and Peng (1992) and El Karoui & al. (1997). **Solution**: Suppose that u(t, x) satisfies the equation

$$\frac{\partial u}{\partial t} + b(t,x)\frac{\partial u}{\partial x} + \frac{1}{2}a(t,x)^2\frac{\partial^2 u}{\partial x^2} = -f\left(t,x,u,a(t,x)\frac{\partial u}{\partial x}\right),$$

with the final condition $u(T, x) = \Phi(x)$. Then if we put $Y_t = u(t, X_t), Z_t = a(t, X_t) u'_x(t, X_t)$. Then by Itô's formula

$$dY_t = \left[\frac{\partial u}{\partial t}(t, X_t) + b(t, X_t)\frac{\partial u}{\partial x}(t, X_t) + \frac{1}{2}a(t, x)^2\frac{\partial^2 u}{\partial x^2}(t, X_t)\right] dt$$
$$+ a(t, X_t)\frac{\partial u}{\partial x}(t, X_t) dW_t$$
$$= -f(t, X_t, Y_t, Z_t) dt + Z_t dW_t, \qquad Y_0 = u(0, X_0).$$

The final value $Y_T = u(T, X_T) = \Phi(X_T)$.

Statistical problems. We consider this problem in the situations, where the forward equation contains some unknown parameter ϑ :

$$dX_t = b(\vartheta, t, X_t) dt + a(\vartheta, t, X_t) dW_t, \quad X_0 = x_0, \ 0 \le t \le T.$$

Then $u = u(t, x, \vartheta)$ and the proposed approximations \hat{Y}_t, \hat{Z}_t of the couple Y_t, Z_t are given by the relations

$$\hat{Y}_t = u(t, X_t, \vartheta_t^*), \qquad \hat{Z}_t = u'_x(t, X_t, \vartheta_t^*) a(\vartheta_t^*, t, X_t).$$

Here ϑ_t^* is some good estimator-process of ϑ with the small error of estimation $\mathbf{E}_{\vartheta} \left(\hat{\vartheta}_t - \vartheta \right)^2$. This provides us the small errors $\mathbf{E}_{\vartheta} \left(\hat{Y}_t - Y_t \right)^2$ and $\mathbf{E}_{\vartheta} \left(\hat{Z}_t - Z_t \right)^2$.

$$\vartheta^* = (\vartheta^*_t, 0 < t \le T)$$

Main problem: how to find a good estimator-process $\vartheta_t^*, 0 < t \leq T$? Good means :

- It depends on observations $X^t = (X_s, 0 \le s \le t)$ and is stochastic process $\vartheta^* = \vartheta^*_t, 0 < t \le T$.
- Easy to calculate for all $t \in (0, T]$.
- Asymptpotically efficient for all $t \in (0,T]$.

The MLE $\hat{\vartheta}_t$ defined by

$$V\left(\hat{\vartheta}_{t}, X^{t}\right) = \sup_{\vartheta \in \Theta} V\left(\vartheta, X^{t}\right)$$

can not be used as *Good* because in non linear case to solve this equation for all $t \in (0, T]$ is a difficult problem.

As *Forward Equations* we consider three diffusion processes:

• Diffusion process with small noise $(\varepsilon \to 0)$

$$A: \quad dX_t = S(\vartheta, t, X_t) dt + \varepsilon \sigma(t, X_t) dW_t, \quad x_0, \ 0 \le t \le T,$$

$$B: \quad \mathrm{d}X_t = -a\left(\vartheta, t\right) X_t \mathrm{d}t + \varepsilon b\left(\vartheta, t\right) \mathrm{d}V_t, \quad x_0 \neq 0,$$

$$dR_t = A(\vartheta, t) X_t dt + \varepsilon \sigma(t) dW_t, \quad R_0 = 0, \quad 0 \le t \le T.$$

• Discrete time observations $X^n = (X_{t_0}, X_{t_1}, \dots, X_{t_n}), t_i = i\frac{T}{n}$ of the process $(n \to \infty)$

$$dX_t = S(t, X_t) dt + \sigma(\vartheta, t, X_t) dW_t, \quad X_0, \ 0 \le t \le T.$$

• Ergodic diffusion process $(T \to \infty)$

 $dX_t = S(\vartheta, X_t) dt + \sigma(X_t) dW_t, \quad X_0, \ 0 \le t \le T.$

We propose estimator-processes ϑ^* such that approximations of BSDE $\hat{Y}_t = u(t, X_t, \vartheta_t^*) \to Y_t$ have minimal errors $\mathbf{E}_{\vartheta} \left(\hat{Y}_t - Y_t \right)^2$. Small noise asymptotics. Case A. (joint work with L.Zhou)

The observed diffusion process (forward) is

 $dX_t = S(\vartheta, t, X_t) dt + \varepsilon \sigma(t, X_t) dW_t, \quad X_0, \ 0 \le t \le T$

where $\vartheta \in \Theta = (\alpha, \beta)$ is unknown parameter. We are given two functions f(t, x, y, z), $\Phi(x)$ and we have to find a couple of stochastic processes $(\hat{X}_t, \hat{Z}_t, 0 \leq t \leq T)$ which approximates well the solution of the BSDE

 $dY_t = -f(t, X_t, Y_t, Z_t) dt + Z_t dW_t, \qquad Y_0, \quad 0 \le t \le T$

satisfying the condition $Y_T = \Phi(X_T)$. The functions $S(\cdot)$ and $\sigma(\cdot)$ are known and smooth. We have to minimize the errors

$$\mathbf{E}_{\vartheta}\left(\hat{Y}_t - Y_t\right)^2 \to \min, \qquad \mathbf{E}_{\vartheta}\left(\hat{Z}_t - Z_t\right)^2 \to \min$$

as $\varepsilon \to 0$.

Solution: Let us introduce a family of functions

$$\mathcal{U} = \{ (u(t, x, \vartheta), t \in [0, T], x \in \mathbb{R}), \vartheta \in \Theta \}$$

such that for all $\vartheta \in \Theta$ the function $u(t, x, \vartheta)$ satisfies the equation

$$\frac{\partial u}{\partial t} + S(\vartheta, t, x) \frac{\partial u}{\partial x} + \frac{\varepsilon^2 \sigma(t, x)^2}{2} \frac{\partial^2 u}{\partial x^2} = -f\left(t, x, u, \varepsilon \sigma(x) \frac{\partial u}{\partial x}\right)$$

and condition $u(T, x, \vartheta) = \Phi(x)$. If we put $Y_t = u(t, X_t, \vartheta)$, then by Itô's formula we obtain BSDE with $Z_t = \varepsilon \sigma(t, X_t) u'_x(t, X_t, \vartheta)$. As we do not know the value ϑ we propose first to estimate it using some estimator $\vartheta_{\varepsilon}^{\star}$ and then to put

$$\hat{Y}_t = u(t, X_t, \vartheta_{\varepsilon}^{\star}), \qquad \hat{Z}_t = \varepsilon \sigma(t, X_t) u'_x(t, X_t, \vartheta_{\varepsilon}^{\star})$$

Construction of the Estimator: Remind the MLE for this model. Introduce the LR function

$$L\left(\vartheta, X^{t}\right) = \exp\left\{\int_{0}^{t} \frac{S\left(\vartheta, s, X_{s}\right)}{\varepsilon^{2} \sigma\left(s, X_{s}\right)^{2}} \, \mathrm{d}X_{s} - \int_{0}^{t} \frac{S\left(\vartheta, s, X_{s}\right)^{2}}{2 \varepsilon^{2} \sigma\left(s, X_{s}\right)^{2}} \, \mathrm{d}s\right\}$$

and define the MLE $\hat{\vartheta}_{t,\varepsilon}$ by the equation

$$L\left(\hat{\vartheta}_{t,\varepsilon}, X^{t}\right) = \sup_{\vartheta \in \Theta} L\left(\vartheta, X^{t}\right).$$

It is known that $\varepsilon^{-1}\left(\hat{\vartheta}_{t,\varepsilon} - \vartheta_0\right) \Longrightarrow \mathcal{N}\left(0, \mathbb{I}_t\left(\vartheta, x^t\right)^{-1}\right)$, but to use it for $\bar{Y}_t = u\left(t, X_t, \hat{\vartheta}_{t,\varepsilon}\right)$ can be computantionally difficult problem. Here

$$I_{t}\left(\vartheta, x^{t}\left(\vartheta\right)\right) = \int_{0}^{t} \frac{\dot{S}\left(\vartheta, s, x_{s}\left(\vartheta\right)\right)^{2}}{\sigma\left(s, x_{s}\left(\vartheta\right)\right)^{2}} \,\mathrm{d}s$$

Our goal to construct an estimator-process ϑ_t^{\star} with the same asymptotics for all $t \in (0, T]$. Introduce a family of functions $\{(x_s(\vartheta), 0 \le s \le T), \vartheta \in \Theta\}$ solution of ODE

$$\frac{\mathrm{d}x_s}{\mathrm{d}s} = S\left(\vartheta, s, x_s\right), \qquad x_0, \quad 0 \le s \le T.$$

It is known that X_s converges to $x_s(\vartheta)$ uniformly in $s \in [0, T]$. Fix some (small) $\tau > 0$ and introduce the MDE $\bar{\vartheta}_{\tau,\varepsilon}$:

$$\left\|X - x\left(\bar{\vartheta}_{\tau,\varepsilon}\right)\right\|_{\tau}^{2} = \inf_{\vartheta \in \Theta} \left\|X - x\left(\vartheta\right)\right\|_{\tau}^{2} = \inf_{\vartheta \in \Theta} \int_{0}^{\tau} \left[X_{t} - x_{t}\left(\vartheta\right)\right]^{2} \, \mathrm{d}t.$$

Suppose that the regularity conditions are fulfilled. Then this estimator is consistent and asymptotically normal

$$\varepsilon^{-1}\left(\bar{\vartheta}_{\tau,\varepsilon}-\vartheta_{0}\right)\Longrightarrow\mathcal{N}\left(0,D_{\tau}\left(\vartheta_{0}\right)^{2}\right),$$

where $\mathbb{I}_{\tau}(\vartheta, x^{\tau}(\vartheta)) \ge D_{\tau}(\vartheta_0)^{-2} > 0$ (K. 1994).

Let us consider $\tau_{\varepsilon} \to 0$ but *slowly*, $\tau_{\varepsilon} = \varepsilon^{\delta}$, where $\delta \in [0, 2)$. Then, say, the MLE $\hat{\vartheta}_{\tau_{\varepsilon}}$ is consistent and asymptotically normal but with the *bad rate*

$$\frac{\sqrt{\tau_{\varepsilon}}}{\varepsilon} \left(\hat{\vartheta}_{\tau_{\varepsilon}} - \vartheta \right) \Longrightarrow \mathcal{N} \left(0, \frac{\sigma \left(x_0 \right)^2}{\dot{S} \left(\vartheta, x_0 \right)^2} \right)$$

The similar behavior has the MDE

$$\frac{\sqrt{\tau_{\varepsilon}}}{\varepsilon} \left(\bar{\vartheta}_{\tau_{\varepsilon}} - \vartheta \right) \Longrightarrow \mathcal{N} \left(0, D^2 \right).$$

The estimators $\hat{\vartheta}_{\tau_{\varepsilon}}$ and $\bar{\vartheta}_{\tau_{\varepsilon}}$ are used as preliminary in the construction of asymptotically optimal estimator-process. Then we obtain asymptotically efficient estimation of $Y_t, Z_t, \tau_{\varepsilon} \leq t \leq T$ even for $\tau_{\varepsilon} \to 0$.

Introduce One-step MLE-process $\vartheta_{t,\varepsilon}^{\star}, \tau_{\varepsilon} \leq t \leq T$

$$\vartheta_{t,\varepsilon}^{\star} = \bar{\vartheta}_{\tau_{\varepsilon}} + \varepsilon \frac{\Delta_t \left(\bar{\vartheta}_{\tau_{\varepsilon}}, X_{\tau_{\varepsilon}}^t \right)}{\mathbb{I}_t \left(\bar{\vartheta}_{\tau_{\varepsilon}}, x^t \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right) \right)},$$

where

$$\Delta_t \left(\vartheta, X_\tau^t \right) = \int_\tau^t \frac{\dot{S} \left(\vartheta, s, X_s \right)}{\varepsilon \sigma \left(s, X_s \right)^2} \left[dX_s - S \left(\vartheta, s, X_s \right) \, ds \right], \quad t \in [\tau_\varepsilon, T]$$

and

$$\mathbb{I}_{t}\left(\vartheta, x^{t}\left(\vartheta\right)\right) = \int_{\tau}^{t} \frac{\dot{S}\left(\vartheta, s, x_{s}\left(\vartheta\right)\right)^{2}}{\sigma\left(s, x_{s}\left(\vartheta\right)\right)^{2}} \,\mathrm{d}s,$$
$$\mathbb{I}_{t}\left(\vartheta, X^{t}\right) = \int_{\tau}^{t} \frac{\dot{S}\left(\vartheta, s, X_{s}\right)^{2}}{\sigma\left(s, X_{s}\right)^{2}} \,\mathrm{d}s.$$

We show that if $\tau_{\varepsilon} = \varepsilon^{\delta}, 0 < \delta < 1$, then

$$\varepsilon^{-1}\left(\vartheta_{t,\varepsilon}^{\star}-\vartheta\right) \Longrightarrow \mathcal{N}\left(0,\mathbb{I}_{t}\left(\vartheta,x^{t}\right)^{-1}\right)$$

Introduce the estimators

$$Y_t^{\star} = u\left(t, X_t, \vartheta_{t,\varepsilon}^{\star}\right), \qquad Z_t^{\star} = \varepsilon \sigma\left(t, X_t\right) u_x'\left(t, X_t, \vartheta_{t,\varepsilon}^{\star}\right)$$

Theorem 1 Suppose the conditions of regularity hold, then the processes $Y_t^{\star}, Z_t^{\star}, \tau_{\varepsilon} \leq t \leq T$ have the representation

$$Y_{t}^{\star} = Y_{t} + \varepsilon \dot{u} (t, X_{t}, \vartheta_{0}) \xi_{t} (\vartheta_{0}) + o(\varepsilon),$$

$$Z_{t}^{\star} = Z_{t} + \varepsilon^{2} \sigma (t, X_{t}) \dot{u}_{x}' (t, X_{t}, \vartheta_{0}) \xi_{t} (\vartheta_{0}) + o(\varepsilon^{2}),$$

where

$$\xi_t(\vartheta_0) = \mathbb{I}_t(\vartheta, x^t)^{-1} \int_0^t \frac{\dot{S}(\vartheta, x_s)}{\sigma(x_s)} \mathrm{d}W_s$$

The random process $\eta_{t,\varepsilon} = \varepsilon^{-1} (Y_t^* - Y_t), \tau \leq t \leq T$ for any $\tau \in (0,T]$ converges in distribution to the process $\xi_t (\vartheta_0), \tau \leq t \leq T$. Let us show that the proposed approximations are asymptotically efficient. This means, that the means-quare errors

$$\mathbf{E}_{\vartheta} \left| Y_t - Y_t^{\star} \right|^2, \qquad \mathbf{E}_{\vartheta} \left| Z_t - Z_t^{\star} \right|^2,$$

of estimation Y_t and Z_t can not be improved. This will be done in two steps. First we establish a low bound on the risks of all estimators and then show that the proposed estimators attaint this bound.

Theorem 2 For all estimators \overline{Y}_t and \overline{Z}_t and all $t \in [\tau_{\varepsilon}, T]$ we have the relations

$$\underbrace{\lim_{\nu \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| \le \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta} \left| \bar{Y}_t - Y_t \right|^2}_{\nu \to 0} \ge \frac{\dot{u}^0 \left(t, x_t \left(\vartheta_0 \right), \vartheta_0 \right)^2}{\mathbb{I}_t \left(\vartheta_0, x^t \left(\vartheta_0 \right) \right)}, \\
\underbrace{\lim_{\nu \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| \le \nu} \varepsilon^{-4} \mathbf{E}_{\vartheta} \left| \bar{Z}_t - Z_t \right|^2}_{\ge \frac{\left(\dot{u}^0 \right)'_x \left(t, x_t \left(\vartheta_0 \right), \vartheta_0 \right)^2 \sigma \left(t, x_t \left(\vartheta_0 \right) \right)^2}{\mathbb{I}_t \left(\vartheta_0, x^t \left(\vartheta_0 \right) \right)}}$$

We call an approximation Y_t^{\star} asymptotically efficient if for all $\vartheta_0 \in \Theta$ we have the equality

$$\lim_{\nu \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| \le \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta} |Y_t^{\star} - Y_t|^2 = \frac{\dot{u}^0 \left(t, x_t \left(\vartheta_0 \right), \vartheta_0 \right)^2}{\mathbb{I}_t \left(\vartheta_0, x^t \left(\vartheta_0 \right) \right)}$$

and the similar definition is valid in the case of the bound for Z_t .

Theorem 3 The approximations

$$Y_t^{\star} = u\left(t, X_t, \vartheta_{t,\varepsilon}^{\star}\right) \quad \text{and} \quad Z_t^{\star} = \varepsilon \sigma\left(t, X_t\right) u_x'\left(t, X_t, \vartheta_{t,\varepsilon}^{\star}\right)$$

are asymptotically efficient, i.e.,

$$\lim_{\nu \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| \le \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta} |Y_t^{\star} - Y_t|^2 = \frac{\dot{u}^0 \left(t, x_t \left(\vartheta_0 \right), \vartheta_0 \right)^2}{\mathbb{I} \left(\vartheta_0, x^t \left(\vartheta_0 \right) \right)},$$
$$\lim_{\nu \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| \le \nu} \varepsilon^{-4} \mathbf{E}_{\vartheta} |Z_t^{\star} - Z_t|^2 = \frac{\sigma \left(t, x_t \left(\vartheta_0 \right) \right)^2 \left(\dot{u}^0 \right)_x' \left(t, x_t, \vartheta_0 \right)^2}{\mathbb{I} \left(\vartheta_0, x^t \left(\vartheta_0 \right) \right)}$$

Small noise asymptotics. Case B.

We have two-dimensional linear diffusion process

$$dX_{t} = -a(\vartheta, t) X_{t} dt + \varepsilon b(\vartheta, t) dV_{t}, \quad x_{0} \neq 0,$$

$$dR_{t} = A(\vartheta, t) X_{t} dt + \varepsilon \sigma(t) dW_{t}, \quad R_{0} = 0, \quad 0 \leq t \leq T.$$

where $X^T = (X_t, 0 \le t \le T)$ is the Forward and the process $R^T = (R_t, 0 \le t \le T)$ is observed. Let us denote conditional expectation $\hat{X}_t = \mathbf{E}_{\vartheta} (X_t | R_s, 0 \le s \le t)$. We are given two functions f(t, x, y, z) and $\Phi(x)$ and we have to construct the BSDE

$$\mathrm{d}Y_t = -f(t, \hat{X}_t, Y_t, Z_t)\mathrm{d}t + Z_t \,\mathrm{d}\bar{W}_t,$$

with the final value $Y_T = \Phi(\hat{X}_T)$.

Equations of optimal filtration:

$$d\hat{X}_{t} = -a\left(\vartheta, t\right)\hat{X}_{t}dt + c\left(\vartheta, t\right)\varepsilon d\bar{W}_{t}, \quad \hat{X}_{0} = x_{0},$$

$$\frac{\partial\gamma_{t}\left(\vartheta\right)}{\partial t} = -2a\left(\vartheta, t\right)\gamma_{t}\left(\vartheta\right) - \frac{\gamma_{t}\left(\vartheta\right)A\left(\vartheta, t\right)^{2}}{\sigma\left(t\right)^{2}} + b\left(\vartheta, t\right)^{2}, \quad \gamma_{0}\left(\vartheta\right) = 0.$$

Here $c\left(\vartheta, t\right) = \gamma_{t}\left(\vartheta\right)A\left(\vartheta, t\right)\sigma\left(t\right)^{-1}, \hat{X}_{t} = \hat{X}_{t}\left(\vartheta\right)$ and

$$d\bar{W}_{t} = \varepsilon^{-1}\sigma\left(t\right)^{-1}\left[dR_{t} - A\left(\vartheta, t\right)\hat{X}_{t}dt\right].$$

It roduce $u(t, x, \vartheta)$ as solution

$$\frac{\partial u}{\partial t} - a\left(\vartheta, t\right) x \frac{\partial u}{\partial x} + \frac{c\left(\vartheta, t\right)^2 \varepsilon^2}{2} \frac{\partial^2 u}{\partial x^2} = -f\left(t, x, y, c\left(\vartheta, t\right) \varepsilon \frac{\partial u}{\partial x}\right)$$

with the final value $u(T, x, \vartheta) = \Phi(x)$.

We propose the asymptotically optimal approximation as

$$\hat{Y}_{t} = u\left(t, \hat{X}_{t}\left(\vartheta_{t}^{\star}\right), \vartheta_{t}^{\star}\right), \qquad \hat{Z}_{t} = \varepsilon c\left(\vartheta_{t}^{\star}, t\right) \frac{\partial u\left(t, \hat{X}_{t}\left(\vartheta_{t}^{\star}\right), \vartheta_{t}^{\star}\right)}{\partial x},$$

where ϑ_t^{\star} is One-step MLE-process

$$\vartheta_t^{\star} = \bar{\vartheta}_{\tau_{\varepsilon}} + \varepsilon \frac{\Delta_t \left(\bar{\vartheta}_{\tau_{\varepsilon}}, X^t \right)}{\mathrm{I}_t \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right)}, \quad \tau_{\varepsilon} < t \le T$$

where

$$\Delta_{t}\left(\vartheta,X\right) = \int_{\tau_{\varepsilon}}^{t} \frac{\dot{A}\left(\vartheta,s\right)\hat{X}_{s} + A\left(\vartheta,s\right)\hat{X}_{s}}{\varepsilon\sigma\left(s\right)^{2}} \left[dR_{s} - A\left(\vartheta,s\right)\hat{X}_{s}\left(\vartheta\right)ds\right]$$

and

$$\mathbf{I}_{t}\left(\vartheta\right) = \int_{\tau}^{t} \frac{\left(\dot{A}\left(\vartheta,s\right)x_{s}\left(\vartheta\right) + A\left(\vartheta,s\right)\hat{x}_{s}\left(\vartheta\right)\right)^{2}}{\sigma\left(s\right)^{2}} \mathrm{d}s$$

The random process $\hat{\dot{X}}_t = \hat{\dot{X}}_t \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right)$ satisfies equation

$$\mathrm{d}\hat{\dot{X}}_t = -\left[\dot{a} + \frac{\dot{c}A + c\dot{A}}{\sigma}\right]\hat{X}_t\mathrm{d}t - \left[a + \frac{cA}{\sigma}\right]\hat{\dot{X}}_t\mathrm{d}t + \frac{\dot{c}}{\sigma}\mathrm{d}R_t.$$

Here

$$\dot{a} = \dot{a} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right), \quad \dot{c} = \dot{c} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right), \quad \dot{A} = \dot{A} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right),$$

and

$$\frac{\partial \dot{\gamma}_{t} \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right)}{\partial t} = -2 \left[\dot{a} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right) + \frac{A \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right) \dot{A} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right)}{\sigma \left(t \right)^{2}} \right] \gamma_{t} \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right) - \left[2a \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right) + \frac{A \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right)^{2}}{\sigma \left(t \right)^{2}} \right] \dot{\gamma}_{t} \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right) + 2b \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right) \dot{b} \left(\bar{\vartheta}_{\tau_{\varepsilon}}, t \right) ,$$

with $\gamma_0 \left(\bar{\vartheta}_{\tau_{\varepsilon}} \right) = 0.$

The error of estimation is

$$\varepsilon^{-1} \left(\hat{Y}_t - Y_t \right) = \left(u'_x \dot{\hat{x}}_t + \dot{u}_\vartheta \right) \varepsilon^{-1} \left(\vartheta_t^\star - \vartheta \right) + o\left(1 \right)$$
$$\Longrightarrow \left(u'_x \dot{\hat{x}}_t + \dot{u} \right) \xi_t \left(\vartheta \right).$$

Here $\xi_t(\vartheta)$ is Gaussian process

$$\xi_t(\vartheta) = \mathbf{I}_t(\vartheta)^{-1} \int_0^t \frac{\dot{A}(\vartheta, s) x_s(\vartheta) + A(\vartheta, s) \hat{x}_s(\vartheta)}{\sigma(s)} \, \mathrm{d}W_s$$

and

$$\begin{aligned} x_t(\vartheta) &= x_0 \exp\left\{-\int_0^t a\left(\vartheta, v\right) \mathrm{d}v\right\},\\ \hat{x}_t(\vartheta) &= -\int_0^t e^{-\int_s^t \left[a + \frac{Ac}{\sigma}\right] \mathrm{d}v} \left[\dot{a}\left(\vartheta, s\right) + \frac{c\left(\vartheta, s\right) \dot{A}\left(\vartheta, s\right)}{\sigma\left(s\right)}\right] x_s \mathrm{d}s \end{aligned}$$

The similar result we have for the error $\varepsilon^{-2} \left(\hat{Z}_t - Z_t \right)$.

Unknown volatility (joint work with S. Gasparyan) The forward equation is

$$dX_t = S(t, X_t) dt + \sigma(\vartheta, t, X_t) dW_t, \quad X_0, \ 0 \le t \le T$$

where $\vartheta \in \Theta = (\alpha, \beta)$. We observe the solution of this equation in discrete times $t_i = i\frac{T}{n}$ and have to study the approximation $\hat{Y}_t = u(t, X_{t_k}, \hat{\vartheta}_{t_k}), k = 1, \ldots, n$, where k satisfies the conditions $t_k \leq t \leq t_{k+1}$ and the estimator $\hat{\vartheta}_{t_k}$ is construct by the observations $X^k = (X_0, X_{t_1}, \ldots, X_{t_k})$. Our goal is to realize the same program as above: we study the one-step pseudo-MLE, which can be relatively easy in calculation and has some properties of optimality. **On parameter estimation in diffusion coefficient**. First of all remind that ϑ can be calculated without error if we have continuous time observations. To illustrate it we give two examples. **Example**. Suppose that $\sigma(\vartheta, t, x) = \sqrt{\vartheta}h(t, x), \vartheta \in (\alpha, \beta), \alpha > 0$, and the observed process is

$$dX_t = S(t, X_t) dt + \sqrt{\vartheta} h(t, X_t) dW_t, \quad X_0, \quad 0 \le t \le T.$$

We suppose as well that $\int_0^t h(s, X_s)^2 ds > 0$.

Let us write the Itô formula for X_t^2 :

$$X_t^2 = X_0^2 + 2\int_0^t X_s \, \mathrm{d}X_s + \vartheta \int_0^t h(s, X_s)^2 \, \mathrm{d}s, \qquad 0 \le t \le T.$$

Hence, for all $t \in (0, T]$ we have with probability 1 the equality

$$\hat{\vartheta}_t = \frac{X_t^2 - X_0^2 - 2\int_0^t X_s \, \mathrm{d}X_s}{\int_0^t h\left(s, X_s\right)^2 \mathrm{d}s} = \vartheta$$

The problem became more interesting if we consider the discrete time observations $X^n = (X_{t_1}, \ldots, X_{t_n}), t_j = j\frac{T}{n}$ and the problem of approximation in the high frequency asymptotics $(n \to \infty)$. Then in Example we obtain the estimator

$$\hat{\vartheta}_{t,k} = \frac{X_{t_k}^2 - X_0^2 - 2\sum_{j=1}^k X_{t_{k-1}} \left(X_{t_k} - X_{t_{k-1}} \right)}{\sum_{j=1}^k h \left(t_{j-1}, X_{t_{j-1}} \right)^2 \delta}, \quad \delta = \frac{T}{n}$$

It can be easily shown that if $n \to \infty$ then we have $\hat{\vartheta}_{t,n} \to \vartheta$ and we can use it in the approximation of Y_t as follows $\hat{Y}_{t,n} = u(t, X_t, \hat{\vartheta}_{t,n})$. We can describe the distribution of error $\sqrt{n} (\hat{Y}_{t,n} - Y_t)$, but the estimator is not asymptotically optimal. We consider a different estimator. Let us introduce the equation

$$X_{t_{j+1}} = X_{t_j} + S\left(t_j, X_{t_j}\right)\delta + \sigma\left(t_j, X_{t_j}, \vartheta\right)\left[W_{t_{j+1}} - W_{t_j}\right].$$

Note that conditional $(X_{t_0}, \ldots, X_{t_j})$ distribution

$$X_{t_{j+1}} - X_{t_j} - S\left(t_j, X_{t_j}\right)\delta \quad \sim \quad \mathcal{N}\left(0, \sigma\left(t_j, X_{t_j}, \vartheta\right)^2\delta\right),$$

therefore we can itroduce the log pseudo-likelihood ratio

$$L\left(\vartheta, X^{k}\right) = -\frac{1}{2} \sum_{j=0}^{k-1} \ln\left[2\pi\sigma\left(t_{j}, X_{t_{j}}, \vartheta\right)^{2}\delta\right]$$
$$-\frac{1}{2} \sum_{j=0}^{k-1} \frac{\left(X_{t_{j+1}} - X_{t_{j}} - S\left(t_{j}, X_{t_{j}}\right)\delta\right)^{2}}{\sigma\left(t_{j}, X_{t_{j}}, \vartheta\right)^{2}\delta}$$

The corresponding contrast function is

$$U_{k}(\vartheta, X^{k}) = \sum_{j=0}^{k-1} \ln a(t_{j}, X_{t_{j}}, \vartheta) + \sum_{j=0}^{k-1} \frac{(X_{t_{j+1}} - X_{t_{j}} - S(t_{j}, X_{t_{j}}))^{2}}{a(t_{j}, X_{t_{j}}, \vartheta)}$$

where $a(t, x, \vartheta) = \sigma(t, x, \vartheta)^2$. The estimator $\hat{\vartheta}_{t,n}$ is define by

$$U_k\left(\hat{\vartheta}_{t,n}, X^k\right) = \inf_{\vartheta \in \Theta} U_k\left(\vartheta, X^k\right)$$

It is known that this estimator is consistent, asymptotically conditionally normal

$$\sqrt{n} \left(\hat{\vartheta}_{t,n} - \vartheta_0 \right) \Longrightarrow \mathcal{N} \left(0, \mathbb{I}_t \left(\vartheta_0 \right)^{-1} \right),$$
$$\mathbb{I}_t \left(\vartheta_0 \right) = 2 \int_0^t \frac{\dot{\sigma} \left(s, X_s, \vartheta_0 \right)^2}{\sigma \left(s, X_s, \vartheta_0 \right)^2} \, \mathrm{d}s$$

and asymptotically efficient (Dohnal(1987), Genon-Catalot, Jacod (1993)).

Note that the approximation $\hat{Y}_t = u(t, X_{t_k}, \hat{\vartheta}_{t,n})$ is computationally difficult to realize. That is why we propose as above the one-step pseudo-MLE. Let us fix some (small) $\tau \in (0, T)$. The PMLE estimator $\hat{\vartheta}_{\tau,n}$ constructed by $X_{t_{0,n}}, X_{t_{1,n}}, \ldots, X_{t_{N,n}}$, where N is chosen from the condition $t_{N,n} \leq \tau < t_{N+1,n}$, is consistent and asymptotically conditionally normal.

Introduce the normalized pseudo score-function and the empirical Fisher information

$$\Delta_{k,n}\left(\vartheta\right) = \sum_{j=0}^{k-1} \frac{\left[\left(X_{t_{j+1}} - X_{t_j} - S_j \,\delta\right)^2 - a_j\left(\vartheta\right)\delta\right] \dot{a}_j\left(\vartheta\right)}{2a_j\left(\vartheta\right)^2 \sqrt{\delta}},$$
$$\mathbb{I}_{k,n}\left(\vartheta\right) = \frac{1}{2} \sum_{j=0}^{k-1} \frac{\dot{a}_j\left(\vartheta\right)^2}{a_j\left(\vartheta\right)^2} \,\delta = 2 \sum_{j=0}^{k-1} \frac{\dot{\sigma}\left(t_j, X_{t_j}, \vartheta\right)^2}{\sigma\left(t_j, X_{t_j}, \vartheta\right)^2} \,\delta.$$

We have the stable convergence

$$\Delta_{k,n}\left(\vartheta_{0}\right) \Longrightarrow \sqrt{2} \int_{0}^{t} \frac{\dot{\sigma}\left(s, X_{s}, \vartheta_{0}\right)}{\sigma\left(s, X_{s}, \vartheta_{0}\right)} \, \mathrm{d}w_{s}$$

and the convergence in probability

$$\mathbb{I}_{k,n}\left(\vartheta_{0}\right) \to \mathbb{I}_{t}\left(\vartheta_{0}\right).$$

The approximation of the random function Y_t we will do with the help of the following one-step PMLE

$$\vartheta_{k,n}^{\star} = \hat{\vartheta}_{\tau,n} + \sqrt{\delta} \; \frac{\Delta_{k,n}(\hat{\vartheta}_{\tau,n})}{\mathbf{I}_{k,n}(\hat{\vartheta}_{\tau,n})}$$

and show that this estimator is asymptotically efficient and easy calculated for all $t \in [\tau, T]$ (or $N < k \le n$).

We have the lower bound (Dohnal 87)

$$\underline{\lim_{\gamma \to 0}} \lim_{n \to \infty} \sup_{|\vartheta - \vartheta_0| < \gamma} nT^{-1} \mathbf{E}_{\vartheta} \left(\bar{\vartheta}_{t,n} - \vartheta \right)^2 \ge \mathbf{E}_{\vartheta_0} \mathbb{I}_t \left(\vartheta_0 \right)^{-1}$$

The one-step PME is asymptotically efficient

$$\lim_{\gamma \to 0} \lim_{n \to \infty} \sup_{|\vartheta - \vartheta_0| < \gamma} nT^{-1} \mathbf{E}_{\vartheta} \left(\bar{\vartheta}_{t,n} - \vartheta \right)^2 = \mathbf{E}_{\vartheta_0} \mathbb{I}_t \left(\vartheta_0 \right)^{-1}$$

Introduce the estimators $Y_{t_k,n}^{\star} = u\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right)$ and $Z_{t_k,n}^{\star} = u'_x\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right) \sigma\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right)$ of the random functions Y_t and Z_t respectively. **Theorem 4** Suppose that the conditions of regularity hold, then the estimators $(Y_{t,n}^{\star}, t \in [\tau, T])$ and $(Z_{t,n}^{\star}, t \in [\tau, T])$ are consistent

 $Y_{t_k,n}^{\star} \longrightarrow Y_t, \qquad Z_{t_k,n}^{\star} \longrightarrow Z_t,$

and asymptotically conditionally normal (stable convergence)

$$\delta^{-1/2} \left(Y_{t_k,n}^{\star} - Y_{t_k} \right) \Longrightarrow \dot{u} \left(t, X_t, \vartheta_0 \right) \, \xi_t \left(\vartheta_0 \right),$$

$$\delta^{-1/2} \left(Z_{t_k,n}^{\star} - Z_{t_k} \right) \Longrightarrow \dot{u}'_x \left(t, X_t, \vartheta_0 \right) \sigma \left(t, X_t, \vartheta_0 \right) \, \xi_t \left(\vartheta_0 \right)$$

$$+ u'_x \left(t, X_t, \vartheta_0 \right) \dot{\sigma} \left(t, X_t, \vartheta_0 \right) \, \xi_t \left(\vartheta_0 \right),$$

The approximations Y_t^* and Z_t^* of the processes Y_t and Z_t are valid for the values $t \in [\tau, T]$. We take τ as a function of n, i.e., $\tau = \tau_n \to 0$. The rate of convergence of τ_n we take in such a way that the preliminary estimator $\hat{\vartheta}_{\tau_n}$ is still consistent and the one-step MLE ϑ_t^* is asymptotically efficient.

Let us put $\tau_n = T/\ln n$. Then for $k = k_n \to \infty$ satisfying the condition $n^{-1}k_n \le \tau_n < n^{-1}k_{n-1}$

Therefore, for the normalized the contrast-function we have the convergence

$$\tilde{U}_{k_n}\left(\vartheta, X^{k_n}\right) = \frac{U_{k_n}\left(\vartheta, X^{k_n}\right)}{\tau_n} \longrightarrow \ln a\left(0, x_0, \vartheta\right) + \frac{a\left(0, x_0, \vartheta_0\right)}{a\left(0, x_0, \vartheta\right)}$$

Suppose that condition

$$\left. \frac{\dot{\sigma}\left(0, x_{0}, \vartheta\right)}{\sigma\left(0, x_{0}, \vartheta\right)} \right| \ge \kappa > 0.$$

holds, then the estimator $\hat{\vartheta}_{\tau_n}$ defined with the help of this contrast function

$$\widetilde{U}_{k_n}\left(\widehat{\vartheta}_{\tau_n}, X^{k_n}\right) = \inf_{\vartheta \in \Theta} \widetilde{U}_{k_n}\left(\vartheta, X^{k_n}\right)$$

is consistent and asymptotically normal.

Introduce the one-step pseudo MLE

$$\vartheta_{k,n}^{\star} = \bar{\vartheta}_{\tau_n} + \sqrt{\delta} \frac{\Delta_{k,n} \left(\bar{\vartheta}_{\tau_n} \right)}{\mathbf{I}_{k,n} \left(\bar{\vartheta}_{\tau_n} \right)}$$

where $\bar{\vartheta}_{\tau_n}$ This estimator is asymptotically efficient and easy calculated for all $N < k \leq n$.

Theorem 5 Suppose that the conditions of regularity hold then

$$\hat{Y}_{t,n} = u\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right) \longrightarrow Y_t,$$

$$\hat{Z}_{t,n} = u'_x\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right) \sigma\left(t, X_{t_k}, \vartheta_{k,n}^{\star}\right) \longrightarrow Z_t,$$

and the errors of estimation are

$$\delta^{-1/2} \left(\hat{Y}_{t_k,n} - Y_{t_k} \right) \Longrightarrow \dot{u} \left(t, X_t, \vartheta_0 \right) \, \xi_t \left(\vartheta_0 \right),$$

$$\delta^{-1/2} \left(\hat{Z}_{t_k,n} - Z_{t_k} \right) \Longrightarrow \left[\dot{u}'_x \left(t, X_t, \vartheta_0 \right) \sigma \left(t, X_t, \vartheta_0 \right) \right.$$

$$\left. + u'_x \left(t, X_t, \vartheta_0 \right) \dot{\sigma} \left(t, X_t, \vartheta_0 \right) \right] \, \xi_t \left(\vartheta_0 \right),$$

Observe that $Y_{t_k} - Y_t \sim O\left(\sqrt{\delta}\right)$. Below $\zeta \sim \mathcal{N}(0, 1)$

$$\frac{\hat{Y}_{t_k,n} - Y_t}{\sqrt{\delta}} \Longrightarrow u'_x\left(t, X_t, \vartheta_0\right) \,\eta \,\sigma\left(t, X_t, \vartheta_0\right) \zeta + \dot{u}\left(t, X_t, \vartheta_0\right) \,\xi_t\left(\vartheta_0\right)$$

Example. The forward equation is

$$\mathrm{d}X_t = -X_t \mathrm{d}t + \sqrt{\theta + X_t^2} \,\mathrm{d}W_t, \quad X_0, \quad 0 \le t \le T.$$

Here $\vartheta \in \Theta = (\alpha, \beta)$, $\alpha > 0$ is unknown parameter. It is easy to see that in the case of continuous time observation the problem of parameter estimation is degenerated (singular), i.e., the unknown parameter ϑ can be estimated without error. Indeed, by Itô formula we can write

$$X_t^2 = X_0^2 + 2\int_0^t X_s \, \mathrm{d}X_s + \int_0^t \left[\vartheta + X_s^2\right] \mathrm{d}s.$$

Hence for all $t \in (0, T]$ we have the equality

$$\hat{\vartheta} = t^{-1} \left[X_t^2 - X_0^2 - 2 \int_0^t X_s \, \mathrm{d}X_s - \int_0^t X_s^2 \, \mathrm{d}s \right]$$

and $\hat{\vartheta} = \vartheta$

Our goal is to construct an asymptotically efficient estimator of the parameter ϑ . Note that the family of measures induced by the observations $X^k = (X_{t_0}, X_{t_1}, \ldots, X_{t_k})$ with t_k satisfying $t_k \leq t < t_{k+1}$ and fixed t are *locally asymptotically mixed normal* (LAMN) and for all estimators ϑ_k^* we have the lower bound on the risk

$$\underline{\lim_{\nu \to 0}} \lim_{n \to \infty} \sup_{|\vartheta - \vartheta_0| < \nu} \mathbf{E}_{\vartheta} \ell \left(\sqrt{k} \left(\vartheta_k^* - \vartheta \right) \right) \ge \mathbf{E}_{\vartheta_0} \ell \left(\zeta_t \left(\vartheta_0 \right) \right).$$

The first consistent estimator we obtain as follows

$$\bar{\vartheta}_N = \frac{n}{TN} \left[X_{t_N}^2 - X_0^2 - 2\sum_{j=1}^N X_{t_{j-1}} \left[X_{t_j} - X_{t_{j-1}} \right] - \sum_{j=1}^N X_{t_{j-1}}^2 \delta \right].$$

The pseudo log-likelihood ratio function is

$$L\left(\vartheta, X^{N}\right) = -\frac{1}{2} \sum_{j=1}^{N} \ln\left(2\pi\left(\vartheta + X_{t_{j-1}}^{2}\right)\right)$$
$$-\sum_{j=1}^{N} \frac{\left[X_{t_{j}} - X_{t_{j-1}} + X_{t_{j-1}}\delta\right]^{2}}{2\left(\vartheta + X_{t_{j-1}}^{2}\right)\delta}$$

Denote the pseudo Fisher information as

$$\mathbb{I}_{t_k,n}\left(\vartheta\right) = \frac{1}{2} \sum_{j=1}^k \frac{\delta}{\left(\vartheta + X_{t_{j-1}}^2\right)^2} \longrightarrow \mathbb{I}_t\left(\vartheta_0\right) = \frac{1}{2} \int_0^t \frac{\mathrm{d}s}{\left(\vartheta + X_s^2\right)^2}.$$

The one-step MLE-process $\vartheta_{t_k,n}^{\star}, \tau \leq t_k \leq T$ is

$$\vartheta_{t_k,n}^{\star} = \bar{\vartheta}_N + \sqrt{\delta} \sum_{j=1}^k \frac{\left[X_{t_j} - X_{t_{j-1}} + X_{t_{j-1}}\delta\right]^2 - \left(\bar{\vartheta}_N + X_{t_{j-1}}^2\right)\delta}{2\mathbb{I}_{t_k,n}\left(\bar{\vartheta}_N\right)\left(\bar{\vartheta}_N + X_{t_{j-1}}^2\right)^2\sqrt{\delta}}.$$

Example. Black-Scholes model. The forward equation is

$$dX_t = \alpha X_t dt + \vartheta X_t dW_t, \quad X_0 = x_0, \quad 0 \le t \le T$$

and the function $f(x, y, z) = \beta y + \gamma x z$. The corresponding partial differential equation is

$$\frac{\partial u}{\partial t} + (\alpha + \vartheta \gamma) x \frac{\partial u}{\partial x} + \frac{\vartheta^2 x^2}{2} \frac{\partial^2 u}{\partial x^2} + \beta u = 0, \qquad u \left(T, x, \vartheta\right) = \Phi \left(x\right).$$

The solution of this equation is the function

$$u(t, x, \vartheta) = \frac{e^{\beta(T-t)}}{\sqrt{2\pi\vartheta^2(T-t)}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2\vartheta^2(T-t)}} \Phi\left(e^{x + \left(\alpha + \vartheta\gamma - \frac{\vartheta^2}{2}\right)(T-t) - z}\right) \mathrm{d}z.$$

The estimator of Y_t is

$$\hat{Y}_{t_k} = \int \frac{e^{-\frac{z^2}{2\hat{\vartheta}_{t_k,n}^2(T-t_k)} + \beta(T-t_k)}}{\sqrt{2\pi\hat{\vartheta}_{t_k,n}^2(T-t_k)}} \Phi\left(e^{X_{t_k} + (\alpha + \hat{\vartheta}_{t_k,n}\gamma - \frac{\hat{\vartheta}_{t_k,n}^2}{2})(T-t_k) - z}\right) \mathrm{d}z,$$

where $k = \left[\frac{t}{T}n\right]$ and

$$\hat{\vartheta}_{t_k,n} = \left(\frac{1}{t} \sum_{j=0}^{k-1} \frac{(X_{t_{j+1}} - X_{t_j} - \alpha X_{t_j} \delta)^2}{X_{t_j}^2}\right)^{\frac{1}{2}}$$

٠

Approximation of \hat{Z}_t . Note that $u(t, x, \vartheta) = e^{\beta(T-t)} \mathbf{E}_{\vartheta, x} \Phi(e^{m_t - \xi})$, where

$$\xi \sim \mathcal{N}\left(-x, d_t^2\right), \quad m_t = \left(\alpha + \vartheta \gamma - \frac{\vartheta^2}{2}\right) \left(T - t\right), \quad d_t^2 = \vartheta^2 \left(T - t\right)$$

Hence

$$u'_{x}(t,x,\theta) = -e^{\beta(T-t)} \mathbf{E}_{\theta} \left[\frac{(x+\xi)}{d_{t}^{2}} \Phi(e^{m_{t}-\xi}) \right]$$

and therefore

$$\hat{Z}_{t_k} = -\frac{\hat{\theta}_{t_k,n} X_{t_k}}{d_{t_k}^3 \sqrt{2\pi}} \int_{-\infty}^{\infty} (y + X_{t_k}) \Phi(e^{m_{t_k} - y}) e^{-\frac{\left(X_{t_k} + y\right)^2}{2d_{t_k}^2} + \beta(T - t_k)} \mathrm{d}y$$

Ergodic diffusion (joint work with A. Abakirova) The observed diffusion process (forward) is

$$dX_t = S(\vartheta, X_t) dt + \sigma(X_t) dW_t, \quad X_0, \ 0 \le t \le T$$

where $\vartheta \in \Theta = (\alpha, \beta)$. The process $X_t, t \ge 0$ has ergodic properties. We are given two functions $f(x, y), \Phi(x)$ and we have to find a couple of stochastic processes $(\hat{Y}_t, \hat{Z}_t, 0 \le t \le T)$ which approximate well the solution of the BSDE

$$dY_t = -f(X_t, Y_t, Z_t) dt + Z_t dW_t, \qquad Y_0, \quad 0 \le t \le T$$

satisfying the condition $Y_T = \Phi(X_T)$. The functions $S(\cdot)$ and $\sigma(\cdot)$ are known and smooth. We have to minimize the errors

$$\mathbf{E}_{\vartheta}\left(\hat{Y}_t - Y_t\right)^2 \to \min, \qquad \mathbf{E}_{\vartheta}\left(\hat{Z}_t - Z_t\right)^2 \to \min.$$

as $T \to \infty$.

Solution: Introduce a family of functions $\mathcal{U} = \{(u(t, x, \vartheta), t \in [0, T], x \in \mathbb{R}), \vartheta \in \Theta\} \text{ such that for all } \vartheta \in \Theta$ the function $u(t, x, \vartheta)$ satisfies the equation

$$\frac{\partial u}{\partial t} + S(\vartheta, x)\frac{\partial u}{\partial x} + \frac{\sigma(x)^2}{2}\frac{\partial^2 u}{\partial x^2} = -f(x, u, \sigma(x) u'_x)$$

and condition $u(T, x, \vartheta) = \Phi(x)$. If we put $Y_t = u(t, X_t, \vartheta)$, then by Itô's formula we obtain BSDE with $Z_t = \sigma(X_t) u'_x(t, X_t, \vartheta)$.

Let us change the variables $t = sT, s \in [0, 1]$, and put $v_{\varepsilon}(s, x, \vartheta) = u(sT, x, \vartheta)$, then

$$\varepsilon \frac{\partial v_{\varepsilon}}{\partial s} + S(\vartheta, x) \frac{\partial v_{\varepsilon}}{\partial x} + \frac{\sigma(x)^2}{2} \frac{\partial^2 v_{\varepsilon}}{\partial x^2} = -f\left(x, v_{\varepsilon}, \sigma\left(x\right) \left(v_{\varepsilon}\right)'_x\right),$$

where $v_{\varepsilon}(1, x, \vartheta) = \Phi(x)$ and $\varepsilon = T^{-1}$. The limit is $\varepsilon \to 0$.

We have a family of solutions $v_{\varepsilon}(s, y, \vartheta), 0 \leq s \leq 1$. Fix some (small) $\delta > 0$ and define the estimators

$$\hat{Y}_{sT} = v_{\varepsilon} \left(s, X_{sT}, \vartheta_{sT}^{\star} \right), \qquad \hat{Z}_{sT} = \sigma \left(X_{sT} \right) \left(v_{\varepsilon} \right)_{x}^{\prime} \left(s, X_{sT}, \vartheta_{sT}^{\star} \right)$$

where $\vartheta_{sT}^{\star}, s \in [\delta, 1]$ is one-step MLE, which is constructed as follows. Suppose that we have an estimator $\bar{\vartheta}_{\delta T}$ constructed by the observations $X^{\delta T} = (X_t, 0 \leq t \leq \delta T)$, which is consistent and asymptotically normal

$$\sqrt{\delta T} \left(\bar{\vartheta}_{\delta T} - \vartheta \right) \Longrightarrow \mathcal{N} \left(0, D_{\delta}^2 \right).$$

Then we calculate the one-step MLE

$$\vartheta_{sT}^{\star} = \vartheta_{\delta T}^{\star} + \frac{\Delta_{sT} \left(\vartheta_{\delta T}^{\star}, X_{\delta T}^{sT}\right) + \Delta_{\delta} \left(\vartheta_{\delta T}^{\star}, X^{\delta T}\right)}{\sqrt{sT} \operatorname{I} \left(\vartheta_{\delta T}^{\star}\right)}, \qquad \delta \leq s \leq 1,$$

where

$$\Delta_{sT} \left(\vartheta, X_{\delta T}^{sT} \right) = \frac{1}{\sqrt{sT}} \int_{\delta T}^{sT} \frac{\dot{S} \left(\vartheta, X_t \right)}{\sigma \left(X_t \right)^2} \left[dX_t - S \left(\vartheta, X_t \right) \, dt \right], \quad s \in [\delta, 1],$$

$$\Delta_{\delta} \left(\vartheta, X^{\delta T} \right) = \frac{A \left(\vartheta, X_\delta \right)}{\sqrt{sT}} - \frac{1}{2\sqrt{sT}} \int_0^{\delta} B'_x \left(\vartheta, X_t \right) \sigma \left(X_t \right)^2 dt$$

$$- \int_0^{\delta} \frac{\dot{S} \left(\vartheta, X_t \right) S \left(\vartheta, X_t \right)}{\sqrt{sT} \sigma \left(X_t \right)^2} dt,$$

$$B \left(\vartheta, x \right) = \frac{\dot{S} \left(\vartheta, x \right)}{\sigma \left(x \right)^2}, \qquad A \left(\vartheta, x \right) = \int_{x_0}^x B \left(\vartheta, z \right) \, dz.$$

Note that under regularity conditions (K. 2004) $\sqrt{sT} \left(\vartheta_{sT}^{\star} - \vartheta\right) \Longrightarrow \mathcal{N} \left(0, \mathbb{I} \left(\vartheta\right)^{-1}\right)$ $\sqrt{sT} \left(\hat{Y}_{sT} - Y_{sT}\right) \sim \dot{v}_{\varepsilon} \left(s, X_{sT}, \vartheta\right) \sqrt{sT} \left(\vartheta_{sT}^{\star} - \vartheta\right),$

$$\sqrt{sT} \left(\hat{Z}_{sT} - Z_{sT} \right) \sim \sigma \left(X_{sT} \right) \left(\dot{v}_{\varepsilon} \right)_{x}^{\prime} \left(s, X_{sT}, \vartheta \right) \sqrt{sT} \left(\vartheta_{sT}^{\star} - \vartheta \right)$$

Two-step MLE. Khasminskii and K. [?] recently considered the problem of parameter estimation by the observations of diffusion process and showed that Mullti-step procedure can provide asymptotically efficient estimation even if the preliminary estimators have bad rate of convergence.

Let us take the *first* estimator $\tilde{\vartheta}_{\tau_{\delta}}$ constructed by the observations $X^{T^{\delta}} = (X_t, 0 \leq t \leq T^{\delta})$ with $\delta \in (\frac{1}{3}, \frac{1}{2}]$. We suppose that this estimator is consistent, asymptotically normal and the moments converge too:

$$\tilde{v}_{\tau_{\delta}} = T^{\frac{\delta}{2}} \left(\tilde{\vartheta}_{\tau_{\delta}} - \vartheta_{0} \right) \Longrightarrow \mathcal{N} \left(0, \mathbb{M} \left(\vartheta_{0} \right) \right), \qquad \sup_{\vartheta_{0} \in \mathbb{K}} \mathbf{E}_{\vartheta_{0}} \left| \tilde{v}_{\tau_{\delta}} \right|^{p} \leq C,$$

for any p > 0. Here $\mathbb{M}(\vartheta_0)$ is some matrix and C > 0 does not depend on T. It can be the MLE, MDE, BE or the EMM (see [6]).

Introduce the *second* preliminary estimator, which is estimator-process

$$\bar{\vartheta}_{\tau} = \tilde{\vartheta}_{\tau_{\delta}} + (\tau T)^{-1/2} \mathbb{I}\left(\tilde{\vartheta}_{\tau_{\delta}}\right)^{-1} \Delta_{\tau T}\left(\tilde{\vartheta}_{\tau_{\delta}}, X_{T^{\delta}}^{\tau T}\right), \quad \tau \in [\tau_{\delta}, 1]$$

where $\tau_{\delta} = T^{-1+\delta}$. Note that $T^{\gamma} \left(\bar{\vartheta}_{\tau} - \vartheta_0 \right) \to 0$ for $\gamma \in (1 - \delta, 2\delta)$

$$\Delta_{\tau T}\left(\vartheta, X_{T^{\delta}}^{\tau T}\right) = \frac{1}{\sqrt{\tau T}} \int_{T^{\delta}}^{\tau T} \frac{\dot{S}\left(\vartheta, X_{t}\right)}{\sigma\left(X_{t}\right)^{2}} \left[\mathrm{d}X_{t} - S\left(\vartheta, X_{t}\right) \mathrm{d}t \right].$$

The *Two-step MLE-process* we define as follows

$$\vartheta_{\tau}^{\star\star} = \bar{\vartheta}_{\tau} + \frac{\mathbb{I}\left(\bar{\vartheta}_{\tau}\right)^{-1}}{\sqrt{\tau T}} \hat{\Delta}_{\tau T} \left(\tilde{\vartheta}_{\tau_{\delta}}, \bar{\vartheta}_{\tau}, X_{T^{\delta}}^{\tau T}\right), \quad \tau_{\delta} \leq \tau \leq 1,$$

where

$$\hat{\Delta}_{\tau T} \left(\vartheta_1, \vartheta_2, X_{T^{\delta}}^{\tau T} \right) = \frac{1}{\sqrt{\tau T}} \int_{T^{\delta}}^{\tau T} \frac{\dot{S} \left(\vartheta_1, X_t \right)}{\sigma \left(X_t \right)^2} \left[\mathrm{d}X_t - S \left(\vartheta_2, X_t \right) \mathrm{d}t \right].$$

Note that $\hat{\Delta}_{\tau T} \left(\vartheta, \vartheta, X_{T^{\delta}}^{\tau T} \right) = \Delta_{\tau T} \left(\vartheta, X_{T^{\delta}}^{\tau T} \right).$

Then we use this estimator to construct One-step $(\vartheta_t^{\star}, \tau \leq t \leq T)$ and Two-step MLE-processes like (ergodic case)

$$\vartheta_t^{\star} = \bar{\vartheta}_{\tau} + T^{-1} \mathbb{I} \left(\bar{\vartheta}_{\tau} \right)^{-1/2} \int_{\tau}^t \frac{\dot{S} \left(\bar{\vartheta}_{\tau}, X_s \right)}{\sigma \left(X_s \right)^2} \left[\mathrm{d}X_s - S \left(\bar{\vartheta}_{\tau}, X_s \right) \mathrm{d}s \right].$$

This estimator process is easy to calculate, uniformely on $\tau \leq t \leq T$ consistent, asymptotically normal and asymptotically efficient.

The contribution of this talk: we can choose $\tau = \tau_T$ smaller than before.

Theorem 6 Suppose that the conditions of regularity hold. Then the Two-step MLE-process $\vartheta_{\tau}^{\star\star}, \tau_{\delta} \leq \tau \leq 1$ is consistent, asymptotically normal

$$\sqrt{T}\left(\vartheta_{\tau}^{\star\star}-\vartheta_{0}\right)\Longrightarrow\mathcal{N}\left(0,\tau^{-1}\mathbb{I}\left(\vartheta_{0}\right)^{-1}\right),$$

and asymptotically efficient. The random process

$$\eta_{\tau,T}\left(\vartheta_{0}\right) = \tau\sqrt{T}\mathbb{I}\left(\vartheta_{0}\right)^{-1/2}\left(\vartheta_{\tau}^{\star\star} - \vartheta_{0}\right), \qquad \tau_{*} \leq \tau \leq 1$$

for any $\tau_* \in (0,1)$ converges in distribution to the Wiener process $W(\tau), \tau_* \leq \tau \leq 1.$

Example. Ergodic diffusion. Fix a learning interval $[0, \tau]$, where $\tau = \tau_T \to \infty, \tau_T = o(T)$ and obtain the preliminary estimator $\bar{\vartheta}_{\tau}$. Then we use this estimator to construct One-step $(\vartheta_t^*, \tau \leq t \leq T)$ and Two-step $(\vartheta_t^{*,*}, \tau \leq t \leq T)$ MLE-processes. Say,

$$\vartheta_t^{\star} = \bar{\vartheta}_{\tau} + T^{-1} \mathbb{I} \left(\bar{\vartheta}_{\tau} \right)^{-1/2} \int_{\tau}^t \frac{\dot{S} \left(\bar{\vartheta}_{\tau}, X_s \right)}{\sigma \left(X_s \right)^2} \left[\mathrm{d}X_s - S \left(\bar{\vartheta}_{\tau}, X_s \right) \mathrm{d}s \right].$$

This estimator-process is easy to calculate, it is uniformely on $\tau \leq t \leq T$ consistent, asymptotically normal and asymptotically efficient.

The main contribution of this talk: we can choose $\tau = \tau_T$ smaller than before.

Example. *Time series.* (K. and Motrunich) Introduce the time series

$$X_j = X_{j-1} + 3 \frac{\vartheta - X_{j-1}}{1 + (X_{j-1} - \vartheta)^2} + \varepsilon_j, \quad j = 1, \dots, n_j$$

where $(\varepsilon_j)_{j\geq 1}$ are i.i.d. standard Gaussian random variables and X_0 is given. The unknown parameter $\vartheta \in \Theta = (-1, 1)$.

Case $N = n^{\delta}, \frac{1}{2} < \delta \leq 1$. Note that the unknown parameter is the shift parameter and that the invariant density function is symmetric with respect to ϑ . Hence we can take the EMM

$$\bar{\vartheta}_N = \frac{1}{N} \sum_{j=1}^N X_j \longrightarrow \vartheta, \qquad N = \left[n^{3/4} \right].$$

Of course, the limit variance of the EMM $\bar{\vartheta}_N$ is greater than that of the MLE, but this estimator is much more easier to calculate.

The score-function process is

$$\Delta_k(\vartheta, X^k) = \frac{1}{\sqrt{k}} \sum_{j=1}^k \dot{\ell}(\vartheta, X_{j-1}, X_j), \qquad N+1 \le k \le n.$$

where

$$\dot{\ell}\left(\vartheta, x, x'\right) = 3\left(x' - x - 3\frac{\vartheta - x}{1 + \left(\vartheta - x\right)^2}\right) \frac{1 - \left(\vartheta - x\right)^2}{\left(1 + \left(\vartheta - x\right)^2\right)^2}.$$

Therefore we can calculate the one-step MLE-process as follows

$$\vartheta_{k,n}^{\star} = \bar{\vartheta}_{N} + \frac{3}{\mathbb{I}_{k}k} \sum_{j=1}^{k} \left(X_{j} - X_{j-1} - 3 \frac{\bar{\vartheta}_{N} - X_{j-1}}{1 + \left(\bar{\vartheta}_{N} - X_{j-1}\right)^{2}} \right) \frac{1 - (\bar{\vartheta}_{N} - X_{j-1})^{2}}{\left(1 + (\bar{\vartheta}_{N} - X_{j-1})^{2}\right)^{2}}$$

Here \mathbb{I}_k is the empirical Fisher information.

Case $N = n^{\delta}, \frac{1}{4} < \delta \leq \frac{1}{2}$. The choice of the learning period of observations $N = [n^{\delta}]$ with $\delta \in (1/2, 1)$ allows us to construct an estimator process for the values k > N only. It can be interesting to see if it is possible to take more short learning interval. Our goal is to show that the learning period can be $N = [n^{\delta}]$ with $\delta \in (1/4, 1/2]$.

Suppose that $N = [n^{\delta}]$ with $\delta \in (1/4, 1/2)$. The asymptotically efficient estimator we construct in three steps. By the first N observations as before we obtain the preliminary estimator $\bar{\vartheta}_{N,1}$ which is asymptotically normal with the rate \sqrt{N} , i.e.,

$$n^{\frac{\delta}{2}}\left(\bar{\vartheta}_{N,1}-\vartheta\right)\Longrightarrow\mathcal{N}\left(0,\mathbb{B}\left(\vartheta\right)
ight).$$

This can be the same estimator as in the preceding case. It can be, for example, the EMM, BE or MLE.

The two-step MLE-process $\vartheta_n^{\star\star} = \left(\vartheta_{k,n}^{\star\star}, k = N+1, \dots, n\right)$ we construct as follows. Introduce the second preliminary estimator-process

$$\bar{\vartheta}_{k,2} = \bar{\vartheta}_{N,1} + \frac{1}{\sqrt{k}} \mathbb{I}\left(\bar{\vartheta}_{N,1}\right)^{-1} \Delta_k(\bar{\vartheta}_{N,1}, X^k),$$

and two-step MLE-process

$$\vartheta_k^{\star\star} = \bar{\vartheta}_{k,2} + \frac{1}{\sqrt{k}} \mathbb{I}\left(\bar{\vartheta}_{k,2}\right)^{-1} \Delta_k(\bar{\vartheta}_{k,2}, X^k).$$

In the next theorem we realize this program.

Theorem 7 Suppose that the conditions of regularity are fulfilled, then the estimator ϑ_n^{\star} is asymptotically normal

$$\sqrt{k}(\vartheta_{k,n}^{\star\star}-\vartheta) \Longrightarrow \mathcal{N}\left(0,\mathbb{I}(\vartheta)^{-1}\right).$$

It is shown that the one-step MLE-process admits the recurrent representation

$$\vartheta_{k+1,n}^{\star} = \frac{k \,\vartheta_{k,n}^{\star}}{k+1} + \frac{\bar{\vartheta}_N}{k+1} + \frac{1}{k+1} \mathbb{I}\left(\bar{\vartheta}_N\right)^{-1} \dot{\ell}\left(\bar{\vartheta}_N, X_k, X_{k+1}\right).$$

It allows us to calculate $\vartheta_{k+1,n}^{\star}$ using the values $\overline{\vartheta}_N, \vartheta_{k,n}^{\star}$ and observations X_k, X_{k+1} only.

The similar structure can be obtained for the two-step MLE-process too. Note that this is not a particular case of the well-known algorithms of stochastic approximation

References

- [1] Gasparyan, S.B. and Kutoyants Yu. A. (2015) On approximation of the BSDE with unknown volatility in a forward equation". Armenian J. of Mathematics, 7, 1, 59-79.
- [2] Gasparyan, S.B. and Kutoyants Yu. A. (2015) An example of one-step MLE-process in volatility estimation problem". Izv. Nat. Akademii Nauk, Armenia : Matematika. 50, 3, 71-76.
- [3] El Karoui N., Peng S. and Quenez M. (1997) Backward stochastic differential equations in finance, *Math. Fin.*, 7, 1-71.
- [4] Khasminskii, R. Z. and Kutoyants, Yu. A. (2018) On parameter estimation of hidden telegraph process. *Bernoulli*, 24, 3, 2064-2090.
- [5] Kutoyants Y.A. (1994) Identification of Dynamical Systems with Small Noise. Kluwer, Dordrecht.

- [6] Kutoyants Y.A. (2004) Statiatical Inference for Ergodic Diffusion Processes. Springer, London.
- [7] Kutoyants Yu. A., (2014) Approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases. *Proceedings of the Steklov Institute of Mathematics.* 287, 140-161.
- [8] Kutoyants, Yu.A. (2016) On approximation of BSDE and Multi-step MLE-processes. Probability, Uncertaity and Quantitative Risk. 1, 1, 23-41.
- [9] Kutoyants Y.A. and Zhou, L. (2014) On approximation of the backward stochastic differential equation. J. Stat. Plann. Infer., 150, 11-123.
- [10] Ma J., Yong J. (1999) Forward-Backward Stochastic
 Differential Equations and their Applications. Lecture Notes in Mathematics. Springer, Berlin.

- [11] Pardoux E. and Peng S. (1990) Adapted solution of a backward stochastic differential equation. System Control Letter, 14, 55-61.
- [12] Pardoux E. and Peng S. (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations. *Stochastic Partial Differential Equations* and their Applications, 200-217, Springer, Berlin.
- [13] Zhou, L. (2013) Problèmes Statistiques pour des EDS et les EDS Rétrogrades, PhD Thesis, Université du Maine, Le Mans.