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Backward Stochastic Differential Equation

Problem: We are given a stochastic differential equation (called

forward)

dXt = b(t,Xt) dt+ a(t,Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

and two functions f (t, x, y, z) and Φ (x). We have to construct a

couple of processes (Yt, Zt) such that the solution of the equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, Y0, 0 ≤ t ≤ T,

(called backward) has the final value YT = Φ(XT ).

For the existence and uniqueness of the solution see Pardoux and

Peng (1990). The Markovian case considered here was discussed by

Pardoux and Peng (1992) and El Karoui & al. (1997).
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Solution: Suppose that u (t, x) satisfies the equation

∂u

∂t
+ b (t, x)

∂u

∂x
+

1

2
a (t, x)

2 ∂2u

∂x2
= −f

(
t, x, u, a (t, x)

∂u

∂x

)
,

with the final condition u (T, x) = Φ (x). Then if we put

Yt = u (t,Xt) , Zt = a (t,Xt)u
′
x (t,Xt). Then by Itô’s formula

dYt =

[
∂u

∂t
(t,Xt) + b (t,Xt)

∂u

∂x
(t,Xt) +

1

2
a (t, x)

2 ∂2u

∂x2
(t,Xt)

]
dt

+ a (t,Xt)
∂u

∂x
(t,Xt) dWt

= −f (t,Xt, Yt, Zt) dt+ Zt dWt, Y0 = u (0, X0) .

The final value YT = u (T,XT ) = Φ (XT ).
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Statistical problems. We consider this problem in the situations,

where the forward equation contains some unknown parameter ϑ:

dXt = b(ϑ, t,Xt) dt+ a(ϑ, t,Xt) dWt, X0 = x0, 0 ≤ t ≤ T.

Then u = u (t, x, ϑ) and the proposed approximations Ŷt, Ẑt of the

couple Yt, Zt are given by the relations

Ŷt = u(t,Xt, ϑ
∗
t ), Ẑt = u′

x(t,Xt, ϑ
∗
t ) a(ϑ

∗
t , t,Xt).

Here ϑ∗
t is some good estimator-process of ϑ with the small error

of estimation Eϑ

(
ϑ̂t − ϑ

)2
. This provides us the small errors

Eϑ

(
Ŷt − Yt

)2
and Eϑ

(
Ẑt − Zt

)2
.

ϑ∗ = (ϑ∗
t , 0 < t ≤ T )
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Main problem: how to find a good estimator-process

ϑ∗
t , 0 < t ≤ T? Good means :

• It depends on observations Xt = (Xs, 0 ≤ s ≤ t) and is

stochastic process ϑ⋆ = ϑ⋆
t , 0 < t ≤ T .

• Easy to calculate for all t ∈ (0, T ].

• Asymptpotically efficient for all t ∈ (0, T ].

The MLE ϑ̂t defined by

V
(
ϑ̂t, X

t
)
= sup

ϑ∈Θ
V
(
ϑ,Xt

)
can not be used as Good because in non linear case to solve this

equation for all t ∈ (0, T ] is a difficult problem.
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As Forward Equations we consider three diffusion processes:

• Diffusion process with small noise (ε → 0)

A : dXt = S (ϑ, t,Xt) dt+ εσ (t,Xt) dWt, x0, 0 ≤ t ≤ T,

B : dXt = −a (ϑ, t)Xtdt+ εb (ϑ, t) dVt, x0 ̸= 0,

dRt = A (ϑ, t)Xtdt+ εσ (t) dWt, R0 = 0, 0 ≤ t ≤ T.

• Discrete time observations Xn = (Xt0 , Xt1 , . . . Xtn), ti = iTn of

the process (n → ∞)

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T.

• Ergodic diffusion process (T → ∞)

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T.

We propose estimator-processes ϑ∗ such that approximations of

BSDE Ŷt = u(t,Xt, ϑ
∗
t ) → Yt have minimal errors Eϑ

(
Ŷt − Yt

)2
.
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Small noise asymptotics. Case A.
(joint work with L.Zhou)

The observed diffusion process (forward) is

dXt = S (ϑ, t,Xt) dt+ εσ (t,Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ = (α, β) is unknown parameter. We are given two

functions f (t, x, y, z), Φ (x) and we have to find a couple of

stochastic processes
(
X̂t, Ẑt, 0 ≤ t ≤ T

)
which approximates well

the solution of the BSDE

dYt = −f (t,Xt, Yt, Zt) dt+ Zt dWt, Y0, 0 ≤ t ≤ T

satisfying the condition YT = Φ(XT ). The functions S (·) and σ (·)
are known and smooth. We have to minimize the errors

Eϑ

(
Ŷt − Yt

)2
→ min, Eϑ

(
Ẑt − Zt

)2
→ min

as ε → 0.
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Solution: Let us introduce a family of functions

U = {(u(t, x, ϑ), t ∈ [0, T ] , x ∈ R) , ϑ ∈ Θ}

such that for all ϑ ∈ Θ the function u(t, x, ϑ) satisfies the equation

∂u

∂t
+ S(ϑ, t, x)

∂u

∂x
+

ε2σ(t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, εσ(x)

∂u

∂x

)
and condition u(T, x, ϑ) = Φ (x). If we put Yt = u (t,Xt, ϑ), then by

Itô’s formula we obtain BSDE with Zt = εσ (t,Xt)u
′
x (t,Xt, ϑ). As

we do not know the value ϑ we propose first to estimate it using

some estimator ϑ⋆
ε and then to put

Ŷt = u (t,Xt, ϑ
⋆
ε) , Ẑt = εσ (t,Xt)u

′
x (t,Xt, ϑ

⋆
ε)
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Construction of the Estimator: Remind the MLE for this

model. Introduce the LR function

L
(
ϑ,Xt

)
= exp

{∫ t

0

S (ϑ, s,Xs)

ε2 σ (s,Xs)
2 dXs −

∫ t

0

S (ϑ, s,Xs)
2

2 ε2 σ (s,Xs)
2 ds

}

and define the MLE ϑ̂t,ε by the equation

L
(
ϑ̂t,ε, X

t
)
= sup

ϑ∈Θ
L
(
ϑ,Xt

)
.

It is known that ε−1
(
ϑ̂t,ε − ϑ0

)
=⇒ N

(
0, It (ϑ, xt)

−1
)
, but to use

it for Ȳt = u
(
t,Xt, ϑ̂t,ε

)
can be computantionally difficult problem.

Here

It
(
ϑ, xt (ϑ)

)
=

∫ t

0

Ṡ (ϑ, s, xs (ϑ))
2

σ (s, xs (ϑ))
2 ds
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Our goal to construct an estimator-process ϑ⋆
t with the same

asymptotics for all t ∈ (0, T ]. Introduce a family of functions

{(xs (ϑ) , 0 ≤ s ≤ T ) , ϑ ∈ Θ} solution of ODE

dxs

ds
= S (ϑ, s, xs) , x0, 0 ≤ s ≤ T.

It is known that Xs converges to xs (ϑ) uniformly in s ∈ [0, T ]. Fix

some (small) τ > 0 and introduce the MDE ϑ̄τ,ε:∥∥X − x
(
ϑ̄τ,ε

)∥∥2
τ
= inf

ϑ∈Θ
∥X − x (ϑ)∥2τ = inf

ϑ∈Θ

∫ τ

0

[Xt − xt (ϑ)]
2
dt.

Suppose that the regularity conditions are fulfilled. Then this

estimator is consistent and asymptotically normal

ε−1
(
ϑ̄τ,ε − ϑ0

)
=⇒ N

(
0, Dτ (ϑ0)

2
)
,

where Iτ (ϑ, xτ (ϑ)) ≥ Dτ (ϑ0)
−2

> 0 (K. 1994).
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Let us consider τε → 0 but slowly, τε = εδ, where δ ∈ [0, 2). Then,

say, the MLE ϑ̂τε is consistent and asymptotically normal but with

the bad rate

√
τε
ε

(
ϑ̂τε − ϑ

)
=⇒ N

(
0,

σ (x0)
2

Ṡ (ϑ, x0)
2

)
.

The similar behavior has the MDE
√
τε
ε

(
ϑ̄τε − ϑ

)
=⇒ N

(
0, D2

)
.

The estimators ϑ̂τε and ϑ̄τε are used as preliminary in the

construction of asymptotically optimal estimator-process. Then we

obtain asymptotically efficient estimation of Yt, Zt, τε ≤ t ≤ T even

for τε → 0.
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Introduce One-step MLE-process ϑ⋆
t,ε, τε ≤ t ≤ T

ϑ⋆
t,ε = ϑ̄τε + ε

∆t

(
ϑ̄τε , X

t
τε

)
It
(
ϑ̄τε , x

t
(
ϑ̄τε

)) ,
where

∆t

(
ϑ,Xt

τ

)
=

∫ t

τ

Ṡ (ϑ, s,Xs)

εσ (s,Xs)
2 [dXs − S (ϑ, s,Xs) ds] , t ∈ [τε, T ]

and

It
(
ϑ, xt (ϑ)

)
=

∫ t

τ

Ṡ (ϑ, s, xs (ϑ))
2

σ (s, xs (ϑ))
2 ds,

It
(
ϑ,Xt

)
=

∫ t

τ

Ṡ (ϑ, s,Xs)
2

σ (s,Xs)
2 ds.

We show that if τε = εδ, 0 < δ < 1, then

ε−1
(
ϑ⋆
t,ε − ϑ

)
=⇒ N

(
0, It

(
ϑ, xt

)−1
)
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Introduce the estimators

Y ⋆
t = u

(
t,Xt, ϑ

⋆
t,ε

)
, Z⋆

t = εσ (t,Xt)u
′
x

(
t,Xt, ϑ

⋆
t,ε

)
Theorem 1 Suppose the conditions of regularity hold, then the

processes Y ⋆
t , Z

⋆
t , τε ≤ t ≤ T have the representation

Y ⋆
t = Yt + εu̇ (t,Xt, ϑ0) ξt (ϑ0) + o (ε) ,

Z⋆
t = Zt + ε2σ (t,Xt) u̇

′
x (t,Xt, ϑ0) ξt (ϑ0) + o

(
ε2
)
,

where

ξt (ϑ0) = It
(
ϑ, xt

)−1
∫ t

0

Ṡ (ϑ, xs)

σ (xs)
dWs

The random process ηt,ε = ε−1 (Y ⋆
t − Yt) , τ ≤ t ≤ T for any

τ ∈ (0, T ] converges in distribution to the process ξt (ϑ0) , τ ≤ t ≤ T .

Let us show that the proposed approximations are asymptotically

efficient.
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This means, that the means-quare errors

Eϑ |Yt − Y ⋆
t |

2
, Eϑ |Zt − Z⋆

t |
2
,

of estimation Yt and Zt can not be improved. This will be done in

two steps. First we establish a low bound on the risks of all

estimators and then show that the proposed estimators attaint this

bound.

Theorem 2 For all estimators Ȳt and Z̄t and all t ∈ [τε, T ] we

have the relations

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−2Eϑ

∣∣Ȳt − Yt

∣∣2 ≥ u̇0 (t, xt (ϑ0) , ϑ0)
2

It (ϑ0, xt (ϑ0))
,

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−4Eϑ

∣∣Z̄t − Zt

∣∣2
≥
(
u̇0
)′
x
(t, xt (ϑ0) , ϑ0)

2
σ (t, xt (ϑ0))

2

It (ϑ0, xt (ϑ0))
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We call an approximation Y ⋆
t asymptotically efficient if for all

ϑ0 ∈ Θ we have the equality

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−2Eϑ |Y ⋆
t − Yt|2 =

u̇0 (t, xt (ϑ0) , ϑ0)
2

It (ϑ0, xt (ϑ0))

and the similar definition is valid in the case of the bound for Zt.

Theorem 3 The approximations

Y ⋆
t = u

(
t,Xt, ϑ

⋆
t,ε

)
and Z⋆

t = εσ (t,Xt)u
′
x

(
t,Xt, ϑ

⋆
t,ε

)
are asymptotically efficient, i.e.,

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−2Eϑ |Y ⋆
t − Yt|2 =

u̇0 (t, xt (ϑ0) , ϑ0)
2

I (ϑ0, xt (ϑ0))
,

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−4Eϑ |Z⋆
t − Zt|2 =

σ (t, xt (ϑ0))
2 (

u̇0
)′
x
(t, xt, ϑ0)

2

I (ϑ0, xt (ϑ0))
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Small noise asymptotics. Case B.

We have two-dimensional linear diffusion process

dXt = −a (ϑ, t)Xtdt+ εb (ϑ, t) dVt, x0 ̸= 0,

dRt = A (ϑ, t)Xtdt+ εσ (t) dWt, R0 = 0, 0 ≤ t ≤ T.

where XT = (Xt, 0 ≤ t ≤ T ) is the Forward and the process

RT = (Rt, 0 ≤ t ≤ T ) is observed. Let us denote conditional

expectation X̂t = Eϑ (Xt|Rs, 0 ≤ s ≤ t). We are given two

functions f (t, x, y, z) and Φ (x) and we have to construct the BSDE

dYt = −f(t, X̂t, Yt, Zt)dt+ Zt dW̄t,

with the final value YT = Φ(X̂T ).
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Equations of optimal filtration:

dX̂t = −a (ϑ, t) X̂tdt+ c (ϑ, t) ε dW̄t, X̂0 = x0,

∂γt (ϑ)

∂t
= −2a (ϑ, t) γt (ϑ)−

γt (ϑ)A (ϑ, t)
2

σ (t)
2 + b (ϑ, t)

2
, γ0 (ϑ) = 0.

Here c (ϑ, t) = γt (ϑ)A (ϑ, t)σ (t)
−1

, X̂t = X̂t (ϑ) and

dW̄t = ε−1σ (t)
−1
[
dRt −A (ϑ, t) X̂tdt

]
.

Itroduce u (t, x, ϑ) as solution

∂u

∂t
− a (ϑ, t)x

∂u

∂x
+

c (ϑ, t)
2
ε2

2

∂2u

∂x2
= −f

(
t, x, y, c (ϑ, t) ε

∂u

∂x

)
with the final value u (T, x, ϑ) = Φ (x).
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We propose the asymptotically optimal approximation as

Ŷt = u
(
t, X̂t (ϑ

⋆
t ) , ϑ

⋆
t

)
, Ẑt = εc (ϑ⋆

t , t)
∂u
(
t, X̂t (ϑ

⋆
t ) , ϑ

⋆
t

)
∂x

,

where ϑ⋆
t is One-step MLE-process

ϑ⋆
t = ϑ̄τε + ε

∆t

(
ϑ̄τε , X

t
)

It
(
ϑ̄τε

) , τε < t ≤ T

where

∆t (ϑ,X) =

∫ t

τε

Ȧ (ϑ, s) X̂s +A (ϑ, s) ̂̇Xs

εσ (s)
2

[
dRs −A (ϑ, s) X̂s (ϑ) ds

]
and

It (ϑ) =

∫ t

τ

(
Ȧ (ϑ, s)xs (ϑ) +A (ϑ, s) ˆ̇xs (ϑ)

)2
σ (s)

2 ds
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The random process ̂̇Xt =
̂̇Xt

(
ϑ̄τε

)
satisfies equation

d ̂̇Xt = −

[
ȧ+

ċA+ cȦ

σ

]
X̂tdt−

[
a+

cA

σ

] ̂̇Xtdt+
ċ

σ
dRt.

Here

ȧ = ȧ
(
ϑ̄τε , t

)
, ċ = ċ

(
ϑ̄τε , t

)
, Ȧ = Ȧ

(
ϑ̄τε , t

)
,

and

∂γ̇t
(
ϑ̄τε

)
∂t

= −2

[
ȧ
(
ϑ̄τε , t

)
+

A
(
ϑ̄τε , t

)
Ȧ
(
ϑ̄τε , t

)
σ (t)

2

]
γt
(
ϑ̄τε

)
−

[
2a
(
ϑ̄τε , t

)
+

A
(
ϑ̄τε , t

)2
σ (t)

2

]
γ̇t
(
ϑ̄τε

)
+ 2b

(
ϑ̄τε , t

)
ḃ
(
ϑ̄τε , t

)
,

with γ0
(
ϑ̄τε

)
= 0.
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The error of estimation is

ε−1
(
Ŷt − Yt

)
=
(
u′
x
ˆ̇xt + u̇ϑ

)
ε−1 (ϑ⋆

t − ϑ) + o (1)

=⇒
(
u′
x
ˆ̇xt + u̇

)
ξt (ϑ) .

Here ξt (ϑ) is Gaussian process

ξt (ϑ) = It (ϑ)
−1
∫ t

0

Ȧ (ϑ, s)xs (ϑ) +A (ϑ, s) ˆ̇xs (ϑ)

σ (s)
dWs

and

xt (ϑ) = x0 exp

{
−
∫ t

0

a (ϑ, v) dv

}
,

ˆ̇xt (ϑ) = −
∫ t

0

e−
∫ t
s [a+

Ac
σ ]dv

[
ȧ (ϑ, s) +

c (ϑ, s) Ȧ (ϑ, s)

σ (s)

]
xsds

The similar result we have for the error ε−2
(
Ẑt − Zt

)
.

20



Unknown volatility (joint work with S. Gasparyan)

The forward equation is

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ = (α, β). We observe the solution of this equation in

discrete times ti = iTn and have to study the approximation

Ŷt = u(t,Xtk , ϑ̂tk), k = 1, . . . , n, where k satisfies the conditions

tk ≤ t ≤ tk+1 and the estimator ϑ̂tk is construct by the observations

Xk = (X0, Xt1 , . . . , Xtk). Our goal is to realize the same program

as above: we study the one-step pseudo-MLE, which can be

relatively easy in calculation and has some properties of optimality.
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On parameter estimation in diffusion coefficient. First of all

remind that ϑ can be calculated without error if we have

continuous time observations. To illustrate it we give two examples.

Example. Suppose that σ (ϑ, t, x) =
√
ϑh (t, x) , ϑ ∈ (α, β) , α > 0,

and the observed process is

dXt = S (t,Xt) dt+
√
ϑh (t,Xt) dWt, X0, 0 ≤ t ≤ T.

We suppose as well that
∫ t

0
h (s,Xs)

2
ds > 0.

Let us write the Itô formula for X2
t :

X2
t = X2

0 + 2

∫ t

0

Xs dXs + ϑ

∫ t

0

h (s,Xs)
2
ds, 0 ≤ t ≤ T.

Hence, for all t ∈ (0, T ] we have with probability 1 the equality

ϑ̂t =
X2

t −X2
0 − 2

∫ t

0
Xs dXs∫ t

0
h (s,Xs)

2
ds

= ϑ
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The problem became more interesting if we consider the discrete

time observations Xn = (Xt1 , . . . , Xtn) , tj = j T
n and the problem of

approximation in the high frequency asymptotics (n → ∞). Then in

Example we obtain the estimator

ϑ̂t,k =
X2

tk
−X2

0 − 2
∑k

j=1 Xtk−1

(
Xtk −Xtk−1

)∑k
j=1 h

(
tj−1, Xtj−1

)2
δ

, δ =
T

n
.

It can be easily shown that if n → ∞ then we have ϑ̂t,n → ϑ and

we can use it in the approximation of Yt as follows

Ŷt,n = u(t,Xt, ϑ̂t,n). We can describe the distribution of error
√
n
(
Ŷt,n − Yt

)
, but the estimator is not asymptotically optimal.

We consider a different estimator.
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Let us introduce the equation

Xtj+1 = Xtj + S
(
tj , Xtj

)
δ + σ

(
tj , Xtj , ϑ

) [
Wtj+1 −Wtj

]
.

Note that conditional (Xt0 , . . . , Xtj ) distribution

Xtj+1 −Xtj − S
(
tj , Xtj

)
δ ∼ N

(
0, σ

(
tj , Xtj , ϑ

)2
δ
)
,

therefore we can itroduce the log pseudo-likelihood ratio

L
(
ϑ,Xk

)
= −1

2

k−1∑
j=0

ln
[
2πσ

(
tj , Xtj , ϑ

)2
δ
]

− 1

2

k−1∑
j=0

(
Xtj+1 −Xtj − S

(
tj , Xtj

)
δ
)2

σ
(
tj , Xtj , ϑ

)2
δ
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The corresponding contrast function is

Uk

(
ϑ,Xk

)
=

k−1∑
j=0

ln a
(
tj , Xtj , ϑ

)
+

k−1∑
j=0

(
Xtj+1 −Xtj − S

(
tj , Xtj

)
δ
)2

a
(
tj , Xtj , ϑ

)
δ

where a (t, x, ϑ) = σ (t, x, ϑ)
2
. The estimator ϑ̂t,n is define by

Uk

(
ϑ̂t,n, X

k
)
= inf

ϑ∈Θ
Uk

(
ϑ,Xk

)
It is known that this estimator is consistent, asymptotically

conditionally normal

√
n
(
ϑ̂t,n − ϑ0

)
=⇒ N

(
0, It (ϑ0)

−1
)
,

It (ϑ0) = 2

∫ t

0

σ̇ (s,Xs, ϑ0)
2

σ (s,Xs, ϑ0)
2 ds

and asymptotically efficient (Dohnal(1987), Genon-Catalot, Jacod

(1993)).
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Note that the approximation Ŷt = u(t,Xtk , ϑ̂t,n) is computationally

difficult to realize. That is why we propose as above the one-step

pseudo-MLE. Let us fix some (small) τ ∈ (0, T ). The PMLE

estimator ϑ̂τ,n constructed by Xt0,n , Xt1,n , . . . , XtN,n
, where N is

chosen from the condition tN,n ≤ τ < tN+1,n, is consistent and

asymptotically conditionally normal.

Introduce the normalized pseudo score-function and the empirical

Fisher information

∆k,n (ϑ) =

k−1∑
j=0

[(
Xtj+1 −Xtj − Sj δ

)2 − aj (θ) δ
]
ȧj (ϑ)

2aj (ϑ)
2
√
δ

,

Ik,n (ϑ) =
1

2

k−1∑
j=0

ȧj (ϑ)
2

aj (ϑ)
2 δ = 2

k−1∑
j=0

σ̇
(
tj , Xtj , ϑ

)2
σ
(
tj , Xtj , ϑ

)2 δ.
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We have the stable convergence

∆k,n (ϑ0) =⇒
√
2

∫ t

0

σ̇ (s,Xs, ϑ0)

σ (s,Xs, ϑ0)
dws

and the convergence in probability

Ik,n (ϑ0) → It (ϑ0) .

The approximation of the random function Yt we will do with the

help of the following one-step PMLE

ϑ⋆
k,n = ϑ̂τ,n +

√
δ
∆k,n(ϑ̂τ,n)

Ik,n(ϑ̂τ,n)

and show that this estimator is asymptotically efficient and easy

calculated for all t ∈ [τ, T ] (or N < k ≤ n).
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We have the lower bound (Dohnal 87)

lim
γ→0

lim
n→∞

sup
|ϑ−ϑ0|<γ

nT−1Eϑ

(
ϑ̄t,n − ϑ

)2 ≥ Eϑ0It (ϑ0)
−1

.

The one-step PME is asymptotically efficient

lim
γ→0

lim
n→∞

sup
|ϑ−ϑ0|<γ

nT−1Eϑ

(
ϑ̄t,n − ϑ

)2
= Eϑ0It (ϑ0)

−1
.

Introduce the estimators Y ⋆
tk,n

= u
(
t,Xtk , ϑ

⋆
k,n

)
and

Z⋆
tk,n

= u′
x

(
t,Xtk , ϑ

⋆
k,n

)
σ
(
t,Xtk , ϑ

⋆
k,n

)
of the random functions Yt

and Zt respectively.
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Theorem 4 Suppose that the conditions of regularity hold, then

the estimators
(
Y ⋆
t,n, t ∈ [τ, T ]

)
and

(
Z⋆
t,n, t ∈ [τ, T ]

)
are consistent

Y ⋆
tk,n

−→ Yt, Z⋆
tk,n

−→ Zt,

and asymptotically conditionally normal (stable convergence)

δ−1/2
(
Y ⋆
tk,n

− Ytk

)
=⇒ u̇ (t,Xt, ϑ0) ξt (ϑ0) ,

δ−1/2
(
Z⋆
tk,n

− Ztk

)
=⇒ u̇′

x (t,Xt, ϑ0)σ (t,Xt, ϑ0) ξt (ϑ0)

+ u′
x (t,Xt, ϑ0) σ̇ (t,Xt, ϑ0) ξt (ϑ0) ,
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The approximations Y ⋆
t and Z⋆

t of the processes Yt and Zt are valid

for the values t ∈ [τ, T ]. We take τ as a function of n, i.e.,

τ = τn → 0. The rate of convergence of τn we take in such a way

that the preliminary estimator ϑ̂τn is still consistent and the

one-step MLE ϑ⋆
t is asymptotically efficient.

Le us put τn = T/ lnn. Then for k = kn → ∞ satisfying the

condition n−1kn ≤ τn < n−1kn−1

Therefore, for the normalized the contrast-function we have the

convergence

Ũkn

(
ϑ,Xkn

)
=

Ukn

(
ϑ,Xkn

)
τn

−→ ln a (0, x0, ϑ) +
a (0, x0, ϑ0)

a (0, x0, ϑ)
.
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Suppose that condition∣∣∣∣ σ̇ (0, x0, ϑ)

σ (0, x0, ϑ)

∣∣∣∣ ≥ κ > 0.

holds, then the estimator ϑ̂τn defined with the help of this contrast

function

Ũkn

(
ϑ̂τn , X

kn

)
= inf

ϑ∈Θ
Ũkn

(
ϑ,Xkn

)
is consistent and asymptotically normal.

Introduce the one-step pseudo MLE

ϑ⋆
k,n = ϑ̄τn +

√
δ
∆k,n

(
ϑ̄τn

)
Ik,n

(
ϑ̄τn

)
where ϑ̄τn This estimator is asymptotically efficient and easy

calculated for all N < k ≤ n.
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Theorem 5 Suppose that the conditions of regularity hold then

Ŷt,n = u
(
t,Xtk , ϑ

⋆
k,n

)
−→ Yt,

Ẑt,n = u′
x

(
t,Xtk , ϑ

⋆
k,n

)
σ
(
t,Xtk , ϑ

⋆
k,n

)
−→ Zt,

and the errors of estimation are

δ−1/2
(
Ŷtk,n − Ytk

)
=⇒ u̇ (t,Xt, ϑ0) ξt (ϑ0) ,

δ−1/2
(
Ẑtk,n − Ztk

)
=⇒ [u̇′

x (t,Xt, ϑ0)σ (t,Xt, ϑ0)

+u′
x (t,Xt, ϑ0) σ̇ (t,Xt, ϑ0)] ξt (ϑ0) ,

Observe that Ytk − Yt ∼ O
(√

δ
)
. Below ζ ∼ N (0, 1)

Ŷtk,n − Yt√
δ

=⇒ u′
x (t,Xt, ϑ0) η σ (t,Xt, ϑ0) ζ + u̇ (t,Xt, ϑ0) ξt (ϑ0)
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Example. The forward equation is

dXt = −Xtdt+
√
θ +X2

t dWt, X0, 0 ≤ t ≤ T.

Here ϑ ∈ Θ = (α, β) , α > 0 is unknown parameter. It is easy to see

that in the case of continuous time observation the problem of

parameter estimation is degenerated (singular), i.e., the unknown

parameter ϑ can be estimated without error. Indeed, by Itô

formula we can write

X2
t = X2

0 + 2

∫ t

0

Xs dXs +

∫ t

0

[
ϑ+X2

s

]
ds.

Hence for all t ∈ (0, T ] we have the equality

ϑ̂ = t−1

[
X2

t −X2
0 − 2

∫ t

0

Xs dXs −
∫ t

0

X2
s ds

]
and ϑ̂ = ϑ
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Our goal is to construct an asymptotically efficient estimator of the

parameter ϑ. Note that the family of measures induced by the

observations Xk = (Xt0 , Xt1 , . . . , Xtk) with tk satisfying

tk ≤ t < tk+1 and fixed t are locally asymptotically mixed normal

(LAMN) and for all estimators ϑ∗
k we have the lower bound on the

risk

lim
ν→0

lim
n→∞

sup
|ϑ−ϑ0|<ν

Eϑℓ
(√

k (ϑ∗
k − ϑ)

)
≥ Eϑ0ℓ (ζt (ϑ0)) .

The first consistent estimator we obtain as follows

ϑ̄N =
n

TN

X2
tN −X2

0 − 2
N∑
j=1

Xtj−1

[
Xtj −Xtj−1

]
−

N∑
j=1

X2
tj−1

δ

 .
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The pseudo log-likelihood ratio function is

L
(
ϑ,XN

)
= −1

2

N∑
j=1

ln
(
2π
(
ϑ+X2

tj−1

))

−
N∑
j=1

[
Xtj −Xtj−1 +Xtj−1δ

]2
2
(
ϑ+X2

tj−1

)
δ

.

Denote the pseudo Fisher information as

Itk,n (ϑ) =
1

2

k∑
j=1

δ(
ϑ+X2

tj−1

)2 −→ It (ϑ0) =
1

2

∫ t

0

ds

(ϑ+X2
s )

2 .

The one-step MLE-process ϑ⋆
tk,n

, τ ≤ tk ≤ T is

ϑ⋆
tk,n

= ϑ̄N +
√
δ

k∑
j=1

[
Xtj −Xtj−1 +Xtj−1δ

]2 − (ϑ̄N +X2
tj−1

)
δ

2Itk,n
(
ϑ̄N

) (
ϑ̄N +X2

tj−1

)2 √
δ

.
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Example. Black-Scholes model. The forward equation is

dXt = αXtdt+ ϑXt dWt, X0 = x0, 0 ≤ t ≤ T

and the function f (x, y, z) = βy + γxz. The corresponding partial

differential equation is

∂u

∂t
+ (α+ ϑγ)x

∂u

∂x
+

ϑ2x2

2

∂2u

∂x2
+ βu = 0, u (T, x, ϑ) = Φ (x) .

The solution of this equation is the function

u (t, x, ϑ)

=
eβ(T−t)√

2πϑ2 (T − t)

∫ ∞

−∞
e
− z2

2ϑ2(T−t)Φ

(
e
x+

(
α+ϑγ−ϑ2

2

)
(T−t)−z

)
dz.
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The estimator of Yt is

Ŷtk =

∫
e
− z2

2ϑ̂2
tk,n(T−tk)

+β(T−tk)√
2πϑ̂2

tk,n
(T − tk)

Φ

(
eXtk

+(α+ϑ̂tk,nγ−
ϑ̂2
tk,n

2 )(T−tk)−z

)
dz,

where k =
[
t
T n
]
and

ϑ̂tk,n =

1

t

k−1∑
j=0

(Xtj+1 −Xtj − αXtjδ)
2

X2
tj

 1
2

.
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Approximation of Ẑt.

Note that u (t, x, ϑ) = eβ(T−t)Eϑ,xΦ
(
emt−ξ

)
, where

ξ ∼ N
(
−x, d2t

)
, mt = (α+ ϑγ − ϑ2

2
) (T − t) , d2t = ϑ2 (T − t)

Hence

u′
x(t, x, θ) = −eβ(T−t)Eθ

[
(x+ ξ)

d2t
Φ(emt−ξ)

]
and therefore

Ẑtk = − θ̂tk,n Xtk

d3tk
√
2π

∫ ∞

−∞
(y +Xtk)Φ(e

mtk
−y)e

− (Xtk
+y)

2

2d2tk

+β(T−tk)

dy
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Ergodic diffusion (joint work with A. Abakirova)

The observed diffusion process (forward) is

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ = (α, β). The process Xt, t ≥ 0 has ergodic properties.

We are given two functions f (x, y), Φ (x) and we have to find a

couple of stochastic processes
(
Ŷt, Ẑt, 0 ≤ t ≤ T

)
which

approximate well the solution of the BSDE

dYt = −f (Xt, Yt, Zt) dt+ Zt dWt, Y0, 0 ≤ t ≤ T

satisfying the condition YT = Φ(XT ). The functions S (·) and σ (·)
are known and smooth. We have to minimize the errors

Eϑ

(
Ŷt − Yt

)2
→ min, Eϑ

(
Ẑt − Zt

)2
→ min .

as T → ∞.
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Solution: Introduce a family of functions

U = {(u(t, x, ϑ), t ∈ [0, T ] , x ∈ R) , ϑ ∈ Θ} such that for all ϑ ∈ Θ

the function u(t, x, ϑ) satisfies the equation

∂u

∂t
+ S(ϑ, x)

∂u

∂x
+

σ(x)2

2

∂2u

∂x2
= −f (x, u, σ (x)u′

x)

and condition u(T, x, ϑ) = Φ (x). If we put Yt = u (t,Xt, ϑ), then by

Itô’s formula we obtain BSDE with Zt = σ (Xt)u
′
x (t,Xt, ϑ).

Let us change the variables t = sT, s ∈ [0, 1], and put

vε (s, x, ϑ) = u (sT, x, ϑ), then

ε
∂vε
∂s

+ S(ϑ, x)
∂vε
∂x

+
σ(x)2

2

∂2vε
∂x2

= −f
(
x, vε, σ (x) (vε)

′
x

)
,

where vε (1, x, ϑ) = Φ (x) and ε = T−1. The limit is ε → 0.
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We have a family of solutions vε (s, y, ϑ) , 0 ≤ s ≤ 1. Fix some

(small) δ > 0 and define the estimators

ŶsT = vε (s,XsT , ϑ
⋆
sT ) , ẐsT = σ (XsT ) (vε)

′
x (s,XsT , ϑ

⋆
sT )

where ϑ⋆
sT , s ∈ [δ, 1] is one-step MLE, which is constructed as

follows. Suppose that we have an estimator ϑ̄δT constructed by the

observations XδT = (Xt, 0 ≤ t ≤ δT ), which is consistent and

asymptotically normal

√
δT
(
ϑ̄δT − ϑ

)
=⇒ N

(
0, D2

δ

)
.

Then we calculate the one-step MLE

ϑ⋆
sT = ϑ∗

δT +
∆sT

(
ϑ∗
δT , X

sT
δT

)
+∆δ

(
ϑ∗
δT , X

δT
)

√
s T I (ϑ∗

δT )
, δ ≤ s ≤ 1,
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where

∆sT

(
ϑ,XsT

δT

)
=

1√
sT

∫ sT

δT

Ṡ (ϑ,Xt)

σ (Xt)
2 [dXt − S (ϑ,Xt) dt] , s ∈ [δ, 1],

∆δ

(
ϑ,XδT

)
=

A (ϑ,Xδ)√
sT

− 1

2
√
sT

∫ δ

0

B′
x (ϑ,Xt)σ (Xt)

2
dt

−
∫ δ

0

Ṡ (ϑ,Xt)S (ϑ,Xt)√
sTσ (Xt)

2 dt,

B (ϑ, x) =
Ṡ (ϑ, x)

σ (x)
2 , A (ϑ, x) =

∫ x

x0

B (ϑ, z) dz.

Note that under regularity conditions (K. 2004)√
sT (ϑ⋆

sT − ϑ) =⇒ N
(
0, I (ϑ)−1

)
√
sT
(
ŶsT − YsT

)
∼ v̇ε (s,XsT , ϑ)

√
sT (ϑ⋆

sT − ϑ) ,

√
sT
(
ẐsT − ZsT

)
∼ σ (XsT ) (v̇ε)

′
x (s,XsT , ϑ)

√
sT (ϑ⋆

sT − ϑ)
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Two-step MLE. Khasminskii and K. [?] recently considered the

problem of parameter estimation by the observations of diffusion

process and showed that Mullti-step procedure can provide

asymptotically efficiennt estimation even if the preliminary

estimators have bad rate of convergence.

Let us take the first estimator ϑ̃τδ constructed by the observations

XT δ

=
(
Xt, , 0 ≤ t ≤ T δ

)
with δ ∈ ( 13 ,

1
2 ]. We suppose that this

estimator is consistent, asymptotically normal and the moments

converge too:

ṽτδ = T
δ
2

(
ϑ̃τδ − ϑ0

)
=⇒ N (0,M (ϑ0)) , sup

ϑ0∈K
Eϑ0 |ṽτδ |

p ≤ C,

for any p > 0. Here M (ϑ0) is some matrix and C > 0 does not

depend on T . It can be the MLE, MDE, BE or the EMM (see [6]).
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Introduce the second preliminary estimator, which is

estimator-process

ϑ̄τ = ϑ̃τδ + (τT )
−1/2 I

(
ϑ̃τδ

)−1

∆τT

(
ϑ̃τδ , X

τT
T δ

)
, τ ∈ [τδ, 1]

where τδ = T−1+δ. Note that T γ
(
ϑ̄τ − ϑ0

)
→ 0 for γ ∈ (1− δ, 2δ)

∆τT

(
ϑ,XτT

T δ

)
=

1√
τT

∫ τT

T δ

Ṡ (ϑ,Xt)

σ (Xt)
2 [dXt − S (ϑ,Xt) dt] .

The Two-step MLE-process we define as follows

ϑ⋆⋆
τ = ϑ̄τ +

I
(
ϑ̄τ

)−1

√
τT

∆̂τT

(
ϑ̃τδ , ϑ̄τ , X

τT
T δ

)
, τδ ≤ τ ≤ 1,

where

∆̂τT

(
ϑ1, ϑ2, X

τT
T δ

)
=

1√
τT

∫ τT

T δ

Ṡ (ϑ1, Xt)

σ (Xt)
2 [dXt − S (ϑ2, Xt) dt] .

Note that ∆̂τT

(
ϑ, ϑ,XτT

T δ

)
= ∆τT

(
ϑ,XτT

T δ

)
.
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Then we use this estimator to construct One-step (ϑ⋆
t , τ ≤ t ≤ T )

and Two-step MLE-processes like (ergodic case)

ϑ⋆
t = ϑ̄τ + T−1I

(
ϑ̄τ

)−1/2
∫ t

τ

Ṡ
(
ϑ̄τ , Xs

)
σ (Xs)

2

[
dXs − S

(
ϑ̄τ , Xs

)
ds
]
.

This estimator process is easy to calculate, uniformely on τ ≤ t ≤ T

consistent, asymptotically normal and asymptotically efficient.

The contribution of this talk: we can choose τ = τT smaller than

before.
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Theorem 6 Suppose that the conditions of regularity hold.Then

the Two-step MLE-process ϑ⋆⋆
τ , τδ ≤ τ ≤ 1 is consistent,

asymptotically normal

√
T (ϑ⋆⋆

τ − ϑ0) =⇒ N
(
0, τ−1I (ϑ0)

−1
)
,

and asymptotically efficient. The random process

ητ,T (ϑ0) = τ
√
T I (ϑ0)

−1/2
(ϑ⋆⋆

τ − ϑ0) , τ∗ ≤ τ ≤ 1

for any τ∗ ∈ (0, 1) converges in distribution to the Wiener process

W (τ) , τ∗ ≤ τ ≤ 1.
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Example. Ergodic diffusion. Fix a learning interval [0, τ ], where

τ = τT → ∞, τT = o (T ) and obtain the preliminary estimator ϑ̄τ .

Then we use this estimator to construct One-step (ϑ⋆
t , τ ≤ t ≤ T )

and Two-step (ϑ⋆,⋆
t , τ ≤ t ≤ T ) MLE-processes. Say,

ϑ⋆
t = ϑ̄τ + T−1I

(
ϑ̄τ

)−1/2
∫ t

τ

Ṡ
(
ϑ̄τ , Xs

)
σ (Xs)

2

[
dXs − S

(
ϑ̄τ , Xs

)
ds
]
.

This estimator-process is easy to calculate, it is uniformely on

τ ≤ t ≤ T consistent, asymptotically normal and asymptotically

efficient.

The main contribution of this talk: we can choose τ = τT smaller

than before.
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Example. Time series. (K. and Motrunich) Introduce the time

series

Xj = Xj−1 + 3
ϑ−Xj−1

1 + (Xj−1 − ϑ)
2 + εj , j = 1, . . . , n,

where (εj)j≥1 are i.i.d. standard Gaussian random variables and

X0 is given. The unknown parameter ϑ ∈ Θ = (−1, 1).

Case N = nδ, 1
2 < δ ≤ 1. Note that the unknown parameter is the

shift parameter and that the invariant density function is

symmetric with respect to ϑ. Hence we can take the EMM

ϑ̄N =
1

N

N∑
j=1

Xj −→ ϑ, N =
[
n3/4

]
.

Of course, the limit variance of the EMM ϑ̄N is greater than that

of the MLE, but this estimator is much more easier to calculate.
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The score-function process is

∆k(ϑ,X
k) =

1√
k

k∑
j=1

ℓ̇ (ϑ,Xj−1, Xj) , N + 1 ≤ k ≤ n.

where

ℓ̇ (ϑ, x, x′) =3

(
x′ − x− 3

ϑ− x

1 + (ϑ− x)
2

)
1− (ϑ− x)2

(1 + (ϑ− x)2)
2 .

Therefore we can calculate the one-step MLE-process as follows

ϑ⋆
k,n = ϑ̄N

+
3

Ikk

k∑
j=1

(
Xj −Xj−1 − 3

ϑ̄N −Xj−1

1 +
(
ϑ̄N −Xj−1

)2
)

1− (ϑ̄N −Xj−1)
2(

1 + (ϑ̄N −Xj−1)2
)2 .

Here Ik is the empirical Fisher information.
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Case N = nδ, 1
4 < δ ≤ 1

2 . The choice of the learning period of

observations N =
[
nδ
]
with δ ∈ (1/2, 1) allows us to construct an

estimator process for the values k > N only. It can be interesting

to see if it is possible to take more short learning interval. Our goal

is to show that the learning period can be N =
[
nδ
]
with

δ ∈ (1/4, 1/2].

Suppose that N =
[
nδ
]
with δ ∈ (1/4, 1/2). The asymptotically

efficient estimator we construct in three steps. By the first N

observations as before we obtain the preliminary estimator ϑ̄N,1

which is asymptotically normal with the rate
√
N , i.e.,

n
δ
2

(
ϑ̄N,1 − ϑ

)
=⇒ N (0,B (ϑ)) .

This can be the same estimator as in the preceding case. It can be,

for example, the EMM, BE or MLE.
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The two-step MLE-process ϑ⋆⋆
n =

(
ϑ⋆⋆
k,n, k = N + 1, . . . , n

)
we

construct as follows. Introduce the second preliminary

estimator-process

ϑ̄k,2 = ϑ̄N,1 +
1√
k
I
(
ϑ̄N,1

)−1
∆k(ϑ̄N,1, X

k),

and two-step MLE-process

ϑ⋆⋆
k = ϑ̄k,2 +

1√
k
I
(
ϑ̄k,2

)−1
∆k(ϑ̄k,2, X

k).

In the next theorem we realize this program.

Theorem 7 Suppose that the conditions of regularity are fulfilled,

then the estimator ϑ⋆
n is asymptotically normal

√
k(ϑ⋆⋆

k,n − ϑ) =⇒ N
(
0, I (ϑ)−1

)
.
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It is shown that the one-step MLE-process admits the recurrent

representation

ϑ⋆
k+1,n =

k ϑ⋆
k,n

k + 1
+

ϑ̄N

k + 1
+

1

k + 1
I
(
ϑ̄N

)−1
ℓ̇
(
ϑ̄N , Xk, Xk+1

)
.

It allows us to calculate ϑ⋆
k+1,n using the values ϑ̄N , ϑ⋆

k,n and

observations Xk, Xk+1 only.

The similar structure can be obtained for the two-step

MLE-process too. Note that this is not a particular case of the

well-known algorithms of stochastic approximation
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