Efficient estimation of present value distributions for long-dated contracts

Constantinos Kardaras
London School of Economics

Kabanov's 70th
Luminy
September, 2018

The problem

Present value

$$
X_{0}=\int_{0}^{T_{0}} D_{u} f\left(Z_{u}\right) \mathrm{d} u+D_{T_{0}} g\left(Z_{T_{0}}\right)
$$

- Payment flow $f(Z)$ and lump sum $g(Z)$ depend on factors Z.
- Discounting D depends on Z, potential extra randomness.
- Termination T_{0} occurs with rate depending on factors Z.

The problem

Present value

$$
X_{0}=\int_{0}^{T_{0}} D_{u} f\left(Z_{u}\right) \mathrm{d} u+D_{T_{0}} g\left(Z_{T_{0}}\right)
$$

- Payment flow $f(Z)$ and lump sum $g(Z)$ depend on factors Z.
- Discounting D depends on Z, potential extra randomness.
- Termination T_{0} occurs with rate depending on factors Z.

Aim

Calculate the law of X_{0} given Z_{0}.

- With $Z_{0} \sim p$ known, equivalent to obtain the joint law π of $\left(Z_{0}, X_{0}\right)$.
- Very few cases have known "closed form" answers.
- PDE or MC methods either impossible or extremely inefficient.

Factor

Dynamics

Z ergodic diffusion, living in $(\underline{e}, \bar{e}),-\infty \leq \underline{e}<\bar{e} \leq \infty$, such that:

$$
\mathrm{d} Z_{t}=m\left(Z_{t}\right) \mathrm{d} t+\sigma\left(Z_{t}\right) \mathrm{d} W_{t}, \quad t \in \mathbb{R}
$$

Let p be the invariant (stationary) probability.

Factor

Dynamics

Z ergodic diffusion, living in $(\underline{e}, \bar{e}),-\infty \leq \underline{e}<\bar{e} \leq \infty$, such that:

$$
\mathrm{d} Z_{t}=m\left(Z_{t}\right) \mathrm{d} t+\sigma\left(Z_{t}\right) \mathrm{d} W_{t}, \quad t \in \mathbb{R}
$$

Let p be the invariant (stationary) probability.

Ergodicity of Z

This happens exactly when, with $z_{0} \in(\underline{e}, \bar{e})$ and

$$
\begin{gathered}
\Psi(z):=\exp \left(-2 \int_{z_{0}}^{z} \frac{m(s)}{\sigma^{2}(s)} \mathrm{d} s\right) \\
\int_{\underline{e}}^{z_{0}} \Psi(z) \mathrm{d} z=\infty=\int_{z_{0}}^{\bar{e}} \Psi(z) \mathrm{d} z, \quad \text { and } \quad \int_{\underline{e}}^{\bar{e}} \frac{\Psi(z)}{\sigma^{2}(z)} \mathrm{d} z<\infty,
\end{gathered}
$$

In this case, $p \propto \Psi / \sigma^{2}$.

Discounting and Termination

Discounting
With $D_{0}=1$,

$$
\begin{aligned}
-\frac{\mathrm{d} D_{t}}{D_{t}} & =r\left(Z_{t}\right) \mathrm{d} t+\tilde{\theta}\left(Z_{t}\right) \mathrm{d} W_{t}+\eta\left(Z_{t}\right) \mathrm{d} B_{t} \\
& =a\left(Z_{t}\right) \mathrm{d} t+\theta\left(Z_{t}\right) \mathrm{d} Z_{t}+\eta\left(Z_{t}\right) \mathrm{d} B_{t}, \quad t \in \mathbb{R} .
\end{aligned}
$$

Discounting and Termination

Discounting

With $D_{0}=1$,

$$
\begin{aligned}
-\frac{\mathrm{d} D_{t}}{D_{t}} & =r\left(Z_{t}\right) \mathrm{d} t+\tilde{\theta}\left(Z_{t}\right) \mathrm{d} W_{t}+\eta\left(Z_{t}\right) \mathrm{d} B_{t} \\
& =a\left(Z_{t}\right) \mathrm{d} t+\theta\left(Z_{t}\right) \mathrm{d} Z_{t}+\eta\left(Z_{t}\right) \mathrm{d} B_{t}, \quad t \in \mathbb{R}
\end{aligned}
$$

Termination

N : Cox process (of contract terminations).

- Given $Z \equiv\left(Z_{t} ; t \in \mathbb{R}\right), N$ is inhomogeneous Poisson with rate $\lambda(Z)$.
- Assume that $p[\lambda>0]>0$. (Contracts terminate in finite time.)
- Define the time-of-next-contract-termination

$$
T_{t}:=\inf \left\{u \geq t \mid \Delta N_{u}=1\right\}, \quad t \in \mathbb{R}
$$

The law of $\left(Z_{0}, X_{0}\right)$ via ergodicity: a first idea

Extend X_{0} to a process

$$
X_{t}=\int_{t}^{T_{t}} \frac{D_{u}}{D_{t}} f\left(Z_{u}\right) \mathrm{d} u+\frac{D_{T_{t}}}{D_{t}} g\left(Z_{T_{t}}\right), \quad t \in \mathbb{R} .
$$

- The joint process (Z, X) is ergodic, with invariant joint law π.
- Barrier: X is "forward-looking"; idea does not seem implementable.

The law of $\left(Z_{0}, X_{0}\right)$ via ergodicity: a first idea

Extend X_{0} to a process

$$
X_{t}=\int_{t}^{T_{t}} \frac{D_{u}}{D_{t}} f\left(Z_{u}\right) \mathrm{d} u+\frac{D_{T_{t}}}{D_{t}} g\left(Z_{T_{t}}\right), \quad t \in \mathbb{R} .
$$

- The joint process (Z, X) is ergodic, with invariant joint law π.

Dynamics of (Z, X) ?

- Idea: Write dynamics for (Z, X) in its filtration. Then, simulate (Z, X) starting from any $\left(Z_{0}, X_{0}\right)=(z, x)$; by the ergodic theorem, the empirical laws converge to the actual one.

The law of $\left(Z_{0}, X_{0}\right)$ via ergodicity: a first idea

Extend X_{0} to a process

$$
X_{t}=\int_{t}^{T_{t}} \frac{D_{u}}{D_{t}} f\left(Z_{u}\right) \mathrm{d} u+\frac{D_{T_{t}}}{D_{t}} g\left(Z_{T_{t}}\right), \quad t \in \mathbb{R} .
$$

- The joint process (Z, X) is ergodic, with invariant joint law π.

Dynamics of (Z, X) ?

- Idea: Write dynamics for (Z, X) in its filtration. Then, simulate (Z, X) starting from any $\left(Z_{0}, X_{0}\right)=(z, x)$; by the ergodic theorem, the empirical laws converge to the actual one.
- Barrier: X is "forward-looking"; idea does not seem implementable.

Flip the idea backwards

Time reversal
Define the processes

$$
\zeta_{t}=Z_{-t}, \quad \chi_{t}=X_{-t}, \quad t \in \mathbb{R}
$$

The process (ζ, χ) is ergodic and Markov, same invariant law π as (Z, X). Now, χ depends on the past of ζ.

Flip the idea backwards

Time reversal
Define the processes

$$
\zeta_{t}=Z_{-t}, \quad \chi_{t}=X_{-t}, \quad t \in \mathbb{R}
$$

The process (ζ, χ) is ergodic and Markov, same invariant law π as (Z, X). Now, χ depends on the past of ζ. Define also

$$
\nu_{t}=-N_{-t}, \quad \omega_{t}=-W_{-t}, \quad \beta_{t}=-B_{-t}, \quad t \in \mathbb{R}
$$

Flip the idea backwards

Time reversal
Define the processes

$$
\zeta_{t}=Z_{-t}, \quad \chi_{t}=X_{-t}, \quad t \in \mathbb{R}
$$

The process (ζ, χ) is ergodic and Markov, same invariant law π as (Z, X). Now, χ depends on the past of ζ. Define also

$$
\nu_{t}=-N_{-t}, \quad \omega_{t}=-W_{-t}, \quad \beta_{t}=-B_{-t}, \quad t \in \mathbb{R}
$$

Dynamics of (ζ, χ) ?

- Dynamics of ζ from Haussmann-Pardoux '86. (See result later.)
- Given ζ, dynamics for χ follow. (See next slides.)

Dynamics for χ

Recall that

$$
D_{t} X_{t}=\int_{t}^{T_{t}} D_{u} f\left(Z_{u}\right) \mathrm{d} u+D_{T_{t}} g\left(Z_{T_{t}}\right), \quad t \in \mathbb{R}
$$

Using "-" and " + " to denote sampling at the left- and right end-point respectively and " δ " for differences, we obtain (excluding high order terms)

$$
\begin{aligned}
X_{-} & =f\left(Z_{-}\right) \delta t+\frac{D_{+}}{D_{-}} X_{+}(1-\delta N)+g\left(Z_{+}\right) \delta N \Rightarrow \\
-\delta X & =f\left(Z_{-}\right) \delta t+X_{+} \frac{\delta D}{D_{-}}+\left(g\left(Z_{+}\right)-X_{+}\right) \delta N
\end{aligned}
$$

Dynamics for χ

Recall that

$$
D_{t} X_{t}=\int_{t}^{T_{t}} D_{u} f\left(Z_{u}\right) \mathrm{d} u+D_{T_{t}} g\left(Z_{T_{t}}\right), \quad t \in \mathbb{R}
$$

Using "-" and "+" to denote sampling at the left- and right end-point respectively and " δ " for differences, we obtain (excluding high order terms)

$$
\begin{aligned}
X_{-} & =f\left(Z_{-}\right) \delta t+\frac{D_{+}}{D_{-}} X_{+}(1-\delta N)+g\left(Z_{+}\right) \delta N \Rightarrow \\
-\delta X & =f\left(Z_{-}\right) \delta t+X_{+} \frac{\delta D}{D_{-}}+\left(g\left(Z_{+}\right)-X_{+}\right) \delta N
\end{aligned}
$$

Since $f\left(Z_{-}\right) \delta t=f\left(Z_{+}\right) \delta t$, it follows that

$$
\delta \chi=f\left(\zeta_{-}\right) \delta t+\chi_{-} \frac{\delta D}{D_{-}}+\left(g\left(\zeta_{-}\right)-\chi_{-}\right) \delta \nu
$$

Time-reversed dynamics for $\delta D / D_{-}$

$$
\begin{aligned}
-\frac{\delta D}{D_{-}} & =a\left(Z_{-}\right) \delta t+\theta\left(Z_{-}\right) \delta Z+\eta\left(Z_{-}\right) \delta B \\
& =a\left(Z_{+}\right) \delta t-\theta\left(Z_{+}\right)(-\delta Z)-\eta\left(Z_{+}\right)(-\delta B) \\
& -\delta a(Z) \delta t+\delta \theta(Z)(-\delta Z)+\delta \eta(Z)(-\delta B) .
\end{aligned}
$$

Time-reversed dynamics for $\delta D / D_{-}$

$$
\begin{aligned}
-\frac{\delta D}{D_{-}} & =a\left(Z_{-}\right) \delta t+\theta\left(Z_{-}\right) \delta Z+\eta\left(Z_{-}\right) \delta B \\
& =a\left(Z_{+}\right) \delta t-\theta\left(Z_{+}\right)(-\delta Z)-\eta\left(Z_{+}\right)(-\delta B) \\
& -\delta a(Z) \delta t+\delta \theta(Z)(-\delta Z)+\delta \eta(Z)(-\delta B) .
\end{aligned}
$$

But, $\delta a(Z) \delta t=0=\delta \eta(Z)(-\delta B)$, and

$$
\delta \theta(Z)(-\delta Z)=-\theta^{\prime}\left(Z_{+}\right) \sigma^{2}\left(Z_{+}\right) \delta t=-\theta^{\prime}\left(\zeta_{-}\right) \sigma^{2}\left(\zeta_{-}\right) \delta t .
$$

Time-reversed dynamics for $\delta D / D_{-}$

$$
\begin{aligned}
-\frac{\delta D}{D_{-}} & =a\left(Z_{-}\right) \delta t+\theta\left(Z_{-}\right) \delta Z+\eta\left(Z_{-}\right) \delta B \\
& =a\left(Z_{+}\right) \delta t-\theta\left(Z_{+}\right)(-\delta Z)-\eta\left(Z_{+}\right)(-\delta B) \\
& -\delta a(Z) \delta t+\delta \theta(Z)(-\delta Z)+\delta \eta(Z)(-\delta B) .
\end{aligned}
$$

But, $\delta a(Z) \delta t=0=\delta \eta(Z)(-\delta B)$, and

$$
\delta \theta(Z)(-\delta Z)=-\theta^{\prime}\left(Z_{+}\right) \sigma^{2}\left(Z_{+}\right) \delta t=-\theta^{\prime}\left(\zeta_{-}\right) \sigma^{2}\left(\zeta_{-}\right) \delta t .
$$

Putting everything together, with

$$
\begin{gathered}
\alpha:=\theta^{\prime} \sigma^{2}-a, \\
\frac{\delta D}{D_{-}}=\alpha\left(\zeta_{-}\right) \delta t+\theta\left(\zeta_{-}\right) \delta \zeta+\eta\left(\zeta_{-}\right) \delta \beta .
\end{gathered}
$$

The main result

Theorem

- With $\zeta_{0} \sim p, \chi_{t}^{\chi}=x($ for $x \in \mathbb{R})$, let $\left(\zeta, \chi^{x}\right)$ satisfy

$$
\begin{aligned}
\mathrm{d} \zeta_{t} & =m\left(\zeta_{t}\right) \mathrm{d} t+\sigma\left(\zeta_{t}\right) \mathrm{d} \omega_{t}, \\
\mathrm{~d} \chi_{t}^{x} & =f\left(\zeta_{t}\right) \mathrm{d} t+\chi_{t-}^{x}\left(\alpha\left(\zeta_{t}\right) \mathrm{d} t+\theta\left(\zeta_{t}\right) \mathrm{d} \zeta_{t}+\eta\left(\zeta_{t}\right) \mathrm{d} \beta_{t}\right) \\
& +\left(g\left(\zeta_{t}\right)-\chi_{t-}^{x}\right) \mathrm{d} \nu_{t}, \quad t \in \mathbb{R}_{+},
\end{aligned}
$$

where (ω, β) are independent Brownian motions, and ν a Cox process with rate $\lambda(\zeta)$.

- Then, it almost surely holds that

The main result

Theorem

- With $\zeta_{0} \sim p, \chi_{t}^{\chi}=x($ for $x \in \mathbb{R})$, let $\left(\zeta, \chi^{x}\right)$ satisfy

$$
\begin{aligned}
\mathrm{d} \zeta_{t} & =m\left(\zeta_{t}\right) \mathrm{d} t+\sigma\left(\zeta_{t}\right) \mathrm{d} \omega_{t}, \\
\mathrm{~d} \chi_{t}^{x} & =f\left(\zeta_{t}\right) \mathrm{d} t+\chi_{t-}^{x}\left(\alpha\left(\zeta_{t}\right) \mathrm{d} t+\theta\left(\zeta_{t}\right) \mathrm{d} \zeta_{t}+\eta\left(\zeta_{t}\right) \mathrm{d} \beta_{t}\right) \\
& +\left(g\left(\zeta_{t}\right)-\chi_{t-}^{x}\right) \mathrm{d} \nu_{t}, \quad t \in \mathbb{R}_{+},
\end{aligned}
$$

where (ω, β) are independent Brownian motions, and ν a Cox process with rate $\lambda(\zeta)$. Define the occupation measure $\widehat{\pi}_{t}^{x}$ via

$$
\widehat{\pi}_{t}^{x}[A]=\frac{1}{t} \int_{0}^{t} \mathbf{1}_{A}\left(\zeta_{s}, \chi_{s}^{x}\right) \mathrm{d} s, \quad t>0
$$

- Then, it almost surely holds that

$$
\lim _{t \rightarrow \infty} \widehat{\pi}_{t}^{x}=\pi \text { (weakly) }, \quad \forall x \in \mathbb{R}
$$

Extensions

Multi-dimensional diffusive factor models

- Difficult to check for ergodicity (tests involving Lyapunov functions, adjoint equations).
- Even more difficult to calculate invariate measure p (gradient conditions, special cases like multi-dimensional OU models).
- Dynamics for ζ involve p.

Extensions

Multi-dimensional diffusive factor models

- Difficult to check for ergodicity (tests involving Lyapunov functions, adjoint equations).
- Even more difficult to calculate invariate measure p (gradient conditions, special cases like multi-dimensional OU models).
- Dynamics for ζ involve p.

Continuous Markov chain factor models

- Allow for different payoff during sojourns, transition and termination.
- More tractable: piecewise deterministic χ between transitions of ζ.
- Results in density estimation: convergence of laws in total variation.

Yuri, thanks. Looking forward to your 80th!

